
SensorBench: Benchmarking Approaches to Processing
Wireless Sensor Network Data

Ixent Galpin
Dpto. de Ingeniería
Universidad Jorge

Tadeo Lozano
Bogotá, Colombia

ixent@utadeo.edu.co

Alan B. Stokes
School of Computer Science,

University of Manchester
Manchester, UK

stokesa6@cs.man.ac.uk

George Valkanas
Dept. of Informatics and

Telecommunications
University of Athens

Athens, Greece
gvalk@di.uoa.gr

Alasdair J. G. Gray
Dept. of Computer Science,

Heriot-Watt University
Edinburgh, UK

a.j.g.gray@hw.ac.uk

Norman W. Paton
School of Computer Science,

University of Manchester
Manchester, UK

norm@cs.man.ac.uk

Alvaro A. A. Fernandes
School of Computer Science,

University of Manchester
Manchester, UK

alvaro@cs.man.ac.uk

Kai-Uwe Sattler
Databases and Information

Systems Group
Ilmenau University of

Technology
Ilmenau, Germany

kus@tu-ilmenau.de

Dimitrios Gunopulos
Dept. of Informatics and

Telecommunications
University of Athens

Athens, Greece
dg@di.uoa.gr

ABSTRACT
Wireless sensor networks enable cost-effective data collection
for tasks such as precision agriculture and environment mon-
itoring. However, the resource-constrained nature of sensor
nodes, which often have both limited computational capabil-
ities and battery lifetimes, means that applications that use
them must make judicious use of these resources. Research
that seeks to support data intensive sensor applications has
explored a range of approaches and developed many dif-
ferent techniques, including bespoke algorithms for specific
analyses and generic sensor network query processors. How-
ever, all such proposals sit within a multi-dimensional design
space, where it can be difficult to understand the implica-
tions of specific decisions and to identify optimal solutions.
This paper presents a benchmark that seeks to support the
systematic analysis and comparison of different techniques
and platforms, enabling both development and user commu-
nities to make well informed choices. The contributions of
the paper include: (i) the identification of key variables and
performance metrics; (ii) the specification of experiments
that explore how different types of task perform under dif-
ferent metrics for the controlled variables; and (iii) an ap-
plication of the benchmark to investigate the behavior of
several representative platforms and techniques.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SSDBM ’14, June 30 - July 02 2014, Aalborg, Denmark
Copyright 2014 ACM 978-1-4503-2722-0/14/06$15.00.
http://dx.doi.org/10.1145/2618243.2618252

Categories and Subject Descriptors
[Information systems]: Database performance evaluation;
[Networks]: Sensor networks

General Terms
Performance, Experimentation

Keywords
Benchmarks, Query processing, Wireless Sensor Networks

1. INTRODUCTION
Wireless sensor networks (WSNs) can be used to support

a variety of applications, for example, in environment mon-
itoring or agriculture (e.g. [6, 16]). However, the resource-
constrained nature of the sensor nodes, which tend both to
have limited computational capabilities and readily drained
batteries, means that in-network applications must make ju-
dicious use of these resources. As a consequence of the high
energy costs of wireless communications, directly shipping
all sensed data out of the network is likely to lead to network
lifetimes that are much shorter than when some data filter-
ing, aggregation or analysis is carried out in the network,
and additional benefits can be gained by effective decision-
making relating to routing and caching.

To support the efficient use of WSNs, database researchers
have developed both in-network data analysis techniques
(e.g. [11, 32, 35]) and sensor network query processors (e.g.
[2, 7, 18, 22, 24]). As a result, there are now many different
proposals that occupy different positions in a complex design
space. Publications on individual proposals invariably in-
clude evaluations that report performance for specific tasks
on particular platforms. However, these evaluations differ in

terms of the tasks carried out, the networks over which they
are carried out, the variables that are controlled, and the
values that are reported. As a result, it can be difficult to
compare proposals in terms of their functionality or perfor-
mance on the basis of published results, and it can also be
difficult to ascertain the impact of different design decisions.

This paper proposes a benchmark for comparing the per-
formance characteristics of different data processing tech-
niques for WSNs. The term data processing technique en-
compasses a broad spectrum, including bespoke, hand-crafted
software for particular analyses, and more general purpose
query processing engines. The benchmark is intended to
support analysis of the performance of new and existing pro-
posals, by providing a collection of representative tasks over
different network topologies, with a range of control vari-
ables that reflect the requirements of different deployments
and users. In addition, by providing a standard collection of
tasks and variables, the benchmark provides a foundation for
more systematic comparisons between existing techniques
and new proposals.

The contributions of this paper are as follows:

1. The identification of a collection of tasks, variables and
performance metrics that represent the functional and
non-functional requirements of a wide range of com-
mon applications.

2. The specification of experiments that capture various
of the trade-offs that characterize and constrain sensor
network deployments.

3. The application of the benchmark to analyse several
different and representative data processing techniques,
including a sensor network query processor (SNEE [7])
and hand crafted algorithms.

The benchmark has been developed by groups that have ex-
perience developing and evaluating both (rather different)
sensor query processors and bespoke in-network algorithms.
As discussed in Section 5, the benchmark subsumes many
of the published evaluations of data processing techniques
for WSNs, and the public availability of scripts to support
the running of the benchmark and presentation of results
should enable its cost-effective application by the wider com-
munity1.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses various desiderata that a benchmark for
WSNs should exhibit including its scope and limitations,
and identifies and motivates the selection of the controlled
variables and performance measures used in the benchmark.
Section 3 describes the experiments that constitute the bench-
mark, in terms of the tasks to be carried out and the fea-
tures from Section 2. Section 4 describes the application of
the benchmark and the lessons learned. Related work on
benchmarking and performance evaluations for data inten-
sive tasks over WSNs is provided in Section 5, and conclu-
sions are presented in Section 6.
1The benchmark, including scripts that provide support for
running the data processing techniques evaluated in this pa-
per on the Avrora emulator [38], is available from https:
//code.google.com/p/sensorbench/. The scripts are de-
signed to be easily extensible to accommodate other data
processing techniques and/or simulators according to user
requirements. An optional script is also provided to enable
workloads to be run on the HTCondor High Throughput
computing platform [37].

2. BENCHMARK PROPERTIES

2.1 Desiderata and Scope
The benchmark aims to enable users to gain an under-

standing of trade-offs, limitations and assumptions associ-
ated with particular data processing approaches in WSNs.
The notion of a data processing technique encompasses a
broad range of approaches to process data within WSNs,
which fall under three broad categories:

• The warehousing approach, which involves shipping raw
sensor readings outside of the WSN, for storage and
subsequent analysis. In this case there is no in-network
processing within the WSN. This approach is likely
to be appropriate in cases such as when all the sen-
sor readings need to be stored in a database outside
the WSN, and there is sufficient energy to transmit
all the data out of the WSN. It may also be desirable
in cases when the data requires very computationally
intensive processing and, as a result, sending the raw
data values achieves higher performance than carrying
out in-network data processing. MultihopOscilloscope,
a sample data collection application which ships with
TinyOS [21], is an example of a software artefact that
implements this approach.

• The bespoke, hand-crafted approach, which involves the
implementation of techniques designed to carry out a
specific task within the WSN. This category involves
in-network processing to carry out a fixed task within
the WSN, such as aggregation or outlier detection.
This approach is likely to be useful when it is known
that the WSN will be used for a single purpose, and
energy savings can be obtained by carrying out the
data processing partially or wholly within the WSN.
For example, the D3 algorithm [35] carries out outlier
detection within the WSN.

• The sensor network query processing (SNQP) approach,
capable of carrying out a broad range of tasks, de-
signed to handle ad hoc user-specified queries. This
category involves in-network processing and enables
the WSN to be repurposed on-the-fly, and is likely to
be useful when the task to be carried out by the WSN
is likely to change. Examples in this category include
TinyDB [24] and SNEE [7].

It should be possible to apply the benchmark to evaluate the
performance of data processing techniques from these three
categories. The warehousing approach should, intuitively, be
the most resource-hungry approach as it involves shipping
all the data out of the WSN, and can therefore be used as
a baseline to evaluate the benefits obtained by the other
approaches, which involve in-network processing.

Adaptivity. We note the emergence of data processing
techniques in each of the three categories that are adap-
tive, i.e., they have the ability to respond to changes in
the computing fabric or environment during data processing,
e.g., [1,34]. Adaptation typically incurs a resource overhead,
and it is done with the hope of obtaining a future saving as
a result of having carried out the adaptation. The bench-
mark is agnostic as to whether a data processing technique
is adaptive or not: any savings (or losses) will be reflected in
the performance results obtained when applying the bench-
mark.

Target Class of Applications. The focus of this benchmark
are applications with wireless nodes at fixed locations, which
involve sensing data at regular intervals, and where energy
is a scarce resource. Typical examples are, for instance, en-
vironmental monitoring applications [6, 27]. We note that,
in most of the cases reported in the literature, such appli-
cations have nodes at fixed locations, and that results are
transmitted back to a single gateway node (i.e., requests are
not initiated by, and results are not sent to, arbitrary nodes
in the network, in a peer-to-peer fashion). Thus, current
real-world deployments, which are the focus of this bench-
mark, tend to be relatively simple. In the future, WSNs are
likely to become more pervasive and increasingly complex
and, as such, it is likely that WSN benchmarks will need to
be extended to cover scenarios of increasing complexity.

We further note that this benchmark considers deploy-
ments energy in which is considered a scarce resource, as
nodes rely on a non-replenishable source of energy, i.e., they
are not connected to the mains power, or have the ability
to periodically replenish themselves of energy, and therefore
the preservation of energy tends to be of paramount con-
cern. Thus, they are significantly different to applications
that run on MANETs [15], which comprise mobile nodes
which typically are replenished at regular intervals, and in
which requests are typically initiated by arbitrary nodes in
the network.

Platforms. Given the plethora of WSN hardware avail-
able [14], the benchmark aims to be agnostic with regards
to the platform being used (i.e., the hardware/OS). As with
any benchmark, it will be necessary to provide the hardware
specifications alongside the results obtained. These should
include information such as the specifications of the hard-
ware (CPU, radio, RAM, flash memory) of each node in
the WSN, the energy resources available (battery type and
energy supply in Joules).

Use of Simulation. The benchmark is not designed to
measure hardware performance but rather to contrast differ-
ent styles of processing WSN data. As such, the benchmark
is not suitable to differentiate between the performance of
alternative hardware platforms but rather between different
approaches on how to process the data. While it might at
first seem desirable to run SensorBench on a WSN testbed
with real hardware, e.g., Motelab [42], or indeed, a real-
world deployment, it is unlikely to be practical to do so,
because some of the workloads are designed to contrast the
consequences of doing, or not, all the processing outside the
network when one expects the lifetime of the deployment to
be in order of months or years. Running the benchmark at
real time would imply waiting very long times for the mea-
surements to be final. While testbeds provide more accurate
performance measurements than simulator/emulators (such
as, e.g., Avrora [38] or PowerTossim [33]), the latter provide
reasonable approximations of performance in practice (e.g,
as demonstrated by the comparisons of an improved version
of Avrora with the SANDbed testbed [12]). By using emu-
lation, we can carry out systematic experiments that cover
a broader region of the WSN application design space in an
efficient manner, whilst still obtaining sufficiently accurate
performance data compared to the use of a testbed.

2.2 Variables
Table 1 enumerates several variables pertinent to WSN en-

vironmental monitoring and agricultural applications, based

on descriptions of deployments in the literature. For each
variable, we enumerate the range of possible values, with
reference to deployments or application scenarios described
in the literature. In the experiments described in Section 3,
each variable may be fixed, or be allowed to vary, depend-
ing on the relationships or trade-offs being explored. We
therefore specify a default value used for each variable for
experiments when it is fixed.

For a particular deployment, the values assigned to these
variables result from temporal or spatial characteristics of
the phenomenon being measured. For example, in the case
of acquisition interval, this is likely to depend on the rate
of change of the phenomenon being measured. While mon-
itoring a volcanic eruption may require sensor readings to
be taken at a very high frequency, in the case of monitoring
the movement of ice in a glacier it is likely to be adequate
to take readings far less frequently. Resource constraints
are another factor likely to influence acquisition interval as,
e.g., scarcity of energy may result in measurements being
taken less frequently than would be desired, to increase the
lifetime of the WSN. As the default for most experiments,
we assume that readings are taken every 32s, which allows
nodes to sleep for a considerable proportion of the time.

Other variables, such as the Network Size and Node Lay-
out, depend on the characteristics of the sensing field in
question, the points in space for which sensor readings are
desired, and the location of the base station. For exam-
ple, the points of interest, where sensor measurements are
needed, will dictate the location of source nodes where mea-
surements are taken. If these are not within radio range
of each other, relay nodes may be needed to bridge radio
communications between nodes. As such, the Network Size
may be influenced by factors including the area of the phe-
nomenon to be observed, the node radio range, the degree
of redundancy desired, and available budget. In the experi-
ments, we assume network sizes of 9, 25 and 100, which lend
themselves well to a square grid topology. As a default size,
we assume a network of 25 nodes, which allows a medium
size grid to be defined.

With respect to Node Layout, a linear topology has few
paths to choose from, from the source nodes to the gateway
node. As an extreme example, the Crowden Brook deploy-
ment [26] has a linear topology in which communications be-
tween nodes take place in a pre-determined sequence, partly
a consequence of the fact that sensors are placed along the
transect of a hill slope. In contrast, with a grid topology,
there may be several different paths available to route the
data. An example of such a deployment occurs in the Sniper
Localization deployment application [20], with 60 nodes over
a 80m × 80m × 6m area, given that acoustic sensor readings
need to be taken in 3-dimensional space in order to pinpoint
the location of a sniper. In the real world, due to physical ob-
stacles and the nature of natural phenomena, it is often not
possible to have nodes laid out as a perfect grid spaced out
evenly. We therefore consider a arbitrary topology, which
arguably more closely reflects conditions in the real world,
as the default layout assumed in the experiments.

Node Density considers how close nodes are to each other
in space. Factors that may affect node density include the
spatial resolution at which sensor readings are required, the
radio communication range, the need for redundancy in the
network (e.g., so that in the event of node failure, traffic
may be routed via another route), as well as budget avail-

Variable Range of values from real-world deployments Default
Acquisition Interval
Amount of time between sensor
readings.

Almost continuous, e.g., Volcán Reventador deployment [41] during
an eruption, in which a reading is taken every 10 ms;
Moderate, e.g., Great Duck Island [25, 36] in which readings are
taken every 5–60 min;
Very infrequent, e.g., Glacier monitoring, every 4 hours [28].

32s

Network Size
Number of nodes in the WSN
deployment.

Small network (2–10 nodes), e.g., Crowden Brook [26] comprises
only 4 nodes);
Medium-sized network (11–30 nodes), e.g., the Volcán Reventador
deployment [41] has 16 nodes;
Large network (30+ nodes) e.g., the Great Duck Island deploy-
ment [25,36] had 100+ nodes.

25

Node Layout
Spatial distribution of nodes
throughout the WSN.

Linear, e.g, Crowden Brook deployment [26];
Grid, e.g., Sniper Localization deployment application [20];
Abitrary, e.g., Great Duck Island [25,36].

arbitrary

Node Density
Measure of how close nodes are
to one another in the WSN.

Sparse topology, e.g., Crowden Brook [26];
Dense topology, e.g., with Sniper Localization deployment [20].

3

Proportion of Sources
Percentage of nodes in WSN
which have sensors, and can
therefore act as data sources.

This information is hard to glean from descriptions of existing WSN
deployments. However, it is reasonable to assume that to keep costs
down the number of relay nodes will be minimized.

80 %

Radio Packet Loss Rate
Percentage of radio packets
which are not received success-
fully by their intended recipient.

Analyses by Szewczyk et al. [36] found that measurements in the
Great Duck Island network revealed an average 30% packet loss over
a single hop.

0 %

Table 1: Variables used in SensorBench.

able. In a dense network topology, nodes are relatively close
together, so a routing algorithm may have the option of
communicating via shorter or longer radio hops. In a sparse
topology, nodes are relatively far apart, so there is less lee-
way when choosing a node’s neighbours. We introduce the
notion of node density, defined as the reciprocal of the dis-
tance between nodes in terms of the maximum radio range
supported by the nodes. For example, the CC100 radio for
the Mica2 sensor node platform has a default range R=60
m, so if density = 1, every node in the network has at least
one neighbour 60 m away from it, and if density = 30, every
node has at least one neighbour 2 m away from it. In the
experiments, we assume a default density of 3, as it gives
some leeway with routing approaches, but does not provide
an overly high degree of redundancy.

The Proportion of Sources depends on the number of re-
lay nodes required in the WSN to ensure radio connectivity
between the nodes of the network. It is assumed that the
number of relay nodes in a network will be kept to a mini-
mum, due to cost implications, so 80% is taken as the default
value for this variable.

Finally, the Radio Packet Loss Rate is a property that de-
pends on the radio propagation characteristics of the sensing
field, and the type of radio used. For the experiments, we
assume a 0% packet loss as default in order not to distort
other factors which may be responsible for a reduction in
tuple cardinality, such as load shedding (e.g., as in [31]) or
sampling (e.g., as in [17]) which may be carried out by the
data processing technique.

2.3 Performance Metrics
In WSN data processing, the resource constraints inherent

in the computing fabric lead to stark trade-offs. For exam-
ple, when monitoring a volcanic eruption, a shorter lifetime
of the WSN is acceptable in order to take measurements
more frequently and receive results without delay. In other
types of applications, maximizing lifetime of the WSN may
be the goal, and it may be necessary to minimize radio ac-
tivity and accept a significant delay in receipt of results.
Traditionally, the focus of WSN data processing applica-
tions has been to minimize energy consumption. However,
WSN applications cover a broad spectrum, and have varied
and diverse non-functional requirements [8]. As such, Sen-
sorBench supports various performance metrics, and those
that will be of interest to a specific user will depend on the
characteristics of the application that the data processing
technique being evaluated is to be used for. The following
performance metrics are considered in SensorBench:

Lifetime is defined as the amount of time it takes for a
WSN to be unable to carry out the data processing
task due to energy depletion. This variable is influ-
enced by the energy consumption of individual nodes,
routing of tuples which may lead to hotspots if certain
nodes in the WSN are overloaded, and the robustness
of the system in question. Lifetime is measured by
recording the time taken for node failure to affect the
tuples being delivered.

Total energy consumption is defined as the sum of the
energy consumed by all the nodes in the sensor net-
work, over a specific period of time. In contrast to
lifetime, which depends on the energy consumption on
a per-node basis, total energy consumption increases
as the number of nodes in the WSN increases.

surface(node_id, time, light, temp, humidity)

burrow(node_id, time, light, temp, humidity)

sensors(node_id, time, light, temp, humidity)

Figure 1: Abridged schema for the Great Duck Island Ap-
plication

Delivery fraction is defined as the percentage of tuples
that are delivered to the gateway, of the total that
should be delivered to the gateway. For tasks which
are lossy in nature (e.g., outlier detection), this is the
percentage of the maximum possible number of result
tuples. This variable is affected by radio packet loss,
as well as load-shedding or sampling policies which are
part of the data processing technique.

Delivery delay is defined as the time elapsed between an
event occurring in the environment, and the event be-
ing reported in the results. This variable is influ-
enced by factors such as the routing strategy used, and
whether results are transmitted immediately over the
radio, or buffered and sent in batches so that less en-
ergy is used with overheads such as turning the radio
on. This is measured by recording the average time
elapsed between a sensor reading being acquired, and
the corresponding result being reported by the system.

Output rate is defined as the amount of data, in bytes
per second, produced by the system. Measuring out-
put rate enables observation of how the system behaves
under increasing load. This variable depends on sev-
eral factors including the acquisition interval, the task
being run, and the processing capacity of the WSN.

3. BENCHMARK DESIGN
The representative data processing tasks used in Sensor-

Bench are described in terms of the Great Duck Island de-
ployment [25,36], a classical application in which a WSN is
used for habitat monitoring, briefly described in Section 3.1.
The specification of the tasks is presented in Section 3.2. Fi-
nally, in Section 3.3, we set out a series of experiments that
involve running these data processing tasks while changing
the variables defined in Section 2.2, and measuring the per-
formance metrics described in Section 2.3.

3.1 Case Study
The Great Duck Island [25, 36] WSN deployment has be-

come a well-known example of an environmental monitoring
application. It was employed to monitor the habitat of the
Leach’s Storm Petrel, an endangered seabird that nests in
underground burrows. The aim was to understand the nest-
ing patterns of the seabirds in the burrows, and the varia-
tions in climatic conditions over time. It was particularly
important for the batteries to last 9-12 months, and for the
WSN to be as unobtrusive as possible. The deployment
comprised two types of nodes: those placed underground,
within the burrows that the birds use for nesting, and those
placed above ground, to monitor local microclimatic condi-
tions. Figure 1 presents a simplified schema of the appli-
cation in question, used in the task definitions in the next
section. The sensors stream is the union of the surface

and burrow streams.

3.2 Tasks
Table 2 presents a collection of representative data pro-

cessing tasks over a WSN, described in terms of the Great
Duck Island application. For each task, we provide a de-
scription and, if applicable, a specification using the SNEEql
query language [5], an expressive language for querying WSNs
based on CQL [3], used for classical data streams. We note
that not all the data processing tasks described were actu-
ally carried out in the Great Duck Island WSN deployment.
Rather, the intention is to cover a set of types of task that
occur frequently throughout WSN environmental monitor-
ing applications.

3.3 Workloads
Building on the variables relating to WSNs described, and

the performance metrics deemed relevant in this context, we
designed the experiments presented in Tables 3 and 4 with
the aim of identifying a collection of tests that can be used
with different systems to explore their performance when
carrying out several representative workloads. The experi-
ments cover a comprehensive design space: each experiment
aims to explore the impacts on the five performance metrics
of varying one of the six variables at a time, while keeping
the other variables fixed, i.e., as usual in analytical experi-
ments, we apply a ceteris paribus assumption.

Exp. 1: Impact of varying network size. This experiment
aims to observe the scalability of a system. As the network
size increases, there are more source nodes, so more data is
acquired. Task Select results in the amount of data being
transmitted increasing in proportion to the amount of data
generated. Therefore, increasing the network size can be ex-
pected to lead to increased energy consumption (and hence
a shorter lifetime), and also a delay in data that is acquired
reaching the gateway node. Tasks Aggr and OD may lead to
a reduction in data transmitted resulting from in-network
processing. Indeed, in the case of Aggr, increasing the net-
work size should not increase the size of the final result. It
can therefore be expected that for these tasks, lifetime and
delivery delay should be less adversely affected.

Exp. 2: Impact of varying node layout. This experiment
explores the relationship between linearity and the perfor-
mance metrics. If there are multiple paths available to send
tuples to the gateway, it should be possible to spread the
workload more evenly and thus achieve a longer lifetime.
Having fewer paths may mean that hotspots develop as
nodes, particularly those closer to the base station, may be-
come overloaded. If a node is overloaded it may lead to a
shorter network lifetime, and congestion leading to a delay
in receiving data thus impacting delivery delays.

Exp. 3: Impact of varying node density. In cases where
networks are dense, i.e., there are several nodes within the
range of each other, systems may be able to choose between
having shorter hops, and potentially saving energy, or hav-
ing longer hops, which may expend more energy but results
arrive at their destination faster. Note that in this experi-
ment, only 20 % of the nodes are sources, in order to give
more leeway with routing radio traffic.

Exp. 4: Impact of varying acquisition interval. This ex-
periment is essentially a stress test on the system. Acquir-
ing data frequently should lead to rapid energy depletion,
whereas doing so less often should allow the hardware to
sleep for longer and therefore consume less energy. With re-
spect to output rate, if data is acquired too frequently for a

Task Description SNEEql Query
Select Get raw sensor readings. Report raw data readings

from the nodes in the WSN.
RSTREAM SELECT *

FROM sensors[NOW];

Aggr Get aggregated sensor readings. Report the average
temperature reading for the current time over the
nodes in the WSN.

RSTREAM SELECT AVG(temp)

FROM sensors[NOW];

Join Correlate data from different regions of the WSN.
Report the node_id and temp readings of the burrows
that have a higher temperature than a surface sensor.

RSTREAM SELECT b.node_id, b.temp

FROM burrow[NOW] b, surface[NOW] s

WHERE b.temp > s.temp;

Join2 Correlate present data with past data from different
regions of the WSN. Report the node_id and the
temp readings of the burrows that have a greater tem-
perature than a surface sensor one minute ago.

RSTREAM SELECT b.node_id, b.temp

FROM burrow[NOW] b, surface[NOW-1 MINUTE] s

WHERE b.temp > s.temp;

LR Linear Regression. Compute the coefficients α and β for a linear function y = αx + β that describes the
relationship between two sensed variables, where x =light and y =temp, over the sensors stream.

OD Outlier Detection. Report temp readings that deviate from those of other temp readings collected at the same
time on the sensors stream.

Table 2: Representative data processing tasks used in SensorBench workloads.

Variable Exp. 1 Exp. 2 Exp. 3 Exp. 4
Tasks {Select, Aggr, LR, OD} {Select, Aggr, LR, OD} {Select, Join, LR, OD} {Select, LR, OD}
Acquisition int. (s) 32 32 32 {1,2,4,8,16,32,64,128}
Network size {9, 25, 100} 25 25 25
Node Layout arbitrary {linear, grid, arbi-

trary}
arbitrary arbitrary

Node Density 3 3 {1, 2, 3, 8} 3
Prop. of sources (%) 80 80 20 80
Radio loss rate (%) 0 0 0 0

Table 3: Experiments 1–4: Varying network size, node layout, node density, and acquisition interval.

system to cope, it may return a compile time error (as is the
case with SNEE) or perform load shedding of excess tuples
(as is the case with TinyDB).

Exp. 5: Impact of increasing proportion of source nodes.
This experiment is similar to the previous one in that it
is also a stress test on the system. However, in this case
the acquisition interval is kept constant, and the workload
is increased by increasing the proportion of source nodes in
the sensor network.

Exp. 6: Impact of varying radio loss rate. This experi-
ment aims to observe how a system reacts to varying radio
propagation conditions. If the loss rate is high, systems
that employ techniques such as sending acknowledgements
and retransmitting packets are expected to consume more
energy, but also achieve a higher output rate than systems
such as SNEE that only send data once and do not check
whether it has been received. Systems such as SNEE may
consume less energy if the radio loss rate is high but are
likely to have a significantly worse output rate.

Exp. 7: Impact of varying task. This experiment aims to
assess how energy efficient each system is with regard to each
type of task. This is an indicator of the degree of in-network
processing supported by a particular system for a particular
task, e.g., those systems that are able to support in-network
aggregations should be able to do the more energy efficiently
than those that do not.

4. BENCHMARK IMPLEMENTATION
In Section 4.1, we briefly describe the systems that we

used to test the benchmark. In Section 4.2, we describe the
experimental context, and the steps followed to implement
the benchmark, with reference to the scripts which are pub-
licly available to enable others to do the same. We present
the results of our performance evaluation in Section 4.3, and
give examples of the lessons that can be learnt by applying
the benchmark in Section 4.4.

4.1 System Descriptions
To exemplify the use of SensorBench, we ran it with four

systems. As a baseline, we used MultihopOscilloscope
(MHOSC), an application that comes bundled with
TinyOS [21]. It ships all the raw data out of the network and
is essentially an example of the warehousing approach. As
an example of an in-network query processor, we used SNEE
(for Sensor NEtwork Engine) [7], developed at the Univer-
sity of Manchester. It employs a rich, expressive query lan-
guage that supports in-network window-based aggregation
and joins2. Declarative SNEEql queries are compiled into
query execution plans using a query compilation stack based
on the ones used in traditional distributed query processors.
The query execution plan is translated into nesC [9] source
code that, when compiled, generates binaries for execution
on WSN nodes. We also evaluate two types of hand-crafted,
in-network data analysis algorithms developed at the Uni-
versity of Athens. The Outlier Detection algorithm (OD),
based on the D3 algorithm [35], constructs a model at each

2Note that delivery delay is a variable as well as a metric
in SNEE, as in SNEE the desired delivery time is a tunable
property of the system.

Variable Exp. 5 Exp. 6 Exp. 7
Tasks {Select, OD, LR} {Select, Aggr, LR, OD} {Select, Aggr, Join, Join2, LR, OD}
Acquisition int. (s) 32 32 {1, 2, 4, 8, 16, 32, 64, 128}
Network size 25 25 25
Node Layout arbitrary arbitrary arbitrary
Node Density 3 3 3
Prop. of sources (%) {20, 40, 60, 80, 100} 80 80
Radio loss rate (%) 0 {0, 20, 40, 60, 80} 0

Table 4: Experiments 5–7: Varying proportion of sources, radio packet loss rate, and task.

source node and sends tuples that are deemed to be out-
liers to the gateway. The Linear Regression algorithm (LR),
based on [39], carries out a partial computation of the model
at the source nodes, and results are combined to produce a
final result at the gateway.

4.2 Running the Benchmark
We ran the benchmark for the four systems, described

in the previous section, for the workloads described in Sec-
tion 3.3, using the Avrora emulator [38]3. We chose Avrora
to illustrate the application of SensorBench as it emulates in-
structions with CPU-cycle accuracy, unlike PowerTossim [33]
(another popular WSN simulator) which simulates events
at a more coarse-grained level. The sensor node hardware
we emulated was the MICAz mote (CPU: 8-bit 8 MHz At-
mega128L; RAM: 4 kB; Program Memory: 128 kB, Radio:
MPR2400) with an energy stock of 31320 J (2 Lithium AA
batteries). The executables that ran on WSN nodes were
compiled using TinyOS 2.1.1.

We have developed a collection of scripts, available at the
SensorBench website4, to run the benchmark on the four
systems mentioned. These scripts provide various types of
functionality, including preparation of jobs to be run on the
Avrora emulator, running workloads (optionally using the
HTCondor [37] parallel computing platform if available),
and parsing the output from the simulations to obtain the
performance metrics of interest. We note that these scripts
are intended to be extensible, so as to enable further sys-
tems to be evaluated, or a different simulator to be used,
with minimal adaptations.

We generated 10 network topologies for each combination
of the 〈Network Size, Node Layout, Node Density, Propor-
tion of Sources〉 parameters in Tables 3 and 4 using a script
which generates network topologies. For arbitrary topolo-
gies, the nodes are placed randomly across the sensing field.
By taking the average over 10 instances for each scenario,
results are less likely to be distorted by individual instances
which may exhibit atypical characteristics. To ensure a fair
comparison, these topologies should be used in future runs
of the benchmark. For all tasks except Outlier Detection,
we use the Avrora random value generator to produce the
input sensor readings. For Outlier Detection, we provide
synthesized datafiles with approximately 10% outliers5.

We did not run each experiment for the same amount
of time, because over a fixed time interval, the amount of
data collected (and hence, the amount of work done by the

3We used Avrora version 1.7.113 with modifications to the
sensor data parsing component.
4https://code.google.com/p/sensorbench/
5Topology and sensor datafiles are available at: http://dx.
doi.org/10.6084/m9.figshare.934307

data processing task) varies depending on the acquisition
interval. Rather, each experiment was run for ten complete
data collection cycles, thereby ensuring that the results were
comparable. The duration of a data collection cycle is equal
to the product of the acquisition interval and buffering factor
β (defined as the number of tuples that are buffered before
they are transmitted over the radio). For MHOSC, β is fixed
at 5; for SNEE, β can vary depending on the parameters
set by the user, but in these experiments was set to 1 to
minimize delivery delay; for LR and OD, β = 1.

We measured energy by parsing the output of the Avrora
energy monitor, which gives per-node and per-component
breakdowns of energy consumption by emulation at CPU cy-
cle accuracy. As none of the techniques evaluated are adap-
tive, it is reasonable to assume that the energy consumption
would remain fairly constant throughout the deployment du-
ration, and the total network energy values were scaled for
a period of 6 months. The lifetime calculation was based
on the same assumption. Firstly, the energy consumption
per unit time per node was computed. Based on the energy
resources of the node, a per-node lifetime was calculated
based on the current energy consumption. The lifetime of
the WSN was assumed to be equal to that of the shortest
node lifetime in the WSN. The output rate, delivery frac-
tion and delivery delay were measured by parsing the Avrora
log files to obtain the times that tuples are acquired at the
source nodes, and delivered to the gateway.

4.3 Performance Comparison
Figure 2 presents a selection of the results to illustrate

how the benchmark can be used to derive the metrics intro-
duced in Section 2.3 and to evaluate and compare different
strategies for implementing the data processing tasks. Each
point in the graphs corresponds to the average measurement
of ten runs using different topologies for each scenario.

Limitations of the Evaluation. Due to inherent character-
istics of the platforms being evaluated, and also of the simu-
lator used, it was not always possible to carry out the exper-
iments according to the specifications given in Section 3.3.
For Exp. 1, SNEE had to be run using an acquisition inter-
val of 128s, as it does not support an acquisition interval of
32s for 100-node networks. This is due to the query com-
piler using time cost estimation models to determine that
it would not have enough time to deliver all the tuples for
a shorter acquisition interval. Throughout the experiments,
only SNEE could be configured to vary the proportion of
source nodes. The other platforms therefore have this vari-
able fixed at 100%. Plots for Exp. 5 are not shown as this
experiment only provides a full set of results for SNEE. Fi-
nally, Exp. 6 could not be executed using Avrora as it does
not support setting the radio packet loss as a parameter.

Exp. 1 investigated the impact of network size on the per-
formance metrics. Figure 2a reports the percentage of tuples
delivered for the SNEE Select and Aggr tasks, MHOSC, OD
and LR. As network size increases, the percentage of tu-
ples delivered by SNEE remains constant at 100, which is a
consequence of its approach of generating a pre-determined
routing tree and agenda, which essentially ensures (through
a strict, time-slotted approach) that there is enough time for
every sensing, processing and radio communication activity
to take place. On the other hand, the MHOSC percentage
of tuples delivered is approximately 90%, for smaller net-
work sizes, and decreases to 80% for large networks. This
is a consequence of the MHOSC approach of generating a
routing tree dynamically at run-time and using an underly-
ing protocol that aims to provide best-effort tuple delivery,
relying on acknowledgements to confirm that each packet
has been received, and retransmitting a certain number of
times, if necessary. OD has a low tuple delivery fraction as
only a small proportion of tuples are identified as outliers.
This is consistent with the behaviour one would expect the
outlier detection task to exhibit. However, as network size
increases, the delivery fraction decreases, as a result of ra-
dio packet collisions, leading to tuple loss, despite the use of
radio packet acknowledgements to mitigate this.

Delivery delay plots for the same runs are shown in Fig-
ure 2b. MHOSC takes considerably longer to deliver data to
the gateway node. This is a consequence of having a fixed
buffering factor of 5, i.e., it collects 5 sensor readings before
transmitting them to the WSN gateway. Conversely, when
SNEE optimizes for delivery delay, it sets its buffering fac-
tor to 1, and delivers data in a considerably shorter time, at
least for the network sizes shown on the graph. OD and LR
both transmit data up the routing tree as soon as it is sensed.
They do not have a time-slotted approach like SNEE, mean-
ing that the delivery delay is shorter, although packets are
lost due to collisions. Unlike MHOSC, OD and LR, whose
delivery delay increases slightly as network size increases,
SNEE’s delivery delay increases significantly. This is be-
cause the SNEE compiler allocates more time for its strict
time-slotted approach, as increasing network size means that
more data needs to be sensed, processed and transmitted
through the WSN. Therefore, as network size increases, the
SNEE time-slotted approach is less scalable, in terms of de-
livery delay, than asynchronous approaches in which radio
collisions may occur.

Exp. 2 investigates the effect of node layout type. The re-
sults for lifetime are reported in Figure 2c. Overall, it can be
seen that SNEE leads to considerably longer lifetimes than
either MHOSC, LR or OD. This is because SNEE puts the
CPU into a low-power processing mode, whereas MHOSC,
OD and LR do not, meaning that the CPU remains in idle
mode during periods of inactivity. Although MHOSC and
LR transmit considerably more data than OD, their lifetimes
are virtually the same, as the CPU idle costs dominate in
this case. For MHOSC and OD, there is also no visible dif-
ference in lifetime for the different node layouts. In contrast,
SNEE does lead to significant differences in lifetime for the
different network layouts and tasks. Running an Aggr task
over a linear network yields an average 15.4% improvement
in lifetime over the grid and arbitrary topologies. This is be-
cause the incremental aggregation approach used by SNEE
ensures that at most one tuple is transmitted and received
by each node in a linear topology, which is free of hotspots

(i.e., no node in the routing tree receives tuples from mul-
tiple child nodes). The arbitrary topology has the shortest
lifetime for both SNEE tasks, as unlike the linear and grid
topologies, which consist of nodes spaced at regular inter-
vals, having the nodes distributed in a arbitrary fashion can
lead to the emergence of more severe hotspots in the routing
tree.

Figure 2d contrasts the delivery delay obtained by varying
node layouts for the OD and LR techniques. Overall, LR has
significantly longer delivery delay than OD. This is due to
two factors: Firstly, LR transmits considerably more data
than OD. It carries out aggregations at each source node,
which result in several values being sent to the gateway.
In contrast, OD only sends values which are deemed to be
outliers when these are detected. Secondly, LR coordinates
radio transmissions by using control messages between the
nodes. This results in transmissions being scheduled so that
they take place in the same order as a depth-first traver-
sal of the routing tree. This means that the delivery de-
lay increases with the number of edges in the routing tree.
Furthermore, radio collisions are avoided, and a high tuple
delivery fraction is achieved (as is evidenced in Figure 2a).
In contrast, OD transmits outlier readings to the gateway
as soon as these are detected. This leads to a considerably
shorter delivery delay. Acknowledgements are used to resend
packets in event of radio collisions. As a consequence of the
shape of the routing tree (and in particular, the number of
edges it has), a linear topology leads to a longer delivery
delay for both OD and LR. A grid topology leads to the
shortest delivery times in both cases.

Exp. 3 investigates the effect of varying the node density
for a fixed network size of 25 nodes and a fixed acquisition
interval of 32s. Results for the output rate metric are re-
ported in Figure 2e. For SNEE, the tuple rate is constant,
as its time-slotted approach ensures that there is sufficient
time to deliver all tuples to the gateway. In contrast, the
MHOSC output rate decreases by 18.2% as the network den-
sity increases from 3 to 8. This can be explained by the fact
that having the nodes closer together leads to more radio
collisions and a higher rate of packet loss. The LR and OD
output rate is not affected by varying node density. LR pro-
duces a single result tuple for each acquisition time, which is
the result of several aggregations. If some of the input tuples
for the aggregations are lost, the cardinality of the result is
not affected. With the OD task, packets are retransmitted
using acknowledgements, thus mininizing tuple loss.

Exp. 4 explores the relationship between acquisition inter-
val and the performance metrics measured. The results for
delivery delay are reported in Figure 2f. As was apparent in
Figure 2b, MHOSC takes considerably longer to send results
than SNEE as it buffers 5 data readings before transmitting
them to the gateway. As the acquisition rate increases, the
time taken to deliver the data increases linearly. In con-
trast, SNEE, OD and LR send result tuples immediately,
and therefore the acquisition interval does not affect the de-
livery delay. The missing points reveal limitations of the
platforms: SNEE does not support an acquisition interval
smaller than 16s for a 25-node network, and MHOSC does
not support an acquisition interval greater than 32s regard-
less of network size.

Figure 2g shows the results for total network energy used
from Exp. 4. The stark difference between SNEE and the
other two systems is because SNEE moves to a low-power

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

D
e
liv

e
ry

 F
ra

ct
io

n
 (

%
)

Network Size

SNEE Select
SNEE Aggr

MHOSC
OD
LR

(a) Exp. 1: Network size vs. Tuples Delivered (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

D
e
liv

e
ry

 D
e
la

y
 (

s)

Network Size

SNEE Select
SNEE Aggr

MHOSC
OD
LR

(b) Exp. 1: Network size vs. Delivery Delay (%)

 0

 10

 20

 30

 40

 50

 60

 70

grid linear random

Li
fe

ti
m

e
 (

d
a
y
s)

Network Layout

SNEE Select
SNEE Aggr

MHOSC
OD
LR

(c) Exp. 2: Node layout vs. Lifetime (days)

 0

 0.5

 1

 1.5

 2

 2.5

 3

grid linear random

D
e
liv

e
ry

 D
e
la

y
 (

s)

Network Layout

OD
LR

(d) Exp. 2: Node layout vs. Delivery Delay for OD and LR.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8

O
u
tp

u
t

R
a
te

 (
tu

p
le

s/
s)

Network Density

SNEE Select
MHOSC

OD
LR

(e) Exp. 3: Node density vs. Output Rate (tuples/s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140

D
e
liv

e
ry

 D
e
la

y
 (

s)

Acquisition interval (s)

SNEE Select
MHOSC

OD
LR

(f) Exp. 4: Acquisition Interval vs. Delivery delay (s)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 20 40 60 80 100 120 140

T
o
ta

l
N

e
tw

o
rk

 E
n
e
rg

y
 o

v
e
r

6
 M

o
n
th

s
(J

)

Acquisition interval (s)

SNEE Select
MHOSC

OD
LR

(g) Exp. 4: Acquisition Interval vs. Total 6-month Energy (J)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

Li
fe

ti
m

e
 (

d
a
y
s)

Acquisition interval (s)

SNEE Select
SNEE Aggr
SNEE Join

MHOSC
OD
LR

(h) Exp. 7: Acquisition Interval vs. Lifetime (days)

Figure 2: Experiment Results

mode during periods of inactivity, and the effect of this ap-
proach is also visible in Figures 2c and 2h. The total network
energy only decreases slightly for SNEE, as it is dominated
by the number of nodes in the network.

Exp. 7 varies the acquisition interval for different tasks
and platforms. Results are reported in Figure 2h. For
MHOSC and OD, the results are consistent with those pre-
viously reported. The SNEE Aggr task achieves the high-
est lifetime, as it causes the least number of tuples to be
transmitted. The SNEE Join has a shorter lifetime than the
SNEE Select as the join is executed in-network, and has a
higher selectivity than that anticipated at compile time.

4.4 Lessons Learnt
Running the benchmark has confirmed the following with

respect to the different approaches employed by the systems:

• In-network processing is generally beneficial.

• Systems which do not go into a low power state during
periods of inactivity have very short lifetimes, com-
pared to those that do. The extent to which the idle
CPU activity dominates the energy cost, which makes
the difference between the lifetimes of MHOSC, OD
and LR negligible, is perhaps more surprising.

• Adopting a strict time-slotted approach for carrying
out activities such as radio transmissions can ensure
that all tuples are delivered (in the absence of noise).
However, as workload increases (e.g., with a larger net-
work size), such an approach can lead to a significant
increase in delivery delay. Asynchronous approaches
tend to result in shorter delivery delays (but have a
lower percentage of tuples delivered).

• Generally speaking, grid topologies are amenable to
routing trees in which workloads are more evenly dis-
tributed throughout the nodes in the WSN, mean-
ing less hotspots in the network and longer lifetimes.
Unless an aggregation task is being performed, linear
topologies result in the most severe hotspots, resulting
in the shortest lifetimes and longest delivery delays.

5. RELATED WORK
This section discusses work that is related to SensorBench,

focusing on benchmark properties, benchmarks in related ar-
eas and performance evaluations of data processing tech-
niques in WSNs.

In terms of benchmark properties, The Benchmark Hand-
book identifies relevance, portability, scalability and simplic-
ity as key criteria for a domain-specific benchmark [10]. A
benchmark is considered to be relevant if it measures peak
performance and price/performance when performing typ-
ical operations. In SensorBench, we explore peak perfor-
mance in terms of the delivery delays and lifetimes, and
provide a range of operations that can be found in common
applications. A benchmark is considered to be portable if it
is easy to implement on different systems. In SensorBench,
we have developed scripts to support benchmark execution
on the widely used Avrora emulator, and have shown the
benchmark in use with several different and independently
developed systems. A benchmark is considered to be scal-
able if it applies to small and large systems. In SensorBench,
the benchmark is agnostic to the specific properties of the

individual nodes, and experiments include network size as
a variable. A benchmark is considered to be simple if it is
understandable. In SensorBench we have used a collection
of common tasks, most of which are easily expressed by a
stream query language, and we explore variables and report
properties that have featured in previous performance eval-
uations, as discussed below.

In terms of benchmarks in related areas, relevant topics
include stream data management and WSNs. In relational
stream data management, the most prominent benchmark is
Linear Road [4], which defines data analysis tasks and data
generators representing the monitoring of traffic on a toll
road. SensorBench also defines a scenario, data generators
and analyses, but is complementary in exploring different
variables and reporting different result types, reflecting the
focus on WSNs. Several other benchmarks have focused
on WSNs. These benchmarks complement SensorBench,
by evaluating different features, such as devices [13], pro-
cessors [30], cryptographic algorithms [19] and communica-
tions [40]. In turn, sensor network performance analyses are
often supported by simulators, such as PowerTOSSIM [33]
or Avrora [38]. Such simulators complement and support
benchmarks for sensor data management, by enabling con-
trolled experiments to be carried out conveniently and at
manageable cost.

In terms of performance evaluations of data processing
techniques in WSNs, we relate the scope and nature of repre-
sentative experimental evaluations from the literature with
the properties and tasks described in Sections 2 and 3. Table
5 applies the terminology used in SensorBench to summarize
differences in coverage between SensorBench and other ex-
perimental evaluations. The purpose of the table is to iden-
tify where features from SensorBench occur in other eval-
uations, and to identify where SensorBench omits features
that occur elsewhere, so that design decisions on scope can
be explored systematically.

In terms of Variables, SensorBench covers quite a broad
range. This is because it seems appropriate for a bench-
mark to capture many different features of the environment
in which a deployment may occur, even if quite a few of
these features are constants in any one deployment. One
interesting feature from several experiments is the report-
ing of how energy consumption (for example) varies over
time. This feature is not included in SensorBench, because
between them the variables and metrics tend to summarize
behaviour, rather than drill down to capture rapidly chang-
ing features.

In terms of Performance Metrics, SensorBench uses a rel-
atively broad range of metrics. This is perhaps not surpris-
ing, as some of the individual evaluations focus on particular
aspects of a technique that may be studied satisfactorily us-
ing only a few metrics. We note that different metrics may
be strongly correlated; for example, the Node Load in [29]
is related to Network Lifetime, as the most highly loaded
node is likely to determine the useable lifetime of the net-
work. Interestingly, in TinyDB, maintenance overheads are
investigated but they are not part of SensorBench because
identifying and isolating overheads in consistent ways across
multiple benchmarked systems seems likely to violate the
principle of simplicity in benchmark design.

In terms of Task Types, SensorBench tends to subsume
those of other proposals, although some proposals take finer
grained control of query parameters, such as selectivity. Here

Proposal Variables Performance Metrics Task Types
SensorBench Acquisition Rate, Node Layout, Network Lifetime, Energy Consumption, Select, Aggregate,

Node Density, Network Size, Delivery Fraction, Delivery Delay, Output Rate, Join, Regression
Proportion of Sources, Packet Loss Rate Outlier Detection

TinyDB [24] Acquisition Rate, Selectivity, Energy Consumption, Select, Aggregate
Time Delivery Fraction, Output Rate,

Maintenance Overhead
AnduIN [18] Time, Window Size Energy Consumption, Computation Time Select, Aggregate,

Join, Outlier Detection
MicroPulse [2] Node Density, Time Energy Consumption Select
SNEE [7] Acquisition Rate, Delivery Time, Network Lifetime, Energy Consumption, Select, Aggregate,

Node Layout Memory Usage Join
Aspen [29] Selectivity, Window Size Network Traffic, Node Load Join

Time, Node Layout
Bisque [23] Network Size, Selectivity Node Energy Consumption, Delivery Delay, Select, Aggregate

Delivery Fraction

Table 5: High level features of evaluations of sensor data management systems.

again there is a trade-off between having large numbers of
tasks and keeping the benchmark simple. We have chosen
to have a significant number of task types and less variety
within these task types, on the basis that the task types are
most likely to provide higher-level insights.

The closest piece of work to SensorBench is Bisque [23], a
benchmark for sensor query processing, the technical report
of which applies the benchmark to compare several TinyDB
variants. Bisque is a useful contribution, but SensorBench
covers more ground in terms of: (i) the variables explored,
since, for example we consider more varied and realistic net-
works than the uniform grids supported by Bisque; (ii) the
performance metrics, since we consider more aspects of en-
ergy usage; and (iii) query type, since our scope includes
joins and several analysis tasks. We also make SensorBench
available for use with the widely used Avrora [38] emulator.
Overall, SensorBench has been designed to reflect the de-
velopments in sensor network data management that have
taken place since Bisque was proposed, by providing a richer
context for experimentation.

6. CONCLUSIONS
We have described SensorBench, a benchmark that sup-

ports the analysis of the performance of data intensive tasks
over WSNs. The emphasis is on tasks, variables and mea-
surements that are relevant to environmental monitoring ap-
plications, and the properties of the benchmark have been
validated both: (i) in relation to published descriptions of
WSN deployments; and (ii) in relation to existing evalu-
ations of data intensive systems for WSNs. The bench-
mark subsumes most relevant existing empirical analyses in
terms of its scope, while including modest numbers of dis-
tinct tasks, with a view to ensuring that the benchmark is
practical to run. To further support its practicality, scripts
have been developed to ease its application using a popular
simulator.

The benchmark has been applied to several different sys-
tems and algorithms that support access to and/or analysis
of data from WSNs. This application has given some clear
lessons. For example, there is little point in developing intel-
ligent distributed algorithms that minimize network traffic
if these algorithms are not deployed in ways that enable
sensor nodes to maximize the time spent in power-saving
modes. Furthermore, the application of the benchmark has

cast light on the complex relationship between approaches to
data transmission that seek to avoid clashes and those that
seek to recover from them. As such, the application of the
benchmark for comparing a variety of different applications
and platforms has demonstrated its suitability for casting
light on design decisions and trade-offs that can make the
difference between successful and unsuccessful WSN deploy-
ments.

7. REFERENCES
[1] A. Alfadhly, U. Baroudi, and M. Younis. An effective

approach for tolerating simultaneous failures in
wireless sensor and actor networks. In MiSeNet, pages
21–26, New York, NY, USA, 2012. ACM.

[2] P. Andreou, D. Zeinalipour-Yazti, A. Pamboris, P. K.
Chrysanthis, and G. Samaras. Optimized query
routing trees for wireless sensor networks. Inf. Syst.,
36(2):267–291, 2011.

[3] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: semantic foundations and
query execution. VLDB J., 15(2):121–142, 2006.

[4] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier,
A. Maskey, E. Ryvkina, M. Stonebraker, and
R. Tibbetts. Linear road: A stream data management
benchmark. In VLDB, pages 480–491, 2004.

[5] C. Y. A. Brenninkmeijer, I. Galpin, A. A. A.
Fernandes, and N. W. Paton. A semantics for a query
language over sensors, streams and relations. In
BNCOD, pages 87–99, 2008.

[6] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia,
and D. Moore. Environmental wireless sensor
networks. Proc. of the IEEE, 98(11):1903–1917, 2010.

[7] I. Galpin, C. Y. A. Brenninkmeijer, A. J. G. Gray,
F. Jabeen, A. A. A. Fernandes, and N. W. Paton.
SNEE: a query processor for wireless sensor networks.
Distrib. Parallel Dat., 29(1-2):31–85, Nov. 2011.

[8] I. Galpin, A. A. A. Fernandes, and N. W. Paton.
QoS-aware optimization of sensor network queries.
VLDB J., 22(4):495–517, 2013.

[9] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The nesC language: A
holistic approach to networked embedded systems.
SIGPLAN Not., 38(5):1–11, May 2003.

[10] J. Gray. Database and transaction processing
performance handbook. In The Benchmark Handbook.
Morgan Kaurmann, 1993.

[11] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and
S. Madden. Distributed regression: an efficient
framework for modeling sensor network data. In IPSN,
pages 1–10. IEEE, 2004.

[12] C. Haas, J. Wilke, and V. Stöhr. Realistic simulation
of energy consumption in wireless sensor networks. In
EWSN, pages 82–97, 2012.

[13] M. Hempstead, M. Welsh, and D. Brooks. TinyBench:
The case for a standardized benchmark suite for
TinyOS based wireless sensor network devices. In
LCN, pages 585–586, 2004.

[14] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy.
The platforms enabling wireless sensor networks.
Commun. ACM, 47(6):41–46, 2004.

[15] J. Hoebeke, I. Moerman, B. Dhoedt, and
P. Demeester. An overview of mobile ad hoc networks:
Applications and challenges. In European
Telecommun. Congr., pages 60–66, November 2004.

[16] P. Jackman, A. J. G. Gray, A. Brass, R. Stevens,
M. Shi, D. Scuffell, S. Hammersley, and B. Grieve.
Processing Online Crop Disease Warning Information
via Sensor Networks using ISA Ontologies. Agriculture
Engineering International: CIGR Journal,
15(3):243–251, 2013.

[17] A. Jain and E. Y. Chang. Adaptive sampling for
sensor networks. In DMSN, pages 10–16, New York,
NY, USA, 2004. ACM.

[18] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann,
and K.-U. Sattler. Stream engines meet wireless sensor
networks: cost-based planning and processing of
complex queries in AnduIN. Distrib. Parallel Data.,
29(1-2), 2011.

[19] Y. W. Law, J. Doumen, and P. Hartel. Survey and
benchmark of block ciphers for wireless sensor
networks. TOSN, 2(1):65–93, 2006.

[20] Á. Lédeczi, A. Nádas, P. Völgyesi, G. Balogh,
B. Kusy, J. Sallai, G. Pap, S. Dóra, K. Molnár,
M. Maróti, and G. Simon. Countersniper system for
urban warfare. TOSN, 1(2):153–177, 2005.

[21] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, et al. TinyOS: An operating system for
sensor networks. In Ambient intelligence, pages
115–148. Springer, 2005.

[22] M. Liu, S. R. Mihaylov, Z. Bao, M. Jacob, Z. G. Ives,
B. T. Loo, and S. Guha. SmartCIS: integrating digital
and physical environments. SIGMOD Rec.,
39(1):48–53, Sept. 2010.

[23] Q. Luo, H. Wu, W. Xue, and B. He. Benchmarking
in-network sensor query processing. Technical Report
HKUST-CS05-09, Department of Computer Science,
HKUST, 2005.

[24] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[25] A. M. Mainwaring, D. E. Culler, J. Polastre,
R. Szewczyk, and J. Anderson. Wireless sensor

networks for habitat monitoring. In WSNA, pages
88–97, 2002.

[26] I. W. Marshall, M. C. Price, H. Li, N. Boyd, and
S. Boult. Multi-sensor cross correlation for alarm
generation in a deployed sensor network. In EuroSSC,
pages 286–299, 2007.

[27] K. Martinez, J. K. Hart, and R. Ong. Environmental
sensor networks. Computer, 37(8):50–56, 2004.

[28] K. Martinez, R. Ong, and J. Hart. Glacsweb: a sensor
network for hostile environments. IEEE Sensor and
Ad Hoc Communications and Networks, 2004.

[29] S. R. Mihaylov, M. Jacob, Z. G. Ives, and S. Guha.
Dynamic join optimization in multi-hop wireless
sensor networks. PVLDB, 3(1):1279–1290, 2010.

[30] L. Nazhandali, M. Minuth, and T. Austin.
SenseBench: toward an accurate evaluation of sensor
network processors. In Proc. Int. Workload
Characterization Symp., pages 197–203. IEEE, 2005.

[31] L. Peng and K. S. Candan. Data-quality guided load
shedding for expensive in-network data processing. In
ICDE, pages 1325–1328, 2007.

[32] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and
G. P. Picco. What does model-driven data acquisition
really achieve in wireless sensor networks? In PerCom,
pages 85–94, 2012.

[33] V. Shnayder, M. Hempstead, B. rong Chen,
G. Werner-Allen, and M. Welsh. Simulating the power
consumption of large-scale sensor network
applications. In SenSys, pages 188–200, 2004.

[34] A. B. Stokes, A. A. A. Fernandes, and N. W. Paton.
Resilient sensor network query processing using logical
overlays. In MobiDE, pages 45–52, 2012.

[35] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online outlier
detection in sensor data using non-parametric models.
In VLDB, pages 187–198, 2006.

[36] R. Szewczyk, A. M. Mainwaring, J. Polastre,
J. Anderson, and D. E. Culler. An analysis of a large
scale habitat monitoring application. In SenSys, pages
214–226, 2004.

[37] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the Condor experience.
Concurrency - Practice and Experience,
17(2-4):323–356, 2005.

[38] B. Titzer, D. K. Lee, and J. Palsberg. Avrora:
scalable sensor network simulation with precise
timing. In IPSN, pages 477–482, 2005.

[39] G. Valkanas, A. Kotsifakos, D. Gunopulos, I. Galpin,
A. J. G. Gray, A. A. A. Fernandes, and N. W. Paton.
Deploying in-network data analysis techniques in
sensor networks. In MDM, pages 341–344, 2011.

[40] K. Veress and M. Maroti. Linkbench: Benchmark and
metric framework for wireless sensor networks. In
IPSN, pages 171–172, 2011.

[41] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring
sensor network. In OSDI, pages 381–396, 2006.

[42] G. Werner-Allen, P. Swieskowski, and M. Welsh.
Motelab: A wireless sensor network testbed. In IPSN,
page 68. IEEE Press, 2005.

