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External Memory

• So far we have assumed that our data 
structures are stored in main memory. 
However, if the size of a data structure is too 
big then it will be stored on external memory 
e.g., on a hard disk.

• Examples: the database of a bank, a database 
of images, a database of videos etc.
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External Searching

• When we access data on a disk or another 
external memory device, we perform external 
searching.

• A disk access can be at least 100,000 to 
1,000,000 times longer than a main memory 
access.

• Thus, for data structures residing on disk, we 
want to minimize disk accesses.
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(𝑎, 𝑏) Trees

• An (𝒂, 𝒃) tree, where 𝑎 and 𝑏 are integers, such 
that 2 ≤ 𝑎 ≤

(𝑏+1)

2
, is a multi-way search tree 𝑇

with the following additional restrictions:
– Size property: Each internal node has at least 𝑎

children, unless it is the root, and at most 𝑏 children. 
The root can have as few as 2 children.

– Depth property: All external nodes have the same 
depth.

• A (2,4) tree is an (𝑎, 𝑏) tree with 𝑎 = 2 and 𝑏 =
4.
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Example (3,5) Tree
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Proposition

• The height of an (𝑎, 𝑏) tree storing 𝑛 entries is 

𝑂
log 𝑛

log 𝑎
.

• Proof?
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Proof

• Let 𝑇 be an (𝑎, 𝑏) tree storing 𝑛 entries and let ℎ be the height of 𝑇. 
We justify the proposition by proving the following bounds on ℎ:

1

log 𝑏
log(𝑛 + 1) ≤ ℎ <

1

log 𝑎
log

𝑛+1

2
+1

• By the size and depth properties, the number 𝑛′′ of external nodes 
of 𝑇 is at least 𝟐𝒂𝒉−𝟏 and at most 𝒃𝒉.

• To see the upper bound, consider that we can have 1 node at level 
0, at most 𝑏 nodes at level 1, at most 𝑏2 nodes at level 2 etc. and at 
most 𝑏ℎ at level ℎ (these are the external nodes).

• To see the lower bound, consider that we can have 1 node at level 
0, 2 nodes at level 1, at least 2𝑎 nodes at level 2, at least 2𝑎2 at 
level 3 etc. and at least 2𝑎ℎ−1 nodes at level  ℎ.
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Proof (cont’d)

• By an earlier proposition for multi-way trees, we have that 𝑛′′ = 𝑛 + 1
therefore

2𝑎ℎ−1 ≤ 𝑛 + 1 ≤ 𝑏ℎ

• Taking the logarithm of base 2 of each term, we get
ℎ − 1 log 𝑎 +1 ≤ log(𝑛 + 1) ≤ ℎ log 𝑏

• The lower bound we want to prove is obvious from the above right 
inequality.

• The upper bound we want to prove is also easy to see using the left 
inequality from above:

ℎ log 𝑎 − log 𝑎 + 1 ≤ log(𝑛 + 1)
ℎ log 𝑎 ≤ log(𝑛 + 1) + log 𝑎 − 1

ℎ ≤
1

log 𝑎
log

𝑛 + 1

2
+ 1 −

1

log 𝑎

ℎ <
1

log 𝑎
log

𝑛 + 1

2
+ 1
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B-Trees

• In an (𝑎, 𝑏) tree , we can select the parameters 𝑎 and 𝑏 so that 
each tree node occupies a single disk block or page. 

• This gives rise to a well-known external memory data structure 
called the B-tree.

• A B-tree of order 𝒎 is an (𝑎, 𝑏) tree with 𝑎 = ⌈
𝑚

2
⌉ and 𝑏 = 𝑚.

• B-trees are used for indexing data stored on external memory.
• When we implement a B-tree, we choose the order 𝑚 so that the 

(at most) 𝑚 children references and the (at most) 𝑚 − 1 keys 
stored at a node can all fit into a single block.

• Nodes are at least half-full all the time due to the value of 𝑎.
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Example B-Tree of Order 𝑚 = 5
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Proposition

• Let 𝑇 be a B-tree of order 𝑚 and height ℎ.

Let 𝑑 = ⌈
𝑚

2
⌉ and 𝑛 the number of entries in 

the tree. Then, the following inequalities hold:

1. 2𝑑ℎ−1 − 1 ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ log𝑑
(𝑛+1)

2
+ 1

• Proof?
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Proof

• Let us prove (1) first. 
• The upper bound follows from the fact that a B-

tree of order 𝑚 is a multi-way tree and the 
respective proposition we proved for multi-way 
trees.

• The lower bound follows from an inequality we 
used in the proof of the previous proposition that 
for 𝑎, 𝑏 trees.

• To prove (2), rewrite the inequalities of (1) and 
then take logarithms with bases 𝑚 and 𝑑 for the 
respective terms.
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Result

• From the right inequality of (2) in the previous 
proposition, we have that the height of a B-

tree is 𝑶 𝐥𝐨𝐠𝒅 𝒏 where 𝑑 = ⌈
𝑚

2
⌉ , as we 

would like it for a balanced search tree.
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Insertion into a B-tree

• The general method for insertion in a B-tree is as follows. First, a 
search is made to see if the new key is in the tree. This search (if the 
tree is truly new) will terminate in failure at a leaf. 

• The new key is then added to the parent of the leaf node. If the 
node was not previously full, then the insertion is finished.

• When a key is added to a full node, we have an overflow. Then this 
node splits into two nodes on the same level, except that the 
median key at position ⌈

𝑚

2
⌉ is not put into either of the two new 

nodes, but is instead sent up to the tree to be inserted into the 
parent node.

• When a search is later made through the tree, a comparison with 
the median key will serve to direct the search into the proper 
subtree.
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Example

• Let us see an example of insertions into an 
initially empty B-tree of order 5.

Data Structures and Programming 
Techniques

16



Insert a

Data Structures and Programming 
Techniques

17

a



Insert g
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Insert f
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Insert b
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Insert k - Overflow

Data Structures and Programming 
Techniques

21

a    b    f    g   k



Creation of a New Root Node
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Split
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Insert d
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Insert h
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Insert m
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Insert j - Overflow
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Sent j to the Parent Node
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Split
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Insert r
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Insert x - Overflow
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r is Sent to the Parent Node
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Split
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Insert c - Overflow
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c is Sent to the Parent
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m is Sent to the Parent Node
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Overflow at the Root
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j is Sent up to a New Root

Data Structures and Programming 
Techniques

48

a    b  

c    f          m     r

g     h     i k  l s    t    u    xd    e  n  p

j



Split

Data Structures and Programming 
Techniques

49

a    b  

c    f

g     h     i k  l s    t    u    xd    e  n  p

j  

m    r



Final Tree
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Deletion from a B-tree

• Let us now see how we delete a key from a B-tree.
• If the key to be deleted is in a node with only external 

nodes as children, then it can be deleted immediately.
• If the key to be deleted is in an internal node with only 

internal nodes as children, then its immediate 
predecessor (or successor) under the natural order of 
keys is guaranteed to be in a node with only external-
node children.

• Hence, we can promote the immediate predecessor or 
successor into the position occupied by the key to be 
deleted, and delete the key from the node with only 
external-node children.
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Deletion from a B-tree (cont’d)

• If the node where the deletion takes place contains more than the 
minimum number of keys, then one can be deleted with no further 
action. 

• If the node contains the minimum number, then we first look at its two 
immediate siblings (or in the case of a node on the outside, one sibling).

• If one of these has more than the minimum number for entries, then we 
can do a transfer operation: one child of the sibling is moved to the node 
where the deletion takes place, one of the keys of the sibling is moved into 
the parent node, and a key from the parent node is moved into the node 
where the deletion takes place.

• If the immediate sibling has only the minimum number of keys then we 
perform a fusion operation: the current node and its sibling are merged 
into a new node and a key is moved from the parent into this new node.

• If this fusion step leaves the parent with too few entries, the process 
propagates upward.
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Example
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Delete h
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Delete r
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Find the Successor of r
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Promote the Successor of r – Delete 
the Successor from its Place
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Delete p
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Transfer
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After the Transfer
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Fusion
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After the Fusion – Underflow at f
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Fusion
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After the Fusion – Delete Root
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Final Tree
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Complexity of Operations in a B-tree

• As we have shown for multi-way trees, the 
complexity of search, insertion and deletion in 
a B-tree of order 𝑚 is 𝑂 ℎ𝑡 where 𝑂(𝑡) is the 
time it takes to implement split, transfer or 
fusion using the data structure implementing 
each node of the tree.

• If we count only disk block operations then 
𝑂 𝑡 = 𝑂(1). Therefore, the complexity of 
each operation is 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒎

𝟐

𝒏).
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B+-trees

• A variation of B-trees called B+-trees is one of 
the most important indexing structures used 
in today’s file systems and relational database 
management systems.
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B+-tree Example
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B+-trees (cont’d)

• B+-trees are similar to B-trees. But in B+-trees, 
internal nodes store only keys while external 
nodes at the bottom layer store keys and 
pointers to values (the 𝑑𝑖’s in the previous slide).

• The external nodes in the bottom layer are 
ordered and linked so that, not only equality 
queries (e.g., find employees with salary 10,000), 
but also range queries can be answered 
effectively (e.g., find employees with salary 
between 10,000 and 20,000 euros).

Data Structures and Programming 
Techniques

70



Readings

• M. T. Goodrich, R. Tamassia and D. Mount. 
Data Structures and Algorithms in C++. 2nd

edition. John Wiley.

• M. T. Goodrich, R. Tamassia. Δομές Δεδομένων 
και Αλγόριθμοι σε Java. 5η έκδοση. Εκδόσεις 
Δίαυλος.
– Κεφ. 10.5

• Sartaj Sahni. Δομές Δεδομένων, Αλγόριθμοι 
και Εφαρμογές στη C++. Εκδόσεις Τζιόλα.
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Readings (cont’d)

• You can also see the following chapter but 
notice that the data structure called B-tree 
there is essentially a B+-tree (but without the 
linking of the external nodes on the bottom 
layer):

• R. Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 16.3
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