
B-Trees

Manolis Koubarakis

Data Structures and Programming
Techniques

1

The Memory Hierarchy

Data Structures and Programming
Techniques

2

External Memory

Main (Internal) Memory

Cache

Registers

CPU

Bigger

Faster

External Memory

• So far we have assumed that our data
structures are stored in main memory.
However, if the size of a data structure is too
big then it will be stored on external memory
e.g., on a hard disk.

• Examples: the database of a bank, a database
of images, a database of videos etc.

Data Structures and Programming
Techniques

3

External Searching

• When we access data on a disk or another
external memory device, we perform external
searching.

• A disk access can be at least 100,000 to
1,000,000 times longer than a main memory
access.

• Thus, for data structures residing on disk, we
want to minimize disk accesses.

Data Structures and Programming
Techniques

4

(𝑎, 𝑏) Trees

• An (𝒂, 𝒃) tree, where 𝑎 and 𝑏 are integers, such
that 2 ≤ 𝑎 ≤

(𝑏+1)

2
, is a multi-way search tree 𝑇

with the following additional restrictions:
– Size property: Each internal node has at least 𝑎

children, unless it is the root, and at most 𝑏 children.
The root can have as few as 2 children.

– Depth property: All external nodes have the same
depth.

• A (2,4) tree is an (𝑎, 𝑏) tree with 𝑎 = 2 and 𝑏 =
4.

Data Structures and Programming
Techniques

5

Example (3,5) Tree

Data Structures and Programming
Techniques

6

a b

c f

g h i k l s t u xd e n p

j

m r

Proposition

• The height of an (𝑎, 𝑏) tree storing 𝑛 entries is

𝑂
log 𝑛

log 𝑎
.

• Proof?

Data Structures and Programming
Techniques

7

Proof

• Let 𝑇 be an (𝑎, 𝑏) tree storing 𝑛 entries and let ℎ be the height of 𝑇.
We justify the proposition by proving the following bounds on ℎ:

1

log 𝑏
log(𝑛 + 1) ≤ ℎ <

1

log 𝑎
log

𝑛+1

2
+1

• By the size and depth properties, the number 𝑛′′ of external nodes
of 𝑇 is at least 𝟐𝒂𝒉−𝟏 and at most 𝒃𝒉.

• To see the upper bound, consider that we can have 1 node at level
0, at most 𝑏 nodes at level 1, at most 𝑏2 nodes at level 2 etc. and at
most 𝑏ℎ at level ℎ (these are the external nodes).

• To see the lower bound, consider that we can have 1 node at level
0, 2 nodes at level 1, at least 2𝑎 nodes at level 2, at least 2𝑎2 at
level 3 etc. and at least 2𝑎ℎ−1 nodes at level ℎ.

Data Structures and Programming
Techniques

8

Proof (cont’d)

• By an earlier proposition for multi-way trees, we have that 𝑛′′ = 𝑛 + 1
therefore

2𝑎ℎ−1 ≤ 𝑛 + 1 ≤ 𝑏ℎ

• Taking the logarithm of base 2 of each term, we get
ℎ − 1 log 𝑎 +1 ≤ log(𝑛 + 1) ≤ ℎ log 𝑏

• The lower bound we want to prove is obvious from the above right
inequality.

• The upper bound we want to prove is also easy to see using the left
inequality from above:

ℎ log 𝑎 − log 𝑎 + 1 ≤ log(𝑛 + 1)
ℎ log 𝑎 ≤ log(𝑛 + 1) + log 𝑎 − 1

ℎ ≤
1

log 𝑎
log

𝑛 + 1

2
+ 1 −

1

log 𝑎

ℎ <
1

log 𝑎
log

𝑛 + 1

2
+ 1

Data Structures and Programming
Techniques

9

B-Trees

• In an (𝑎, 𝑏) tree , we can select the parameters 𝑎 and 𝑏 so that
each tree node occupies a single disk block or page.

• This gives rise to a well-known external memory data structure
called the B-tree.

• A B-tree of order 𝒎 is an (𝑎, 𝑏) tree with 𝑎 = ⌈
𝑚

2
⌉ and 𝑏 = 𝑚.

• B-trees are used for indexing data stored on external memory.
• When we implement a B-tree, we choose the order 𝑚 so that the

(at most) 𝑚 children references and the (at most) 𝑚 − 1 keys
stored at a node can all fit into a single block.

• Nodes are at least half-full all the time due to the value of 𝑎.

Data Structures and Programming
Techniques

10

Example B-Tree of Order 𝑚 = 5

Data Structures and Programming
Techniques

11

a b

c f

g h i k l s t u xd e n p

j

m r

Proposition

• Let 𝑇 be a B-tree of order 𝑚 and height ℎ.

Let 𝑑 = ⌈
𝑚

2
⌉ and 𝑛 the number of entries in

the tree. Then, the following inequalities hold:

1. 2𝑑ℎ−1 − 1 ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ log𝑑
(𝑛+1)

2
+ 1

• Proof?

Data Structures and Programming
Techniques

12

Proof

• Let us prove (1) first.
• The upper bound follows from the fact that a B-

tree of order 𝑚 is a multi-way tree and the
respective proposition we proved for multi-way
trees.

• The lower bound follows from an inequality we
used in the proof of the previous proposition that
for 𝑎, 𝑏 trees.

• To prove (2), rewrite the inequalities of (1) and
then take logarithms with bases 𝑚 and 𝑑 for the
respective terms.

Data Structures and Programming
Techniques

13

Result

• From the right inequality of (2) in the previous
proposition, we have that the height of a B-

tree is 𝑶 𝐥𝐨𝐠𝒅 𝒏 where 𝑑 = ⌈
𝑚

2
⌉ , as we

would like it for a balanced search tree.

Data Structures and Programming
Techniques

14

Insertion into a B-tree

• The general method for insertion in a B-tree is as follows. First, a
search is made to see if the new key is in the tree. This search (if the
tree is truly new) will terminate in failure at a leaf.

• The new key is then added to the parent of the leaf node. If the
node was not previously full, then the insertion is finished.

• When a key is added to a full node, we have an overflow. Then this
node splits into two nodes on the same level, except that the
median key at position ⌈

𝑚

2
⌉ is not put into either of the two new

nodes, but is instead sent up to the tree to be inserted into the
parent node.

• When a search is later made through the tree, a comparison with
the median key will serve to direct the search into the proper
subtree.

Data Structures and Programming
Techniques

15

Example

• Let us see an example of insertions into an
initially empty B-tree of order 5.

Data Structures and Programming
Techniques

16

Insert a

Data Structures and Programming
Techniques

17

a

Insert g

Data Structures and Programming
Techniques

18

a g

Insert f

Data Structures and Programming
Techniques

19

a f g

Insert b

Data Structures and Programming
Techniques

20

a b f g

Insert k - Overflow

Data Structures and Programming
Techniques

21

a b f g k

Creation of a New Root Node

Data Structures and Programming
Techniques

22

a b g k

f

Split

Data Structures and Programming
Techniques

23

a b

f

g k

Insert d

Data Structures and Programming
Techniques

24

a b d

f

g k

Insert h

Data Structures and Programming
Techniques

25

a b d

f

g h k

Insert m

Data Structures and Programming
Techniques

26

a b d

f

g h k m

Insert j - Overflow

Data Structures and Programming
Techniques

27

a b d

f

g h j k m

Sent j to the Parent Node

Data Structures and Programming
Techniques

28

a b d

f

g h k m

j

Split

Data Structures and Programming
Techniques

29

a b d

f j

g h k m

Insert e

Data Structures and Programming
Techniques

30

a b d e

f j

g h k m

Insert s

Data Structures and Programming
Techniques

31

a b d e

f j

g h k m s

Insert i

Data Structures and Programming
Techniques

32

a b d e

f j

g h i k m s

Insert r

Data Structures and Programming
Techniques

33

a b d e

f j

g h i k m r s

Insert x - Overflow

Data Structures and Programming
Techniques

34

a b d e

f j

g h i k m r s x

r is Sent to the Parent Node

Data Structures and Programming
Techniques

35

a b d e

f j

g h i k m s x

r

Split

Data Structures and Programming
Techniques

36

a b d e

f j r

g h i k m s x

Insert c - Overflow

Data Structures and Programming
Techniques

37

a b c d e

f j r

g h i k m s x

c is Sent to the Parent

Data Structures and Programming
Techniques

38

a b d e

f j r

g h i k m s x

c

Split

Data Structures and Programming
Techniques

39

a b

c f j r

g h i k m s xd e

Insert l

Data Structures and Programming
Techniques

40

a b

c f j r

g h i k l m s xd e

Insert n

Data Structures and Programming
Techniques

41

a b

c f j r

g h i k l m n s xd e

Insert t

Data Structures and Programming
Techniques

42

a b

c f j r

g h i k l m n s t xd e

Insert u

Data Structures and Programming
Techniques

43

a b

c f j r

g h i k l m n s t u xd e

Insert p - Overflow

Data Structures and Programming
Techniques

44

a b

c f j r

g h i k l m n p s t u xd e

m is Sent to the Parent Node

Data Structures and Programming
Techniques

45

a b

c f j r

g h i k l n p s t u xd e

m

Split

Data Structures and Programming
Techniques

46

a b

c f j m r

g h i k l s t u xd e n p

Overflow at the Root

Data Structures and Programming
Techniques

47

a b

c f j m r

g h i k l s t u xd e n p

j is Sent up to a New Root

Data Structures and Programming
Techniques

48

a b

c f m r

g h i k l s t u xd e n p

j

Split

Data Structures and Programming
Techniques

49

a b

c f

g h i k l s t u xd e n p

j

m r

Final Tree

Data Structures and Programming
Techniques

50

a b

c f

g h i k l s t u xd e n p

j

m r

Deletion from a B-tree

• Let us now see how we delete a key from a B-tree.
• If the key to be deleted is in a node with only external

nodes as children, then it can be deleted immediately.
• If the key to be deleted is in an internal node with only

internal nodes as children, then its immediate
predecessor (or successor) under the natural order of
keys is guaranteed to be in a node with only external-
node children.

• Hence, we can promote the immediate predecessor or
successor into the position occupied by the key to be
deleted, and delete the key from the node with only
external-node children.

Data Structures and Programming
Techniques

51

Deletion from a B-tree (cont’d)

• If the node where the deletion takes place contains more than the
minimum number of keys, then one can be deleted with no further
action.

• If the node contains the minimum number, then we first look at its two
immediate siblings (or in the case of a node on the outside, one sibling).

• If one of these has more than the minimum number for entries, then we
can do a transfer operation: one child of the sibling is moved to the node
where the deletion takes place, one of the keys of the sibling is moved into
the parent node, and a key from the parent node is moved into the node
where the deletion takes place.

• If the immediate sibling has only the minimum number of keys then we
perform a fusion operation: the current node and its sibling are merged
into a new node and a key is moved from the parent into this new node.

• If this fusion step leaves the parent with too few entries, the process
propagates upward.

Data Structures and Programming
Techniques

52

Example

Data Structures and Programming
Techniques

53

a b

c f

g h i k l s t u xd e n p

j

m r

Delete h

Data Structures and Programming
Techniques

54

a b

c f

g i k l s t u xd e n p

j

m r

Delete r

Data Structures and Programming
Techniques

55

a b

c f

g i k l s t u xd e n p

j

m r

Find the Successor of r

Data Structures and Programming
Techniques

56

a b

c f

g i k l s t u xd e n p

j

m r

Promote the Successor of r – Delete
the Successor from its Place

Data Structures and Programming
Techniques

57

a b

c f

g i k l t u xd e n p

j

m s

Delete p

Data Structures and Programming
Techniques

58

a b

c f

g i k l t u xd e n p

j

m s

Transfer

Data Structures and Programming
Techniques

59

a b

c f

g i k l u xd e n

j

m

t
s

After the Transfer

Data Structures and Programming
Techniques

60

a b

c f

g i k l u xd e n s

j

m t

Delete d

Data Structures and Programming
Techniques

61

a b

c f

g i k l u xe n s

j

m t

d

Fusion

Data Structures and Programming
Techniques

62

a b

f

g i k l u xe n s

j

m t

c

After the Fusion – Underflow at f

Data Structures and Programming
Techniques

63

a b c e

f

g i k l u xn s

j

m t

Fusion

Data Structures and Programming
Techniques

64

a b c e

f

g i k l u xn s

j

m t

After the Fusion – Delete Root

Data Structures and Programming
Techniques

65

a b c e g i k l u xn s

f j m t

Final Tree

Data Structures and Programming
Techniques

66

a b c e g i k l u xn s

f j m t

Complexity of Operations in a B-tree

• As we have shown for multi-way trees, the
complexity of search, insertion and deletion in
a B-tree of order 𝑚 is 𝑂 ℎ𝑡 where 𝑂(𝑡) is the
time it takes to implement split, transfer or
fusion using the data structure implementing
each node of the tree.

• If we count only disk block operations then
𝑂 𝑡 = 𝑂(1). Therefore, the complexity of
each operation is 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒎

𝟐

𝒏).

Data Structures and Programming
Techniques

67

B+-trees

• A variation of B-trees called B+-trees is one of
the most important indexing structures used
in today’s file systems and relational database
management systems.

Data Structures and Programming
Techniques

68

B+-tree Example

Data Structures and Programming
Techniques

69

B+-trees (cont’d)

• B+-trees are similar to B-trees. But in B+-trees,
internal nodes store only keys while external
nodes at the bottom layer store keys and
pointers to values (the 𝑑𝑖’s in the previous slide).

• The external nodes in the bottom layer are
ordered and linked so that, not only equality
queries (e.g., find employees with salary 10,000),
but also range queries can be answered
effectively (e.g., find employees with salary
between 10,000 and 20,000 euros).

Data Structures and Programming
Techniques

70

Readings

• M. T. Goodrich, R. Tamassia and D. Mount.
Data Structures and Algorithms in C++. 2nd

edition. John Wiley.

• M. T. Goodrich, R. Tamassia. Δομές Δεδομένων
και Αλγόριθμοι σε Java. 5η έκδοση. Εκδόσεις
Δίαυλος.
– Κεφ. 10.5

• Sartaj Sahni. Δομές Δεδομένων, Αλγόριθμοι
και Εφαρμογές στη C++. Εκδόσεις Τζιόλα.

Data Structures and Programming
Techniques

71

Readings (cont’d)

• You can also see the following chapter but
notice that the data structure called B-tree
there is essentially a B+-tree (but without the
linking of the external nodes on the bottom
layer):

• R. Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 16.3

Data Structures and Programming
Techniques

72

