
Rank-Aware Crawling of Hidden Web sites

George Valkanas
Dept. of Informatics &
Telecommunications

University of Athens, Greece
gvalk@di.uoa.gr

Alexandros Ntoulas
∗

Zynga
San Francisco, California
antoulas@zynga.com

Dimitrios Gunopulos
Dept. of Informatics &
Telecommunications

University of Athens, Greece
dg@di.uoa.gr

ABSTRACT
An ever-increasing amount of valuable information on the
Web today is stored inside online databases and is accessible
only after the users issue a query through a search interface.
Such information is collectively called the“Hidden Web”and
is mostly inaccessible by traditional search engine crawlers
that scout the Web following links. Since the only way to
access the Hidden Web pages is through the submission of
queries to the Hidden Web sites, previous work [14, 18] has
focused on how to automatically generate queries in order to
incrementally retrieve and cover a Hidden Web site in depth,
as much as possible.
For certain applications however it is not necessary to have

crawled a Hidden-Web site in-depth. For example, a meta-
searcher or a content aggregator will utilize only the top
portion of the ranked result lists coming from the querying
of a Hidden Web site instead of its full content. Hence, if
we can crawl a Hidden Web site in breadth, i.e. download
just the top results for all potential queries, we can enable
such applications without the need for allocating resources
for fully crawling a potentially huge Hidden Web site.
In this paper we present algorithms for crawling a Hid-

den Web site by taking the ranking of the results into ac-
count. Since we do not know all potential queries that may
be directed to the Web site in advance, we study how to
approximate the site’s ranking function so that we can com-
pute the top results based on the data collected so far. We
provide a framework for performing ranking-aware Hidden
Web crawling and we show experimental results on a real
Web site demonstrating the performance of our methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation

Keywords
Web Mining, Hidden Web, Crawling, Ranking

∗Work done while the author was at Microsoft Research.

Fourteenth International Workshop on the Web and Databases (WebDB
2011) June 12, 2011 - Athens, Greece
Copyright is held by the author/owner .

1. INTRODUCTION
The content available through Web-accessible databases

today is ever-increasing in quantity and quality. Such con-
tent is typically dynamically generated without any pre-
existing direct links to it, and is available only after the
users provide a query through a Web search interface. As a
result, content from Web-accessible databases is essentially
“hidden” from Web search engines who scout the Web fol-
lowing links in order to discover and download content. Such
content is collectively called the “Hidden Web”.

As the Hidden Web contains information of high quality
and high value to the users [2] there have been previous
efforts in surfacing it, so that it can be part of a search en-
gine’s central index. Since the only way for surfacing the
Hidden-Web content is by filling the Web forms, previous
work [14, 18, 10] has focused on how to automatically gen-
erate queries. Such queries are either selected from a pre-
compiled list or selected on-the-fly and are iteratively issued
to a given Hidden-Web site in order to retrieve its content.
The goal of these approaches is to cover a Hidden-Web site
as much as possible in depth, i.e. download as much of its
content as possible with a small number of queries.

However, although downloading all of (or as much as pos-
sible) a Hidden-Web site is obviously desirable, there are
cases where some Hidden-Web sites offer their services at a
cost (e.g.www.westlaw.com). If our goal is to download all
of the Hidden-Web site at a minimum cost, the techniques
presented in [14, 18, 10] are directly applicable. There are
however applications on the Web that do not necessarily
require a Hidden-Web site to be completely crawled. For
example, a meta-search engine needs to operate mostly on
the top few results from a Hidden Web site, for a given
query. Similarly, a content aggregator service operating over
Hidden-Web sites needs to also know the top few items in
order to provide a good summary to its readers. Hence,
if we can crawl and cache a local copy of a Hidden Web
site in breadth, (i.e. download only the top results for the
potential queries that we care about), we can provide such
applications the data they need without paying the cost of
downloading fully a potentially very large Hidden-Web site.

One big challenge with this approach is that we do not
know the queries that will be issued to, e.g., a meta-searcher
in advance. One solution to this problem is to query the
Hidden-Web site on-the-fly and cache the top results for ev-
ery query. This approach however, may lead to unnessecary
queries (and thus cost) to the Hidden-Web site. For exam-
ple, we may identify the top-k results of the query “digital
camera”by examining the top results of the query “camera”.

In this paper, we study the problem of creating a small,
broad local copy of a Hidden-Web site in an rank-aware man-
ner. Our goal is to use this copy in order to get the top-k
results for a given query instead of querying the Hidden-Web
site directly. Our main idea is to approximate the ranking
function employed by the Hidden-Web site and leverage it
in order to determine how to crawl it. We extend previous
techniques for automatic query generation to take into ac-
count the ranking function of each Web site and we showcase
the performance of our techniques in a real Web site.
In short, our contributions here are the following:

• We extend previous techniques by using an active learn-
ing [17] variation to crawl Hidden-Web sites, hence de-
riving a family of algorithms that cover the site while
taking ranking into account. Our technique is generic
and uses domain-independent features, so that it may
be applied to numerous Hidden-Web sites without ma-
jor modifications.

• Since our technique determines which queries to use
based on the retrieved ranked results, we show that it
manages to achieve better coverage performance than
previously existing techniques.

• We provide an experimental evaluation of our proposed
technique, by crawling YouTube. An interesting out-
come of the evaluation is that our techniques can be
very easily parallelized in order to crawl Hidden-Web
sites.

The rest of the paper is organized as follows: Section 2
formally defines the problem, followed by Section 3 which
introduces our proposed approach. Section 5 demonstrates
our experimental findings. Section 6 presents related work
and finally Section 7 concludes the paper, with ideas for
future work.

2. BACKGROUND
We start by formally defining the problem of ranking-

aware Hidden-Web crawling and our goals. To make our
discussion more concrete, we assume that a Hidden-Web site
is associated with a database D, containing documents D =
{d1, d2, ..., d|D|}. We represent each document di within D

as a bag of words, i.e. di = {w1
i , w

2
i , ..., w

|wi|
i }. Similarly, we

represent the set of unique terms contained by all documents
in D by T = {t1, t2, ..., t|T |}.
We define Dq ⊆ D to be the set of documents retrieved

by query q. These documents are the relevant ones w.r.t.
q as they were returned by the Hidden-Web site. Let R

be a ranking (permutation) of Dq, i.e. R = R(q,Dq) →
{1, 2, .., |Dq|}. Note that we are only interested in the rank
(position) of each document. Also each document appears
only once in a ranking. Based on this notation, we can now
formally define our goal in rank-aware crawling of a Hidden-
Web site:

Definition 1. Given a Hidden-Web site, identify the min-
imum set of queries that covers the content from the site
that allows us to approximate the ranking of all potential
queries.

Intuitively, we want to retrieve as much content from the
Hidden Web site as possible, while maintaining the queries

probed to the site at a minimum. At the same time, we are
interested in the ranking that each query is associated with.
Since the set of unique terms inD is T , there are |T | rankings

for single-keyword queries, and 2|T | combinations of queries.
However, since keyword search commonly employs AND se-
mantics which restrict the results, we can achieve better
coverage by issuing only single keyword queries. Therefore,
since coverage is a basic goal, we want to issue fewer queries
than |T | while being able to approximate the ranking of any
ti ∈ T that has been retrieved so far.

3. RANK-AWARE CRAWLING
In this section we develop and describe our proposed met-

ric, to show how we may include the ranking performed by
a Hidden-Web site as a paremeter while crawling it.

3.1 Efficiency
As we already discussed in the previous section, a funda-

mental goal of our techniques is to minimize the download
cost when crawling a Hidden-Web site while achieving high
coverage. Similar to [14], in order to compare among crawl-
ing techniques, we use the notion of efficiency for a query
term t, defined as:

Efficiency(t) =
Pnew(t)

Cost(t)

where Pnew is the fraction of new items (over all current
items) that term t is expected to retrieve and Cost is the
overall cost associated with issuing term t, measured for
example in money, bandwidth, or communications between
the crawler and the Hidden-Web site. In [14] the authors
use the Efficiency metric described above to determine
which queries the crawler should issue to the Hidden-Web
site. Their goal is to maximize the coverage of the site using
the minimum number of queries. Since we are also interested
in coverage we will be using the Efficiency metric as well.
However, as we also aim at approximating the ranked results
of the queries coming from a Hidden Web site, we will extend
this metric by considering the “ranking gain” of the query
term as discussed next.

3.2 Ranking Gain
Apart from the coverage aspect, we are also interested in

the ranking associated with each term. First, we describe
the intuition behind the ranking gain of a term: it is a mea-
sure of the degree to which we can approximate the term’s
ranking, i.e. the ordering of results we would obtain by
querying this term. In other words, we evaluate how simi-
lar a derived ranking would be to the actual one. If we are
able to accurately reconstruct the ranking of a term, then
that term’s gain (w.r.t. ranking) would be close to 0. On
the contrary, if the derived ranking introduces a big error in
our attempt to approximate the actual one, then, we would
need to query this term. The need to correctly derive the
ranking of a term is important for several reasons, both for
single and multi-keyword queries. Finally, we note that al-
ready queried terms have a ranking gain of 0, as their actual
ranking is known.

Therefore, to evaluate the ranking gain of a term we would
need to know its actual ranking, so that we can measure the
distance between the two. However, in that case, we would
not need to derive it in the first place, hence, we take a

different approach on computing the ranking gain. The idea
is that documents in which the term already exists in may
provide clues about the overall ranking for that term. Even
if they do not provide evidence for the actual ranking itself,
they can still be useful.
Once the ranked result of querying the site with term t

has been retrieved, we parse the documents and extract the
terms they contain. For each term, we maintain a set of
inverted indexes of the documents it is contained in with
respect to each probed query, keeping the ordering in which
the result was returned. This results in a set of orderings
for each term, which we can aggregate to obtain a single one
and compute the ranking gain as their level of disagreement.
The more these rankings disagree among them, the more
likely we consider it to be that the inferred ranking will be
misleading. That is because their aggregate list, which seems
as a natural choice for the derived list, would try to average
all distances, which would result in a lot of information being
lost. We can then define the measure used to compute the
ranking gain of a term t as:

RankingGain(t) =
N∑

i=1

d(ri, agg(t))

where agg(t) is the aggregate list of the N rankings ri,
∀i = 1, .., N , of term t and d is a distance function between
two ranked inputs. An aggregate list is one that minimizes
the distance between itself and all other input lists.
What we state in the above equation is that by querying

t, what we gain for its ranking aspect is equal to the over-
all disagreement of the rankings that t belongs to already.
Terms with identical rankings among queries have a ranking
gain of 0, as we do not benefit with respect to this param-
eter. Terms with rankings that exhibit a strong correlation
will have a lower benefit for that factor compared to ones
with higher discordance.
A major drawback of this approach is that it needs to

compute the aggregate list of each term t. However, rank-
ing aggregation is known to be NP-Hard [5].Moreover, it can
not be efficiently maintained incrementally. This entails re-
computation of the aggregate lists from scratch. Hence, it
is in our best interest to avoid consuming the crawler’s re-
sources on computing aggregate lists. Instead, we use the
following observation:

Observation 1. The bigger the distance is between two
ranked inputs of a term t, the bigger the ranking gain of
this term will be.

We can then reformulate the ranking gain as

RankingGain(t) =
2

N ∗ (N − 1)

N∑

i=1

N∑

j=i+1

d(ri, rj)

hence computing the pair-wise distances between all ranked
inputs of a term. To avoid boosting inputs with bigger
lengths, we take the average of pair-wise distances, by di-
viding with the number of all possible pairs.

3.3 Putting it all together
Since we are interested in both maximizing coverage and

achieving good results in approximating the ranking of the
Hidden-Web site, we combine the two cost models presented

above into a single one. More specifically, we use their
weighted average as:

Gain(t) =
(1− w) ∗ Pnew(t) + w ∗RankingGain(t)

Cost(t)

The cost is paid only once, as it is related to the query
term and to the number of pages that it will retrieve, and
is the same for both coverage and ranking gain. Retrieved
documents are parsed and terms are extracted, and we select
as the subsequent query the one with the highest (overall)
Gain.

4. RANKING DISTANCES
There are several measures that are particularly suited

to compute the distance between two or more ordered lists,
most of which aim at finding the degree of correlation. Such
rankings include Kendall τ , Spearman footrule and Spear-
man ρ, top-K variants, nDCG etc. We have used the ones
that are most commonly used in the bibliography, due to sev-
eral properties that they exhibit (i.e. extended Condorcet
criterion). In our work we experimented with different met-
rics for computing ranking distances as they directly affect
our crawling strategies. More specifically, we experimented
with Kendall tau, Spearman Footrule, Top-K and variations
of these, to account for potential ties or different ranking
lengths.

4.1 Kendall τ
Kendall τ measures the correlation of two given lists, as

the number of pairwise swappings, given by the equation

τ =
2 ∗ (nc − nd)

n ∗ (n− 1)

where nc is the number of concordant pairs, nd the number
of discordant pairs and n the number of distinct elements in
both lists. We normalize the result in the [0, 1] range.

We have also used Kendall τ − b to account for ties, fol-
lowing the methodology in [6]

4.2 Spearman Footrule
Another commonly used ranking distance is the Spearman

footrule, where the distance of two rankings r1 and r2 is
given by:

D(r1, r2) =
n∑

i=1

|r1i − r2i |

and rij is the index of j − th element in ranking ri. To
address the problem of ranking length variation, we have
also used scaled Spearman footrule (SSF), given by

D(r1, r2) =

n∑

i=1

|
r1i
|r1|

−
r2i
|r2|

|

4.3 Top-K
In essence, users are not interested in the entire rank-

ing that a web site performs but rather in the top ranked
ones, known as the top-k documents. Hence, the top-k dis-
tance captures the difference between the first k ranked doc-
uments, disregarding all others. Given a ranking r, we de-
note by r(k) its first k entries. Using the formula from [7],

the distance between r1 and r2 up to position i is given by

δi(r1, r2) =
|(r1(i) ∪ r2(i))− (r1(i) ∩ r2(i))|

2 ∗ i

This distance captures the fraction of non commonly shared
items in the first i positions. Then, to get the overall dis-
tance, we sum δ’s, for i = 1, ..., k. More formally

D(r1, r2) =
1

k

k∑

i=1

δi(r1, r2).

5. EXPERIMENTAL EVALUATION

5.1 Experimental setup
We have conducted a set of experiments to measure our

approach in terms of effectiveness, on YouTube [19]. YouTube
is a social sharing video service web site, where users are
able to upload videos and search for them through a simple
keyword interface.
The YouTube service limits its results to 1000 items, how-

ever it contains duplicate entries, i.e. the same video (iden-
tified by url) appears in different ranking positions. In such
cases, we maintain only the first occurrence of a video, as
this is when a user will see it for the first time and possibly
select it. After removing duplicates, the maximum number
of returned videos per query is about 800 on average. This
fact poses an upper bound on the number of videos we ex-
pect to see in our experimental results. Our results are from
crawling the site between March 1st and March 28th, 2011.
Instead of letting the crawlers run indefinitely, we limit the
number of queries each one may probe to 300. Each config-
uration runs independently of the others and computes its
statistics based on the set of documents that it has retrieved
by itself.
We consider as documents the text-based information of

the videos, i.e. title, description and tags. We did not in-
clude the user comments as they are not always directly
related to the video at hand.

5.2 Harvest rate
We start our presentation of the experimental results by

first evaluating the number of documents that each approach
manages to retrieve from the Hidden Web site. We compare
our methods with the ones presented in [14].
Figures 1 and 2 show the number of documents that each

of the configurations retrieved from the Hidden Web site.
Each configuration is selecting keywords based on our dis-
cussion in Section 3 but using a difference distance metric
as shown in Table 1. Knowing the upper limit of YouTube
query results (i.e. 800), we display our findings as a per-
centage of the optimal retrieval case, where each new query
retrieves the maximum number of new distinct documents.
It is interesting to note that the approach that does not take
ranking into account at all, performs the lowest among all
of the techniques.
The graphs in Fig. 1 are a direct application of the dis-

cussion in Section 3, using different distances. We have
also experimented with a variation of these techniques, the
results of which are shown in Fig. 2. In this case, we have
weighted the outcome of the distance function by the Jac-
card coefficient of the two rankings, i.e. the fraction of their
common documents.

Table 1: Crawling configurations
ID Distance
CVR None
KTA Kendall τ -a
KTB Kendall τ -b
SF Spearman Footrule
SSF Scaled Spearman Footrule

TOPK Top-X
cKTB KTB with Jaccard weighting
cSF SF with Jaccard weighting
cSSF SSF with Jaccard weighting

cTOPK TopX with Jaccard weighting

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300
cu

m
ul

at
iv

e
%

 n
ew

 d
oc

s
#queries

CVR
KTA
KTB

SF
SSF

TOP20

Figure 1: Harvest rate (%) of approaches

As we observe from the graphs, the different configura-
tions of our crawling policy perform differently. Overall, all
policies achieve better coverage than the one in [14] which
does not optimize for the rankings. The highest harvest
rate is given by Kendall τ -a, followed by SSF. The reason
that the coverage-only approach performs the lowest, is that
it relies on static features alone, whereas YouTube ranks re-
sults in a query dependent manner. Though we do not know
the exact ranking function of the Hidden-Web site, loosing
the (explicit) coverage aspect and increasing other, more
dynamic, features seems to be beneficial. Interestingly, we
also observe that the policies start performing better after
issuing about 100 queries. This is due to the fact that the
policies need to acquire some knowledge about the document
collection before they start selecting good queries to probe.

5.3 Empirical comparison of the approaches
Table 2 shows the 15 first terms for each of the approaches.

Apart from the 1st query, which was the seed term and the
2nd one, where the ranking has not yet taken effect, it is
clear that all configurations differentiate from each other as
soon as the 3rd query. An interesting observation is that,
apart from the coverage approach, the first 10 query terms
in all configurations appear to be semantically related to the
first one, i.e. food.

Figure 3 provides a more general view of query correlation
among configurations. This grid map shows the number of
commonly queried terms between any two of our about 30
configurations, measured as the percentage of their intersec-
tion. The closer the value is to 1.0, the higher the corre-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

cu
m

ul
at

iv
e

%
 n

ew
 d

oc
s

#queries

CVR
cKTB

cSF
cSSF

cTOP20

Figure 2: Harvest rate of approaches

 0 5 10 15 20 25 30 35
 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 3: Probed queries correlation among config-
urations

lation. It is clear from Fig. 3, that certain configuration,
not on the diagonal, exhibit a high correlation. These in
fact use the same distance measure (e.g. KTb), with dif-
ferent weight w. Nevertheless, apart from these configura-
tions, the rest have very low correlation (below 25% in most
cases). This means that the query terms selected to probe
the Hidden-Web site are entirely different, despite the fact
that all configurations started with the same one.
Moreover, the fact that configurations probe with differ-

ent queries is not sufficient on its own, as they could be
retrieving similar documents. For this reason, Fig. 4 shows
a similar map, measuring the correlation of retrieved doc-
uments by each configuration. Again, this is computed as
the pairwise intersection of documents for all configurations.
We can clearly see that unless the terms are the same, the
configurations retrieve entirely different portions of the Hid-
den Web site. This is the main hint that using the ranking
aspect results in a more breadth-wise search.

6. RELATED WORK
Our work is related to several fields pertaining the web,

such as Web Mining and Web IR. More specifically, we focus
on Hidden Web (HW), the existence of which was brought
to light in the early years of this millennium [2]. Research
on HW sites has focused on various aspects, such as under-
standing query forms [8, 16, 20], classifying the sites based
on their content [11], accessing it [9, 4] and searching the
surface web to discover HW entry points [18]. Our work fo-

 0 5 10 15 20 25 30 35
 0

 5

 10

 15

 20

 25

 30

 35

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 4: Retrieved documents correlation among
configurations

cuses on surfacing HW content, i.e. retrieving content from
those sites, so that it can be indexed, thereby it relates to the
works in [14, 12, 13]. The general technique in these works,
as in ours, is to probe queries to the HW site, retrieve the
actual content and then select the next query with which
to probe. These techniques focus on coverage, i.e. retrieve
as big a portion of the site’s content as possible. The key
difference is that they do not take the ranking aspect into
account.

Ranking has been extensively studied both within and
outside the scope of web-related disciplines. Its importance
is significantly higher in the web domain, due to the size
of the web and the fact that users rarely view more than
the top ranked documents. It is, therefore, an ever-going
research topic, with various settings and applications. To
rank documents on the web, several approaches have been
proposed, such as machine learning [15], link structure [3],
web content analysis and anchor text. Our work differs in
that we do not aim at building a new ranking function for
HW sites. Rather we are interested in taking ranking per-
formed by HW sites into account, while retrieving their con-
tent. Ranking in the context of HW sites has been studied
in [1], where the authors want to identify the order in which
to probe sources, in order to provide users with appropriate
information. Their work differs from ours in that we are
interested in the ranking performed by HW sites per se, not
to globally rank the HW sites themselves with respect to a
user need. Moreover, the authors in [1] perform sampling
of HW sites, as an external step of their approach, whereas
our primary goal is to crawl HW sites and crawling is an
integral part of our strategy.

Finally, our employed approach relates in notion to the
active learning paradigm [17]. Active learning is based on
the idea that a classifier “may achieve higher accuracy if it
is allowed to choose the next training label from which to
learn”. To do this, a measure of the error that is intro-
duced by a potential label is required. Then, the label that
is expected to maximize the gain is selected and used to
train the classifier. Although existing crawling algorithms
for HW sites mostly rely on mathematical models to choose
their next query, simplifying our technique’s intuition, our
work relates in the following manner: we choose the term
for which we can not accurately predict its global ranking,
in case we probed it to the database. Nevertheless, our work
differs from active learning approaches, as we do not use a
machine learning classifier, nor is it our primary concern to

Table 2: First 15 query terms by configuration
No Ranking KTa KTb SF SSF Top-20

soup soup soup soup soup soup
http http http http http http

twitter homemade parents annual prepares listening
www doneness retro bold coulis sausage

youtube panlasangpinoy residents casserole fresco nutrition
watch margarine traumatic acidity penne steamed
follow toweling deborah aparta unbelievable songifications
add fashioned ixzz beet mixer wonton
video foodwishes casserole antioxidants shawtayee siu
user foodies litre absorbable stvplayer intestines
center dmark hing acquire sinatras powders

subscription swirls hamburgers antibacterial larder enhances
machinima dmarkii mattar antiparasitic broadcaster intricate

tags secretlifeofabionerd sooji antiinflammatory gilbrook craftsmanship
high hungrynation drizzle acnes tyres luggage

learn the ranking function of each HW site. Moreover, we
are interested in coverage as well. Finally, to the best of our
knowledge, active learning approaches have not been used
in the context of Hidden Web sites.

7. CONCLUSIONS AND FUTURE WORK
In this work we introduced the problem of crawling Hid-

den Web sites in a rank-aware manner, so that we make
use of the ranking aspect that these sites perform. We pro-
posed a family of algorithms which address this problem
and are a generalization of existing approaches. We eval-
uated our techniques on real web sites. We show that our
methods achieve better coverage of the Web site than exist-
ing methods and that overall, they visit different portions
of the site, and thus are easily parallelizable. Future direc-
tions include the application of an active learning classifier
on ranking functions and using the Hidden-Web site ranking
as a building block to identify more accurately sources that
fulfill user requirements. We are also interested in studying
how the query terms used by each configuration correlate
with topically-similar document clusters.

8. ACKNOWLEDGMENTS
This research has been co-financed by the EU and Greek

national program“Heracleitus II”and by the SemSorGrid4Env
(FP7-223913) and MODAP European Commission projects.

9. REFERENCES
[1] B. Arai, G. Das, D. Gunopulos, V. Hristidis, and

N. Koudas. An access cost-aware approach for object
retrieval over multiple sources. PVLDB, 3(1):1125–1136,
2010.

[2] M. Bergman. The deep web: Surfacing hidden value.
Technical report,

”
2001.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In COMPUTER
NETWORKS AND ISDN SYSTEMS, pages 107–117, 1998.

[4] A. Dasgupta, G. Das, and H. Mannila. A random walk
approach to sampling hidden databases. In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 629–640, 2007.

[5] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In WWW, pages
613–622, 2001.

[6] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and
E. Vee. Comparing partial rankings. SIAM J. Discret.
Math., 20(3):628–648, 2006.

[7] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. In SODA ’03: Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
28–36, 2003.

[8] H. Garcia-Molina. Challenges in crawling the web. In
BNCOD, page 3, 2003.

[9] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing
the deep web. Commun. ACM, 50(5):94–101, 2007.

[10] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano.
Towards a query optimizer for text-centric tasks. ACM
Trans. Database Syst., 32(4):21, 2007.

[11] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count,
and classify: categorizing hidden web databases. In
SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages
67–78, 2001.

[12] J. Liu, Z. Wu, L. Jiang, Q. Zheng, and X. Liu. Crawling
deep web content through query forms. In WEBIST, pages
634–642, 2009.

[13] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen,
and A. Halevy. Googleś deep web crawl. Proc. VLDB
Endow., 1(2):1241–1252, 2008.

[14] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual
hidden web content through keyword queries. In JCDL,
pages 100–109, 2005.

[15] M. Richardson. Beyond pagerank: Machine learning for

static ranking. In In WWW âĂŹ06: Proceedings of the
15th international conference on World Wide Web, pages
707–715. ACM Press, 2006.

[16] P. Senellart, A. Mittal, D. Muschick, R. Gilleron, and
M. Tommasi. Automatic wrapper induction from
hidden-web sources with domain knowledge. In WIDM ’08:
Proceeding of the 10th ACM workshop on Web information
and data management, pages 9–16, 2008.

[17] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

[18] K. Vieira, L. Barbosa, J. Freire, and A. S. da Silva.
Siphon++: a hidden-webcrawler for keyword-based
interfaces. In CIKM, pages 1361–1362, 2008.

[19] YouTube Service. http://www.youtube.com/.
[20] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web

query interfaces: best-effort parsing with hidden syntax. In
Proc. of the 2004 ACM SIGMOD Int. Conf. on
Management of data, SIGMOD ’04, pages 107–118, 2004.

