
Deploying In-Network Data Analysis Techniques in
Sensor Networks

George Valkanas, Alexis Kotsifakos,
Dimitrios Gunopulos

Dept. of Informatics & Telecommunications
University of Athens, Greece
{gvalk,ak,dg}@di.uoa.gr

Ixent Galpin, Alasdair J G Gray,
Alvaro A. A. Fernandes, Norman W. Paton

School of Computer Science,
University of Manchester, United Kingdom
{ixent,a.gray,alvaro,norm}@cs.man.ac.uk

Abstract—Sensor Networks have received considerable atten-
tion recently, as they provide manifold benefits. Not only are
they a means for data acquisition and monitoring of unexplored
or inaccessible areas, they are also a low-cost alternative for
sensing the environment, which greatly aids to better understand
our surroundings. A major motivation in either occasion is to
acknowledge endangering situations and take action(s) accord-
ingly. To this end, we would like to enable data mining or analysis
techniques on top or, even better, within such networks, due to the
prohibitive cost of communication in this setting. In this work, we
demonstrate running data mining algorithms on a set of sensors,
which are of low-processing power. In addition to showcasing
the execution of data analysis algorithms on resource-constrained
hardware, our demo is intended to show how to take advantage of
the properties of each algorithm to make better use of the sensors
and their capabilities. We support the execution and monitoring
of these algorithms with a graphical user interface (GUI).

I. INTRODUCTION

Sensor Networks (SN) have received considerable attention
recently, as the benefits from using them are manifold. Not
only are they a means for data acquisition and monitoring
of unexplored or inaccessible areas, they are also a low-cost
alternative for sensing the environment, which greatly aids to
better understand our surroundings or inaccessible areas.

Sensor network techniques have to effectively deal with the
constraints inherent in the domain:

• the limited power available to the sensor nodes,
• the cost of wireless communication,
• the processing and storage limitations of the nodes.
To address these problems, exchanged messages must be

minimized as much as possible, especially since commu-
nication is more resource consuming than processing [16].
However, we should not simply place strong constraints on
communication, rather we should adopt and employ efficient
communication algorithms and protocols to provide the de-
sired functionality efficiently [4], [6] and with acceptable
quality. Building upon the communication trees in which SN
are organized is a first step towards this direction [5]. Figure 1
shows such a tree, where arcs between nodes form the shortest
path from the network sink (node 0) to every other. Moreover,
implemented algorithms are not only required to make efficient
memory usage, but should also have a small memory footprint.
As such, it would be good to have an a-priori indication of
the memory requirements of the algorithm.

0

1

2

3

4

6

5

7

9

8

10

11
12

13

14
15

Fig. 1. A Sensor Network example

Part of the current research in the field involves the de-
velopment of SN query processors (SNQPs) that run on top
of SNs to manipulate them more efficiently. Their goal is to
abstract the entire network as if the user was requesting data
from a centralized data store. The techniques used to achieve
this is to simplify deployment of executables, handle node
communication, assign processing tasks to nodes (operator
placement) etc. To the degree that these goals are fullfilled,
a better abstraction is provided. Examples in this direction for
data collection include TinyDB [12], TAG [11], Cougar [15]
and more recent works, e.g. SNEE [7], [8] and AnduIN [10].

Users of such engines may pose queries in a declarative
manner, using SQL-extensions , enhanced to suit the streaming
environment [1], [3]. In addition to the above goals, the engine
tries to optimize the query wrt processing time, but also takes
into account node availability and power consumption. These
are, of course, additional constraints imposed by the nature of
the sensor network setting.

Nevertheless, a primary motivation for using sensors is to
acknowledge endangering situations and take action(s) accord-
ingly. Sensors could be used to either report all sensed data, or
inform the user of interesting events only. Whatever may be the
case, we want to enable data mining or analysis techniques on
top or, even better, within such networks, for the above reasons.
Data analysis algorithms provide improved functionality to the
users; they can also prove extremely useful for the network
itself, prolonging its life expectancy. For instance, identifying
whether a message should be sent or not can greatly assist in

increasing network longevity. An example of such a case is
when a sensor acknowledges that no significant change in its
surrounding has occurred.

A. Our contribution

In this work, we demonstrate running data mining algo-
rithms within a sensor network. In particular, we have imple-
mented a linear regression classifier and the D3 algorithm [13]
on a set of sensors. In addition to showcasing the execution
of data analysis algorithms on resource-constrained hardware,
our demo is intended to show how to take advantage of the
properties of each algorithm to make better use of the sensors
and their capabilities.

We focus on algorithms that are aggregate-based, i.e. they
use aggregation functions on sensed data to make decisions.
Such aggregation functions are sum, count, avg, etc. The
reason is threefold:

• They provide sufficiently useful results, despite their
computational simplicity.

• They can be efficiently computed, maintained and ap-
proximated.

• To demonstrate that there is not a single communication
scheme that best fits all such techniques, despite using
the same set of operations.

In our demo, we illustrate the behavior of several
communication schemes and how each one affects the
algorithm’s performance. We feel that our work could be
useful to provide insight on best practices in implementing
in-network processing of data analysis techniques. We support
monitoring these algorithms with a graphical user interface
(GUI), where the results of the executions will also be
displayed.

II. DATA ANALYSIS ALGORITHMS

There are several data analysis algorithms. Therefore, it is
practically impossible to showcase them all. On the contrary,
our interest is in demonstrating how different techniques best
suit different algorithms. We have, thus, implemented a Linear
regression classifier and the D3 outlier detection algorithm,
which require different manipulation to behave efficiently.

A. Linear regression

Linear regression (LR) is one of the most well-known
classification algorithms. The algorithm assumes that there
is a linear correlation between the free variables with the
dependent one. Therefore, the goal of such a classifier is to
find the correlation parameters minimizing the error among
all observations. An example LR classifier is displayed in
Fig. 2, depicting a hypothetical relation between temperature
and pressure data.

We plan to show different communication protocols for
this classifier, which heavily impact the network’s efficiency
and life expectancy. The various approaches we plan to show
include:
i) A centralized approach, where all data will be sent to the

Fig. 2. Linear regression classifier

sink node.
ii) A decentralized approach, where nodes perform local
computations.
iii) An efficient communication protocol between nodes, that
greatly minimizes the number of exchanged messages while
remaining efficient and robust. The protocol utilizes the com-
munication tree and acts in a decentralized manner. Sibling
nodes, i.e. nodes at the same level of the hierarchy tree,
communicate so that the parent node saves energy.

B. D3

D3 [13] is an outlier-detection algorithm. Such algorithms
help identify system failures, or indicate an event e.g. a
sudden rise in temperature could be indication of fire. Outliers
are usually defined as obersvations which are significantly
different from the norm. For instance, outliers in a 2D data
set are shown in Fig. 3, being the sparsely distributed points
outside the circled areas.

D3 captures the density of points dispersed over an area
using kernel density estimators. For each reading acquired
from the environment, the algorithm identifies whether it is an
outlier or not. To do so, it computes the number of points that
are expected to exist in the point’s vicinity. If that number is
quite low, then the point is labeled as an outlier and is reported
to the parent node.

D3 has some attributes that make it attractive and well-
suited for implementation within sensor networks:

Fig. 3. Example of outliers in 2D

• It runs in a distributed fashion: Each node runs the
same piece of software and makes decisions based on
local observations alone. Communication is, thus, limited
to the extent that outlier values need to be propagated to
parent nodes.

• Sensors could be organized in a hierarchy, though this
is not mandatory. In fact, several hierarchy levels could
be introduced, which can be useful to identify outliers in
multiple granularities.

• Efficient computation: The algorithm relies on statis-
tical measures which can be easily computed and effi-
ciently maintained, such as sum, count, standard
deviation etc. It also uses the Epanechnikov kernel,
which has an integral with closed form, thus can be
computed in constant time. Furthermore, those measures
can be approximated even more efficiently using well-
known techniques for streaming environments [2].

A sample usage of the D3 algorithm, expressed in a declar-
ative query language such as SNEEql, is shown in Fig. 4.
In this example, we are interested in finding outliers from a
flood stream, for which we know the temperature value of
incoming tuples. In short, data analysis models are expressed
in SNEEql, and manipulated by SNEE internally, as if they
were ordinary extents. Having created a D3 outlier detection
model, we can check whether each current tuple is an outlier
by specifying an explicit threshold.

SELECT RSTREAM f
FROM flood[NOW] f, d3 od
WHERE f.temperature = od.temperature AND
od.probability < 0.15;

Fig. 4. Example query of D3 outlier detection.

In Fig. 5, we show the basic form of the algorithm to
compute D3. The parentProcess function is shown for
completeness; as we do not assume any type of hierarchy in
our demo, we will not be using it.

III. HARDWARE

The demonstration may use either a set of Crossbow Mica2
MPR410 sensors or a set of SunSPOTs. The former have a 433
MHz processor and 128KB of Program Flash Memory and
4KB EEPROM. Communications are handled by a CC1000
FSK modulated radio. As all Mica2 models, MPR410 are
equipped with an Atmega128L microcontroller. Mica2 nodes
provide a variety of sensoring devices, such as light, temper-
ature, acceleration etc. They use 1.5V AA batteries for their
power supply.

Nodes are programmed using TinyOS 2.x version. The
programs are written in nesC [9] and executables are pre-
compiled to save time. To better handle the motes and un-
derstand exchanged messages, only one of the two programs
will be running at any given time. This is consistent with the
scenario where nodes are deployed to do a particular task and
are then collected and reprogrammed for another task.

Algorithm D3 (Distributed Deviation Detection)
Let Ww and W b be the sliding windows of leaf and parent nodes;
Let Rw and Rb be the samples on Ww and W b;
Let σw and σb be the standard deviations on Ww and W b;
Let f be the fraction of the sample propagated from a child

to its parent;

1. procedure D3()
2. assign one leaf node to each one of the input streams;
3. configure all parent nodes in a hierarchy on top of leaf nodes;
4. initiate ParentProcess() for each parent node;
5. initiate LeafProcess() for each leaf node;
6. return;

7. procedure LeafProcess()
8. when a new value S(i) arrives
9. update Rw, σw;
10. if (S(i) included in Rw)
11. send S(i) to parent with probability f ;
12. if (IsOutlier(Rw, σw, S(i)))
13. report S(i) as an outlier;
14. send S(i) to parent;
15. return;

16. procedure ParentProcess()
17. when a new message from a child node arrives
18. if (message is new outlier P)
19. if (IsOutlier(Rb, σb, S(i))
20. report P as an outlier;
21. send P to parent;
22. if (message is new value from child l)
23. update Rb and σb

24. if (the new value is included in Rb)
25. send new value to parent with probability f;
26. return;

27. procedure IsOutlier(sample R, stddev σ, point P)
28. use R and σ to estimate N(P, r);
29. if (N(P, r) < t)
30. mark P as an outlier;
31. return;

Fig. 5. Outline of D3 algorithm

Fig. 6. Two mica2 sensors, part of the demonstration hardware

Alternatively, we can use SunSPOTs, which are equipped
with thermometer, photometer (light sensor) and accelerometer
sensors. These devices run on a 400MHz processor (therefore,
similar to the Mica2) and communicate via a CC2420 radio,
implementing the 802.15.4 protocol. They are charged from
a 3.7V Li-Ion battery and are programmed using J2ME,
conforming to CLDC 1.1.

The graphical user interface, along with the monitoring
application, runs on an ordinary laptop where the basestation
(i.e. the sink node) will also be connected.

IV. DEMONSTRATION

A. Basic Configuration

The demonstration includes running the above algorithms
with various communication configurations on a set of sensors
and providing their results on the GUI. We deploy our sensors
in the demo room after we have uploaded the TinyOS image
with the algorithm we wish to run (either LR or D3). Sensors
begin communicating and exchanging appropriate messages.
The sensors will be sensing their surroundings periodically
and take action accordingly: for the LR scenario the classifier
will be built and demonstrated to the user, whereas for the D3
case, the user will be informed of detected outliers. The user
will be able to see how messages are exchanged between the
nodes and how the overall network behaves. An additional part
of the demo will be to display part of SNEE’s functionality,
whereby received tuples from a networked source are output
to the user.

B. Linear Regression demo

For the linear regression case, we are interested in demon-
stating how the network performs using the various commu-
nication schemes, which we already briefly described. Node
communication will be intercepted by the basestation, which
will be sniffing the air medium for exchanged messages. This
is to show how each technique behaves and how custom-
made communication protocols are more suited to particular
algorithms. Communication between nodes will be presented
to the user through the GUI, also displaying measures such as
number of messages exchanged and message payload.

Evaluating the communication protocols can be both on-
line, as the algorithm executes and the user sees the exchanged
messages, but also off-line, through stored communicationg
logs. This allows for an overall comparative evaluation of the
protocols’ performance.

C. D3 demo

For the D3 case, as we want to demonstrate the algorithm
itself, each node will be sending its computed kernel function,
which will be graphically displayed to the user. Every once
in a while, a random attribute value will replace an actual
tuple reading. This is to simulate outliers, i.e. values which are
outside of the norm of the actual readings. Random values are
injected in unpredefined intervals, to show that we do not know
when to expect that an outlier will be observed. If the reading
is marked as an outlier, the input tuple is also propagated to

the basestation and the readings (the sensed values) are written
to the output. The node that actually sent the outlier blinks on
the screen as well, notifying the user of the location where
the outlier observation occurred. Another example is to light
a lighter near the sensor, which would instantly increase the
temperature and mark the input variable as an outlier.

ACKNOWLEDGMENT

This work has been supported by the SemSorGrid4Env
(FP7-223913) European Commission project.

REFERENCES

[1] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
semantic foundations and query execution. The VLDB Journal 15, 2 (June
2006), pp. 121-142.

[2] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining
variance and k-medians over data stream windows. In Proc. of the 22nd
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems (PODS ’03). New York, USA, pp. 234-243.

[3] C.Y. Brenninkmeijer, I. Galpin, A.A.A. Fernandes, and N.W. Paton. 2008.
A Semantics for a Query Language over Sensors, Streams and Relations.
In Proc. of the 25th British national conference on Databases: Sharing
Data, Information and Knowledge (BNCOD ’08).

[4] G. Chatzimilioudis, H. Hakkoymaz, N. Mamoulis, D. Gunopulos: Oper-
ator Placement for Snapshot Multi-predicate Queries in Wireless Sensor
Networks. Mobile Data Management 2009: pp. 21-30

[5] G. Chatzimilioudis, D. Zeinalipour-Yazti, and D. Gunopulos. 2010.
Minimum-hot-spot query trees for wireless sensor networks. In Proc. of
the 9th ACM Int. Workshop on Data Engineering for Wireless and Mobile
Access (MobiDE ’10). ACM, New York, NY, USA, pp. 33-40

[6] G. Chatzimilioudis, N. Mamoulis, D. Gunopulos: A Distributed Technique
for Dynamic Operator Placement in Wireless Sensor Networks. Mobile
Data Management 2010: pp 167-176

[7] I. Galpin, C. Y.A. Brenninkmeijer, F. Jabeen, A. A.A. Fernandes, and
N.W. Paton. Comprehensive Optimization of Declarative Sensor Network
Queries. In SSDBM 2009, pp. 339-360.

[8] I. Galpin, C. Y.A. Brenninkmeijer, A. J.G. Gray, F. Jabeen, Alvaro A.A.
Fernandes, N. W. Paton. SNEE: a query processor for wireless sensor
networks. Distributed and Parallel Databases, 2011: 31 85

[9] D. Gay, P. Levis, R.von Behren, M. Welsh, E. Brewer, and D. Culler The
nesC Language: A Holistic Approach to Networked Embedded Systems,
In Proc. of Programming Language Design and Implementation (PLDI)
2003, June 2003

[10] D. Klan, M. Karnstedt, K. Hose, L. Ribe-Baumann, and K.-U. Sattler,
Stream engines meet wireless sensor networks: cost-based planning and
processing of complex queries in AnduIN. In Distributed and Parallel
Databases 29(1-2): 151-183 (2011)

[11] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TAG: a
Tiny AGgregation service for ad-hoc sensor networks. SIGOPS Oper.
Syst. Rev. 36, SI (December 2002)

[12] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TinyDB: an
acquisitional query processing system for sensor networks. ACM Trans.
Database Syst. 30, 1 (March 2005), pp. 122-173.

[13] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D.
Gunopulos. 2006. Online outlier detection in sensor data using non-
parametric models. In Proc. of the 32nd Int. Conf. on Very large data
bases (VLDB ’06), VLDB Endowment pp. 187-198.

[14] H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari, and C. Zaniolo SMM:
a Data Stream Management System for Knowledge Discovery, In ICDE
2011, Hannover, April 11-16, 2011.

[15] Y. Yao and J. Gehrke, The Cougar Approach to In-Network Query
Processing in Sensor Networks, SIGMOD Rec. 31, 3 (September 2002),
pp. 9-18

[16] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors.
Commun. ACM, 43(5):5158, 2000.

