Graphs (fpadot)

Manolis Koubarakis

Data Structures and Programming
Techniques

Graphs

Graphs are collections of nodes in which various

pairs are connected by line segments. The nodes

are usually called vertices (kopudéc) and the line
segments edges (akpEc).

Graphs are more general than trees. Graphs are
allowed to have cycles and can have more than
one connected component.

Some authors use the terms nodes (koppot) and
arcs (to€a) instead of vertices and edges.

Graphs can be undirected or directed.

Examples of Graphs (Undirected)

Data Structures and Programming
Techniques

Examples of Graphs (Directed)

Data Structures and Programming
Techniques

Examples of Graphs

* Transportation networks

* Interesting problem: What is the path with
one or more stops of shortest overall distance

connecting a starting city and a destination
city? =

Examples (cont’d)

* A network of oil pipelines

* Interesting problem: What is the maximum
possible overall flow of oil from the source to

the destination?

------ traq’s Oil & Gas
mfrastructure

GGGGGGG

4
KKKKKK

Operational Refinery

nnnnnnnnnnnnnnn

Guir

Data Structures and Programming

Techniques

Examples (cont’d)

e The Internet

* Interesting problem: Deliver an e-mail from
user Ato userB

Data Structures and Programming
Techniques

Examples (cont’d)

* The Web

* Interesting problem: What is the PageRank of
a Web site?

PageRank ©

Data Structures and Programming
Techniques

Examples (cont’d)

e The Facebook social network

* Interesting problem: Are John and Mary
connected? What interesting clusters exist?

Data Structures and Programming
Techniques

Formal Definitions

A graph G = (V, E) consists of a set of vertices IVand a set of edges

E, where the edges in £'are formed from pairs of distinct vertices in
V.

If the edges have directions then we have a directed graph
(katevBuvapevo ypado) or digraph. In this case edges are ordered
pairs of vertices e.g., (u, v) and are called directed. If (u, v) is a
directed edge then u is called its origin and v is called its
destination.

If the edges do not have directions then we have an undirected
graph (un-katevBuvopevoc ypado). In this case edges are
unordered pairs of vertices e.g., {v, u} and are called undirected.

For simplicity, we will use the directed pair notation noting that in
the undirected case (u, v) is the same as (v, u).

Example of a Directed Graph

G=(V,E)
V=1{1,23456,7,891011}
E ={(1,2),(1,3),(2,5),(34),
(5,4), (5,6),(6,7),(8,9), (8,10), (10,11)}

Data Structures and Programming

11
Techniques

Example of an Undirected Graph

3 4 Q

G=(V,E)
V=1{1,23456,7,891011}
E ={(1,2),(1,3),(2,5),(34),
(5,4), (5,6),(6,7),(8,9), (8,10), (10,11)}

Data Structures and Programming

12
Techniques

Note

* |n the following slides, when we say simply
graph in a definition, the definition will apply
to both directed and undirected graphs.

Definitions (cont’d)

Two different vertices v; and vj inagraph ¢ = (V, E)
are said to be adjacent (yewtovikec) if there exists an
edge e € E such thate = (vi, vj).

When the graph is undirected, the adjacency relation is
symmetric.

In an undirected graph, an edge is said to be incident
(mpoominttovoa) on a vertex if the vertex is one of the
edge’s endpoints.

If (u,v) is an edge in a directed graph ¢ = (V, E), we

say that (u, v) is incident from or leaves vertex u and
is incident to or enters vertex v.

Examples — Undirected Graph

Vertices 1 and 2 are adjacent. Edge (1,2) is incident on vertices 1 and 2.

Data Structures and Programming
Techniques

15

Examples — Directed Graph

Vertices 1 and 2 are adjacent. Edge (1, 2) is incident from (or leaves) vertex 1 and
is incident on (or enters) vertex 2.

Data Structures and Programming
Techniques

16

Definitions (cont’d)

A path (povomnarty) p in a graph G = (V, E) is a sequence of
vertices of IV of the form p = v,v, ...v,,, (n = 2) in which
each vertex v; is adjacent to the nextone v; .1 (forl < i <

n —1).

In the above case, we say that p contains the vertices
V1, V5, .., U, and the edges (v;,v; 1) forl <i<n—1.
The length of a path is the number of edges in it.

A path is simple if each vertex in the path is distinct.

A subpath of a path is a contiguous subsequence of its
vertices.

In a directed graph, we often use the term directed path
for obvious reasons.

Definitions (cont’d)

A cycle is a path p = v, v, ... v, of length greater
than one that begins and ends at the same vertex
(i.e., v1 = vy).

A simple cycle is a path that travels through three

or more distinct vertices and connects them into
a loop.

Formally, if p is a path of the form p = v,v, ... v,
then p is a simple cycle if and only if n > 3, v, =
v, and v; # v; for distinct i and j in the range
1<i,j<n-1

Simple cycles do not repeat edges.

Examples — Undirected Graph

The sequence of vertices 1, 2,5, 6 is a simple path of length 3.
The path 1, 2,5, 6,5 is not simple.
The path 2,5, 6 is a subpath of the path 1, 2,5, 6, 7.

Data Structures and Programming
Techniques

19

Example Undirected Graph

Four simple cycles: (1,2,3,1) (4,5,6,7,4) (4,5,6,4) (4,6,7,4)

Data Structures and Programming
Techniques

20

Example (cont’d)

One non-simple cycle: (4,5,6,4,7,6,4)

Data Structures and Programming
Techniques

21

Examples — Directed Graph

The sequence of vertices 1, 2, 5, 6 is a simple (directed) path of length 3.

The sequence 2,5, 4 is not a path because there is no directed edge (5, 4).

The path 5,6,7,4,5 is a simple cycle.

Data Structures and Programming
Techniques

22

Reachability

* Let G be a graph. If there is a path p from v to
u in G then we say that u is reachable from v
via p.

Examples - Undirected Graph

3 4 Q

Vertices 1 and 6 are reachable from each
other.

Vertex 1 is not reachable from vertex 8
(or9, 10, 11).

Data Structures and Programming
Techniques

24

Examples — Directed Graph

Vertex 6 is reachable from vertex 1.
Vertex 1 is not reachable from vertex 6.
Vertex 1 is not reachable from vertex 8
(or9, 10, 11).

Data Structures and Programming

: 25
Techniques

Connected Undirected Graphs

* An undirected graph G is connected
(ouvekTtikog) if every vertex is reachable from
every other vertex in the graph (i.e., if there is

a path from every vertex to every other
vertex).

Example of Connected Undirected Graph

Data Structures and Programming
Techniques

27

Connected Components of Undirected
Graphs

In the undirected graph G = (V, E), a connected component
(ouvektikn ouvictwoa) is a subset S of the vertices V that are all
reachable from each other.

A connected component S of G is a maximal connected component
(néyrotn ocuvektikn cuvictwoa) provided there is no bigger subset
T of vertices in V such that T properly contains S and such that T
itself is a connected component of G.

An undirected graph G can always be separated into maximal
connected components 54,55, ..., 5, such that §; N Sj =0Q
whenever i # j.

The maximal connected components of an undirected graph are the
equivalence classes of the vertices under the “is reachable from”
relation.

An undirected graph is connected if it has exactly one maximal
connected component.

Example of Undirected Graph and its Separation
into Two Maximal Connected Components

Data Structures and Programming

29
Techniques

Strongly Connected Directed Graphs

* Adirected graph is strongly connected
(Loxupa ocuvektkoc) if every two vertices are
reachable from each other (i.e., there is a path
from the first to the second and vice versa).

Strongly Connected Components of a
Directed Graph

* A strongly connected component (Loxupd cuveKTIKA
ocuvictwoa) of a directed graph is a maximal set of vertices
in which there is a path from any one vertex in the set to
any other vertex.

* More formally, let G = (V, E) be a directed graph. We can
partition I/ into equivalence classes I/;, 1 < i < r, such that
vertices v and w are equivalent if and only if there is a path
fromvtowandapathfromwtov.lLetE;,1 <i<r,be
the set of edges with endpoints in V;. The graphs G; =
(V;, E;) are called the strongly connected components or
just strong components (Loxupec cuviotwoec) of G.

* Adirected graph with only one strong component is
strongly connected.

Example Directed Graph

Data Structures and Programming
Techniques

32

The Strong Components of the Digraph

Data Structures and Programming
Techniques

33

Another Example Directed Digraph

* This graph consists of a single strong component.

Data Structures and Programming

34
Techniques

Degree in Undirected Graphs

* |[n an undirected graph G, the degree
(BaBuoc) of vertex x is the number of edges e
in which x is one of the endpoints of e.

* The degree of a vertex x is denoted by
deg(x).

Example

The degree of vertex 1 is 2. The degree of vertex 4 is 4. The degree of vertex 8 is
1.

Data Structures and Programming
Techniques

36

Proposition

* |If G is an undirected graph with m edges, then

z deg(v) = 2m.

ving
* Proof?

Proof

* An edge (u, v) is counted twice in the
summation above; once by its endpoint u and
one by its endpoint v. Thus, the total
contribution of the edges to the degrees of
the vertices is twice the number of edges.

Predecessors and Successors in
Directed Graphs

* If x isavertexin adirected graph ¢ = (V,E)
then the set of predecessors (mponyoupevwv)
of x denoted by Pred(x) is the set of all
vertices y € VV such that (y,x) € E.

* Similarly the set of successors (emopevwv) of
x denoted by Succ(x) is the set of all vertices

y € V such that (x,y) € E.

In-Degree and Out-Degree in Directed
Graphs

The in-degree of a vertex x is the number of
predecessors of x.

The out-degree of a vertex x is the number of
successors of x.

We can also define the in-degree and the out-

degree by referring to the incoming and outgoing
edges of a vertex.

The in-degree and out-degree of a vertex x are
denoted by indeg(x) and outdeg (x)
respectively.

Example

The in-degree of vertex 4 is 2. The out-degree of vertex 4 is 1.

Data Structures and Programming
Techniques

41

Proposition

* |If G is a directed graph with m edges, then

Z inde g(v) = z outdeg(v) = m.

vinGg vinGg
 Proof?

Proof

* In a directed graph, an edge (u, v) contributes
one unit to the out-degree of its origin vertex
u and one unit to the in-degree of its
destination v. Thus, the total contribution of
the edges to the out-degrees of the vertices is
equal to the number of edges, and similarly
for the out-degrees.

Proposition

* Let G be a graph with n vertices and m edges.
n(n—-1) : :
,and if G is

If G is undirected, then m <
directed, thenm < n(n — 1).
* Proof?

Proof

e |f G is undirected then the maximum degree
of a vertexis n — 1. Therefore, from the
previous proposition about the sum of the
degrees, we have 2m < n(n — 1).

e |f G is directed then the maximum in-degree
of a vertexisn — 1. Therefore, from the
previous proposition about the sum of the in-
degrees, we have m < n(n — 1).

More definitions

* A subgraph (umoypadoc) of a graph G is a
graph H whose set of vertices and set of
edges are subsets of the set of vertices and
the set of edges of G respectively.

* A spanning subgraph (unoypadoc
erukaAuvync) of G is a subgraph of G that
contains all the vertices of G.

Example Undirected Graph G

Data Structures and Programming
Techniques

47

Example (cont’d)

The above are three subgraphs of the previous graph G.

Data Structures and Programming
Techniques

48

Example (cont’d)

The above graph is a spanning subgraph of the previous graph G.

Data Structures and Programming
Techniques

49

More Definitions

A forest (daooc) is an undirected graph without cycles.

A free tree (eAevBepo 6£vOPO) is a connected forest i.e., a
connected, undirected graph without cycles.

The trees that we studied in earlier lectures are rooted
trees (6évbpa pe pila) and they are different than free
trees.

A spanning tree (6évépo emikaAuPng N emkaAUItTOV
6évdpo) of an undirected graph is a spanning subgraph that
is a free tree.

A spanning forest (6aco¢ emikaAunc N emtkaAvmtov
daoocg) is an undirected graph which is the union of
spanning trees, one for each connected component of the
graph.

More definitions (cont’d)

* We can give similar definitions for the case of
directed graphs but now our trees will be
directed, rooted trees in which all edges point
away from the root (technically such a tree is
called an arborescence or directed rooted
tree if you don’t like words that come from
French).

Example

The thick green lines define a spanning tree of the graph.

Data Structures and Programming
Techniques

52

T o b

The thick green lines define a
spanning forest which consists of
two spanning trees.

Data Structures and Programming
Techniques

53

Graph Representations: Adjacency
Matrices

* LetG = (V,E) be agraph. Suppose we
number the vertices in IV as v, v, ..., Uy,.

* The adjacency matrix (mivakog yewtviaong) T
corresponding to G is an n X n matrix such
that T|[i,j] = 1 if there is an edge (vl-, vj) €EE,
and T|i, j] = 0 if there is no such edge in E.

Example

1 2 3 4
1 0 1 0 O
2 0 0 1 1
31 0 O 1
41 0 0 O

The adjacency matrix for graph G

Data Structures and Programming
Techniques

55

Adjacency Matrices

* The adjacency matrix of an undirected graph
G is a symmetric matrixi.e., T|i,j]| = T|j,]
foralliandjintherangel < i,j < n.

* The adjacency matrix for a directed graph
need not be symmetric.

Adjacency Matrices

* The diagonal entries in an adjacency matrix
(of a directed or undirected graph) are zero,
since graphs as we have defined them are not
permitted to have looping self-referential
edges that connect a vertex to itself.

An undirected graph G

Example

1 2 3 4
1 O 1 1 0
2 1 O 1 1
31 1 O 1
4 0 1 1 O

The adjacency matrix for graph G

Data Structures and Programming
Techniques

58

Another Example

An undirected graph G

1 2 3 4
1 0 1 1 1
21 0 1 1
31 1 0 1
41 1 1 O

The adjacency matrix for graph G

Data Structures and Programming
Techniques

59

Adjacency Matrices in C

#define MAXVERTEX 10

typedef enum {FALSE, TRUE} Boolean
/* FALSE and TRUE will be 0 and 1 respectively */

typedef Boolean
AdjacencyMatrix [MAXVERTEX] [MAXVERTEX]

typedef struct graph {
int n /*number of vertices in graph */
AdjacencyMatrix A;

} Graph;

Adjacency Sets

* Another way to define a graph G = (V,E) isto
specify adjacency sets (cuvoAa yewrtviaonc) for
each vertex in V.

* Let I/, stand for the set of all vertices adjacent to
x in an undirected graph G or the set of all
vertices that are successors of x in a directed
graph G.

* |f we give both the vertex set V and the
collection 4 = {V,.|x € V} of adjacency sets for
each vertex in IV then we have given enough
information to define the graph G.

Graph Representations: Adjacency
Lists

* Another family of representations for a graph
uses adjacency lists (Alotec yettviaonc) to

represent the adjacency set V, for each vertex
x in the graph.

* Adjacency matrices and adjacency lists are the
two standard representations of graphs.

Example Directed Graph

A directed graph G

Vertex out b Ad |'
Number OutDegree Adjacency list
1 2 2 3

2 3 345

4 0

The sequential adjacency lists for graph
G. Notice that vertices are listed in their
natural order.

Data Structures and Programming

Techniques o3

Example Directed Graph

1:1 1 2 | e 1 3 o
2I. > 3 C » 4 | e » 5
3 o =4‘o
4.1 e

5 5-| ¢ " 1 °

A directed graph G

The linked adjacency lists for graph G.
Notice that vertices in a list are organized
according to their natural order.

Data Structures and Programming 64
Techniques

Example Undirected Graph

Vertex . :
Degree Adjacency list

1J \3 Number
1 3 235
4 1345
3 124
2 2 4
5 4 2 12

An undirected graph G

oau B~ W DN

The sequential adjacency lists for graph G

Data Structures and Programming

Techniques =

Example Undirected Graph

* The linked adjacency list representation for
the graph of the previous slide is similar to the
one for the directed case.

Assumptions

* |n the previous slides, the vertices of the graph
appear in their natural order in the arrays and
linked lists used in the adjacency matrix and the
adjacency links representations.

* This will be our assumption in all examples from
now on.

* |In the adjacency lists representation, we also
showed the degrees of vertices. This information
iS not necessary and can be omitted.

Sequential Adjacency Lists in C

typedef int AdjacencylList[MAXVERTEX];

typedef struct graph{
int n; /*number of vertices in graph */
1int degree[MAXVERTEX];
AdjacencylList A[MAXVERTEX];

} Graph;

In the above representation, each index 1 of array A is a vertex of the
graph while each element A [1] is an array storing the adjacency list
of vertex i.

Linked Adjacency Lists in C

typedef 1int Vertex;

typedef struct edge {
Vertex endpoint;
struct edge *nextedge;
} Edge;

typedef struct graph/{
int n; /*number of vertices in graph */
Edge *firstedge [MAXVERTEX];

} Graph;

In the above representation, each index i of array firstedge is a vertex
and each element firstedge [1i] is a pointer to a linked list that contains
the adjacent vertices of vertex i.

Linked Adjacency Lists in C (cont’d)

* The previous representation used an array for
the vertices and linked lists for the adjacency
lists.

e We can use linked lists for the vertices as well
as follows.

Linked Adjacency Lists in C (cont’d)

typedef struct vertex Vertex;
typedef struct edge Edge;

struct vertex {
Edge *firstedge;
Vertex *nextvertex;

}

struct edge {
Vertex *endpoint;
Edge *nextedge;
I

typedef Vertex *Graph;

Space Complexity

* The space complexity of the adjacency matrix
representation of a graph with n vertices is

0(n%).

* The space complexity of the adjacency list
representation of a graph with n vertices and
e edgesis O(n + e).

Questions

* Which graph representation would you use under
the following circumstances?
— The graph is sparse (e.g., it contains 10® nodes but
only 10° edges).

— The graph is dense (e.g., it contains 10® nodes and
101Y edges).

* The answer will depend on what amount of space
we have available and what operations we would
like to perform on the graph.

Graph Searching

 To search a graph G, we need to visit all
vertices of G in some systematic order.

 Let us define an enumeration

typedef enum {FALSE, TRUE} Boolean;

 Each vertex v can be a structure with a
Boolean valued member v.Visited
which is initially FALSE for all vertices of G.
When we visit v, we will set it to TRUE.

An Algorithm for Graph Searching

void GraphSearch (G, v)
{
Let G=(V,E) be a graph.
Let C be an empty container.

for (each vertex x in V) {
x.Visited=FALSE;

Put v into C;
while (C is non-empty) {
Remove a vertex x from container C;
if (! (x.Visited)) {
Visit (x);
X.Visited=TRUE;
for (each vertex w in V) {
if (!'(w.Visited)) Put w into C;

Graph Searching (cont’d)

* Let us consider what happens when the
container C is a stack.

Example Undirected Graph

Data Structures and Programming
Techniques

77

Representation with Adjacency Lists

Vertex

Number Adjacency list
1 234

2 156

3 1

4 178

5 2

6 2

7 4

3 4

Example (cont’d)

What is the order in which vertices are visited if the start vertex is 1?

Data Structures and Programming
Techniques

79

Example (cont’d)

The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6 and 5.

Data Structures and Programming
Techniques

80

Depth-First Search (DFS)

* When C is a stack, the tree in the previous
example is searched in depth-first order.

* Depth-first search (avalintnon npwta Katd
BaBoc) at a vertex always goes down (by

visiting unvisited children) before going across
(by visiting unvisited brothers and sisters).

* Depth-first search of a graph is analogous to a
pre-order traversal of an ordered tree.

DFS (cont’d)

The strategy followed by DFS, as its name implies, is to search
“deeper” in the graph whenever possible.

In DFS, edges are explored out of the most recently discovered
vertex v that still has unexplored edges leaving it.

When all of v’s edges have been explored, the search “backtracks”
to explore edges leaving the vertex from which v was discovered.

This process continues until we have discovered all the vertices that
are reachable from the original source vertex.

If any undiscovered vertices remain, the one of them is selected as
a new source and the search is repeated from that source.

This entire process is repeated until all vertices are discovered.

Graph Searching (cont’d)

* Let us consider what happens when the
container C is a queue.

Example Undirected Graph

What is the order in which vertices are visited if the start vertex is 1?

Data Structures and Programming
Techniques

84

Example (cont’d)

The vertices are visited in the order 1, 2, 3,4, 5, 6, 7 and 8.

Data Structures and Programming
Techniques

85

Breadth-First Search (BFS)

When C is a queue, the tree in the previous example is
searched in breadth-first order.

Breadth-first search (avalintnon npwta katda nAdtoc)
at a vertex always goes broad before going deep.

Breadth-first traversal of a graph is analogous to a
traversal of an ordered tree that visits the nodes of the
tree in level-order.

BFS subdivides the vertices of a graph in levels. The
starting vertex is at level 0, then we have the vertices
adjacent to the starting vertex at level 1, then the
vertices adjacent to these vertices at level 2 etc.

BFS (cont’d)

BFS works as follows.

We start from the start vertex (level 0) and visit
all the vertices that we can reach by following
one edge (these are the vertices at level 1).

Then we visit all vertices that we can reach from
the start vertex by following two edges (these are
the vertices at level 2).

We continue with the vertices at level 3 and so
forth.

Example Directed Graph

What is the order of visiting vertices for DFS if the start vertex is 1?

Data Structures and Programming
Techniques

88

Representation with Adjacency Lists

Vertex

Number Adjacency list
1 234

2 56

3

4 78

5

6 5

7 136

3 6

Example (cont’d)

DFS visits the vertices in the order 1, 4, 8,6, 5, 7, 3 and 2.

Data Structures and Programming
Techniques

90

Example (cont’d)

What is the order of visit for BFS if the start vertex is 1?7

Data Structures and Programming
Techniques

91

Example (cont’d)

BFS visits the vertices in the order 1, 2, 3,4, 5, 6, 7 and 8.

Data Structures and Programming
Techniques

92

Exhaustive Search

* Either the stack version or the queue version
of the algorithm GraphSearch will visit
every vertex in a graph G provided that G
consists of a single strongly connected
component.

* If this is not the case, then we can enumerate
all the vertices of G and run GraphSearch
starting from each one of them in order to
visit all the vertices of G.

Exhaustive Search (cont’d)

vold ExhaustiveGraphSearch (G)

{
Let G=(V,E) be a graph.

for (each vertex v 1n G) {

GraphSearch (G, wv)

Theseus in the Labyrinth

* DFS can be simulated using a string and a can
of paint for painting the vertices i.e., using a
version of the algorithm that Theseus might
have used in the labyrinth of the Minotaur!

* BFS is analogous to a group of people
exploring a graph by fanning out in all
directions.

Implementing DFS in C

 We will now show how to implement depth-
first search in C.

 We will use the linked adjacency lists
representation of a graph.

* We will write a function DepthFirst which
calls the recursive function Traverse.

Implementing DFS in C (cont’d)

/* global variable visited */
Boolean visited[MAXVERTEX];

/* DepthFirst: depth-first traversal of a graph
Pre: The graph G has been created.
Post: The function Visit has been performed at each vertex of G in

depth-first order
Uses: Function Traverse produces the recursive depth-first order */

void DepthFirst (Graph G, void (*Visit) (Vertex x))
{

Vertex v;

for (v=0; v < G.n; v++)
visited[v]=FALSE;
for (v=0; v < G.n; v++)
if (!visited[v]) Traverse (G, v, Visit);

Implementing DFS in C (cont’d)

/* Traverse: recursive traversal of a graph

Pre: v is a vertex of graph G
Post: The depth first traversal, using function Visit, has been
completed for v and for all vertices adjacent to v.

Uses: Traverse recursively, Visit */

void Traverse (Graph G, Vertex v, void (*Visit) (Vertex x))

{

Vertex w;

Edge *curedge;

visited[v]=TRUE;
Visit (v);

curedge=G.firstedge[Vv]; /* curedge is a pointer to the first edge (v,) of V */
while (curedge) {

w=curedge->endpoint; /* w is a successor of v and (v,w) is the current edge */
if (!visited([w]) Traverse (G, w, Visit);
curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,) of V */

Data Structures and Programming

Techniques 8

Example Undirected Graph

Data Structures and Programming
Techniques

99

Representation with Adjacency Lists

Vertex

Number Adjacency list
1 234

2 156

3 1

4 178

5 2

6 2

7 4

3 4

Example of Recursive DFS

What is the order vertices are visited if the start vertex is 17

Data Structures and Programming

. 101
Techniques

Example (cont’d)

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is
different than the order we got when using a stack!

Data Structures and Programming

. 102
Techniques

Important

 There is more than one way to traverse a graph
in a DFS fashion (e.g., starting from a different
node gives us different DFS traversals).

* The order the vertices of a graph are visited by
DFS depends on:

— The representation of the graph (e.g., adjacency

matrix vs. adjacency list, the order of vertices in the
two representations).

— The implementation of the DFS algorithm (e.g.,
recursive DFS vs. using a stack).

Important (cont’d)

* DFS traverses all edges and visits all the
vertices reachable from the start vertex (i.e.,
all the vertices in the connected component
containing the start vertex), regardless of in

what order it examines edges incident on
each vertex.

Complexity of DFS

DFS as implemented above (with adjacency lists) on a graph
with e edges and n vertices has complexity O(n + e).

To see why observe that on no vertex is Traverse called
more than once, because as soon as we call Traverse
with parameter v, we mark v visited and we never call
Traverse on a vertex that has previously been marked as

visited.

Thus, the total time spent going down the adjacency lists is
proportional to the lengths of those lists, that is O(e).

The initialization steps in DepthFirst have complexity
O (n).
Thus, the total complexity is O(n + e).

Complexity of DFS (cont’d)

If DFS is implemented using an adjacency matrix,
then its complexity will be 0(n?).

If the graph is dense (mukvoc), that is, it has close
to O(nz) edges the difference of the two
implementations is minor as they would both run
in 0(n?) time.

If the graph is sparse (apaioc), that is, it has close
to O(n) edges, then the adjacency matrix

approach would be much slower than the
adjacency list approach.

Implementing BFS in C

e Let us now show how to implement breadth-
first search in C.

* The algorithm BreadthFirst makes use of
a queue which can be implemented using any
of the implementations we presented in
earlier lectures.

Implementing BFS in C (cont’d)

/* BreadthFirst: breadth-first traversal of a graph
Pre: The graph G has been created
Post: The function visit has been performed at each vertex of G, where the vertices
are chosen in breadth-first order.
Uses: Queue functions */

void BreadthFirst (Graph G, void (*Visit) (Vertex))
{

Queue Q;

Boolean visited[MAXVERTEX];

Vertex v, w;

Edge *curedge;

for (v=0; v < G.n; v++)
visited[v]=FALSE;

InitializeQueue (&Q) ;

for (v=0; v < G.n; v++)

if (!visited[v]) {
Insert (v, &Q);
do {

Remove (&Q, &v);;

if (!visited[v]) {
visited[v]=TRUE;
Visit (v);

curedge=G.firstedge([v]; /* curedge is a pointer to the first edge (v,) of V */
while (curedge) {

w=curedge->endpoint; /* w is a successor of v and (v,w) 1is the current edge */
if (!visited[w]) Insert(w, &Q);

curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,) of V */
}
} while (!Empty (&Q));

Data Structures and Programming

1
Techniques o8

Complexity of BFS

* BFS as implemented above (with adjacency

lists) has the same complexity as DFS i.e.,
Oo(n+e).

DES of an Undirected Graph

During a depth-first traversal of an undirected graph, certain edges, when
traversed, lead to unvisited vertices. The edges leading to new vertices are called
tree edges (akpég 6€vdpou) or discovery edges (akpég avakaAuvyng).

Tree edges form a depth-first spanning forest (mpwta katd Babog daoog
erukaAvyng) for the given graph. This forest has one tree for each maximal
connected component of the graph and one tree node for each graph vertex.

There are also edges that do not belong to the spanning forest. These are called
back edges (akpéc ontoBoxwpnong) and go from a vertex to another vertex we
have already visited (i.e., one of its ancestors in the spanning forest).

Tree edges are those edges (v, w) such that Traverse with parameter v directly
calls Traverse with parameter w or vice versa.

Back edges are those edges (v, w) such that Traverse with parameter v
inspects vertex w but does not call Traverse because w has already been
visited.

Example

* Let us search the above graph G using the function DepthFirst
presented earlier starting from vertex A.

Data Structures and Programming

111
Techniques

Representation of ¢ with Adjacency

Lists
Vertex
ID Adjacency list
A BCDE
B ADE
C AFG
D ABE
E ABD
F CG
G FC

Example (cont’d)

Tree edges

Back edges

Data Structures and Programming

11
Techniques :

Example (cont’d)

 The above is the depth-first spanning forest for the graph G
we saw previously. The forest consists of one tree only.

Data Structures and Programming

114
Techniques

Important

* The edge types are properties of the dynamics
of the search, rather than only the graph.

* Different depth-first spanning forests of the
same graph can differ remarkably in character.

e Can you give examples for the above facts?

Question

* How can we modify function Traverse so
that it outputs the edges of the depth-first
spanning tree (tree edges) and the back
edges?

DFS Traversal of a Directed Graph

* During a depth-first traversal of a directed graph, certain edges, when traversed,
lead to unvisited vertices. The edges leading to new vertices are called tree edges
(akpég 6évdpou) and they form a depth-first spanning forest (mpwta katd Babog
daoog emukaAuvdng) for the given digraph.

* Tree edges form a depth-first spanning forest (mpwta kot BaBo¢g dacog
erukaAuvyng) for the given graph. This forest has one tree for each strong
connected component of the graph and one tree node for each graph vertex.

 There are also edges that do not belong to the spanning forest and can be
classified as follows:
— Back edges (akpég omoBoxwpnonc) that go from a vertex to one of its ancestors in a depth-
first tree.
— Forward edges (akpég mpowBOnong) that go from a vertex to one of its descendants in a
depth-first tree.

— Cross edges (eykapoieg akpEg). These are all the remaining edges. They can go between
vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other, or
they can go between vertices in different depth-first trees.

Example

e Let us search the above graph G using the function DepthFirst presented
earlier starting from vertex A. We will need to modify Depth-First to cover all
the components of G as done by ExhaustiveSearch.

Data Structures and Programming

118
Techniques

Representation with Adjacency Lists

Vertex
ID Adjacency list

B
CD
A
AC
FG
HI
F

I

>

- I 6O m m O O

Example (cont’d)

 The vertices will be visited in the order A, B, D, C, E, F H, |, G.

Data Structures and Programming

12
Techniques 0

Example (cont’d)

v

Tree edges

Cross edges

v

v

Back edges
Forward edges

Data Structures and Programming
Techniques

v

121

Example (cont’d)

 The above is the depth-first spanning forest of graph G for the depth-first traversal
we saw previously.

Data Structures and Programming

122
Techniques

Important

As we also saw for undirected graphs, the
edge types are properties of the dynamics of
the search, rather than only the graph.

Different depth-first forests of the same graph
can differ remarkably in character.

Even the number of trees in the depth-first
forest depends upon the start vertex.

Can you give examples for the above facts?

Classification of Edges

* How do we distinguish among the four types
of edges?

* Tree edges are easy to find since they lead to
an unvisited vertex during DFS.

 The other three types of edges can be
distinguished by keeping track of the preorder
and postorder numbering of nodes and using
an interesting proposition that we present
below.

Preorder Numbering of Vertices

* We can number the vertices of a digraph in the order
in which we first mark them as visited during a DFS.

* For this, we can use a counter count that is initially
set to zero, a vertex-indexed array pre with all its
elements set to —1 initially, and add the code

prel[v]=count++;
in the function Traverse, immediately after the
statement marking a vertex as visited.

* We will call this the preorder numbering
(mpodratetayuevn apibunon) of a digraph.

Example Directed Graph

* Consider performing a DFS starting from vertex A.

Data Structures and Programming

12
Techniques °

Preorder Numbering

Tree edges

Forward edges

Back edges
Cross edges

Data Structures and Programming

. 127
Techniques

Postorder Numbering of Vertices

* We can also have a postorder numbering
(netadratetaypevn apiOunon) of the vertices of
a digraph.

* This is the order that we finish processing them

(just before returning from the recursive function
Traverse).

* Postorder numbering can be implemented in a
similar way as the preorder one, using a vertex-
indexed array post, acounter and introducing
appropriate code in the function Traverse.

Example Directed Graph

* Consider performing a DFS starting from vertex A.

Data Structures and Programming

12
Techniques ?

Postorder Numbering

Tree edges

Forward edges

Back edges
Cross edges

Data Structures and Programming

1
Techniques 30

Proposition

* |[n a depth-first forest corresponding to a
digraph, an edge to a visited vertex is a back
edge if it leads to a vertex with a higher
postorder number; otherwise, it is a cross
edge if it leads to a vertex with a lower
preorder number and a forward edge if it
leads to a vertex with a higher preorder
numbet.

e Proof?

Proof

These facts follow from the definitions of arrays pre and post
and how they are updated by function Traverse.

A vertex’s ancestors in a depth-first spanning tree have lower
preorder numbers and higher postorder numbers.

A vertex’s descendants in a depth-first spanning tree have higher
preorder numbers and lower postorder numbers.

Both numbers are lower in previously visited vertices in other
depth-first spanning trees and both numbers are higher in yet-to-
be-visited vertices in other depth-first trees.

An edge (v, u) so that v is not an ancestor or a descendant of u in
the same depth-first spanning tree is such that pre [u]<pre[v].

BFS of an Undirected Graph

We can build a spanning forest when we perform a
breadth-first search as well. We call this the breadth-first
spanning forest of the graph.

This forest has one tree for each connected component of
the graph and one tree node for each graph vertex.

The breadth-first spanning forest is built by tree edges. An
edge (v,w) is a tree edge if vertex w is first visited from
vertex v in the inner while loop of function
BreadthFirst.

Every edge that is not a tree edge is a cross edge, that is, it
connects two vertices neither of which is an ancestor of the
other in the breadth-first spanning forest.

Example

Let us execute the algorithm Breadth-First presented earlier on the above
graph G starting from vertex A.

Data Structures and Programming

1
Techniques 4

Representation of ¢ with Adjacency

Lists
Vertex
ID Adjacency list
A BCDE
B ADE
C AFG
D ABE
E ABD
F CG
G FC

Example (cont’d)

The vertices will be visited in the order A, B, C, D, E, F, G.

Data Structures and Programming

136
Techniques

Example (cont’d)

Tree edges

Cross edges

Data Structures and Programming

1
Techniques 37

Example (cont’d)

 The above is the breadth-first spanning forest for the
breadth-first traversal the graph G given previously.

Data Structures and Programming

1
Techniques 38

Important

* The edge types are properties of the dynamics
of the BFS, rather than only the graph.

* Different breadth-first spanning forests of the
same graph can differ remarkably in character.

e Can you give examples for the above facts?

BFS of Directed Graphs

BFS can also work on directed graphs.

The algorithm visits vertices level by level and
partitions the edges into two sets: tree edges and non-

tree edges.
Tree edges define a breadth-first spanning forest.

Non-tree edges are of two kinds: back edges and cross
edges.

Back edges connect a vertex to one of its ancestors in
the breadth-spanning forest. Cross edges connect a
vertex to another vertex that is neither its ancestor nor
its descendant in the forest.

There are no forward edges as in the DFS case.

Example

* Let us search this graph G using the function BreadthFirst presented earlier
starting from vertex A. We will need to modify Breadth-First to cover all the
connected components of G as done by ExhaustiveSearch.

Data Structures and Programming

141
Techniques

Representation with Adjacency Lists

Vertex
ID Adjacency list

B
CD
A
AC
FG
HI
F

I

>

- I 6O m m O O

Example (cont’d)

 The vertices will be visited in the order A, B,C,D, E, F, G, H, I.

Data Structures and Programming

1
Techniques =

Example (cont’d)

v

Tree edges

Cross edges

v

v

Back edges

Data Structures and Programming

1
Techniques a4

Example (cont’d)

 The above is the breadth-first spanning forest of graph G for the breadth-first
traversal we saw previously.

Data Structures and Programming

. 145
Techniques

Question

* How do we modify the code of algorithm
Breadth-First so that we output the

edges of various kinds for undirected or
directed graphs?

Directed Acyclic Graphs

* Let G'be a directed graph with no cycles. Such
a graph is called acyclic. We abbreviate the
term directed acyclic graph to dag.

* Dags are more general than trees but less
general than arbitrary directed graphs.

Example Tree

Data Structures and Programming

1
Techniques 48

Example Dag

Data Structures and Programming

1
Techniques 49

Another Example Dag

Data Structures and Programming

150
Techniques

Applications of Dags

* Dags are useful in Compilers for representing
the syntactic structure of arithmetic
expressions with common subexpressions.

 Example: Consider the following arithmetic
expression

((a+b)*c+((a+b)+e)*(e+f))
x ((a+b) *c)

The Dag for the Example

Data Structures and Programming

152
Techniques

Prerequisites in a Program of Study

Data Structures and Programming
Techniques

153

Applications of Dags (cont’d)

e Dags are also useful for representing partial
orders.

* A partial order R on aset S is a binary relation
such that

— Forallain S, a R a is false (irreflexivity)
— Foralla,b,cinS,ifaRbandb R cthenaRc
(transitivity)
 Two natural examples of partial orders are the
“less than” relation (<) on integers, and the
relation of proper containment (C) on sets.

Example

e LetS ={1,2,3}and let P(S) be the power set
of S, that is, the set of all subsets of S. The
relation C is a partial order on P(S).

The Dag of the Example

{1,2,3}

|

{1,2} {1,3} {2,3}

<K

{1} {2} {3}

~J17

0)

Data Structures and Programming
Techniques

156

Class Hierarchies

http:/ fmww. example.org/schemas/vehicles#MotorvVehicle

hittp:/ Awww. w3 .org/2000/0 Wuhﬂlﬂﬁﬁﬂf

http:/ fwww. example.org/schemasivehicles#Truck

hittpAwwew. w3 .org /2000001 rdf-schema#subClassOf

: http:/ v w3 .org/2000/08/ rdf-schema#subClassOf
hitp:/f'www. example.org/schemas/vehicles#\Van

http/Amrww. example.org/schemasivehicles#PassengerVehicle
hittp:/ v w3 .org/2000/0 1/ rdf-schema#subClassOf
bkt S w3 o 001 rdf-schematsubClassOf

http://fexample.org/schemas/vehicles#MiniVan

Data Structures and Programming

. 157
Techniques

Test for Acyclicity

Suppose we are given a digraph G and we
wish to determine whether G is acyclic.

DFS can be used to answer this question.

If a back edge is encountered during a DFS
then clearly the graph has a cycle.

Conversely, if the graph has a cycle then a
back edge will be encountered in any DFS of
the graph. Proof?

Proof

* Suppose G is cyclic. If we do a DFS of G, there will
be one vertex v having the lowest preorder
number of any vertex on a cycle.

* Consider an edge (u, v) on some cycle containing
v. Since u is on the cycle, u must be a descendant
of v in the depth-first spanning forest. Thus,

(u, v) cannot be a cross edge.

* Since the preorder number of u is greater than
the preorder number of v, (u, v) cannot be a tree
edge or a forward edge. Hence, (u, v) is a back
edge.

Important

* In undirected graphs, any edge to a previously
visited vertex indicates a cycle.

* |n directed graphs, this is true only for back
edges.

Topological Ordering of a DAG

* A topological ordering (tortoAoywkn
taéwvopnon) of the vertices of adag ¢ is a
sequential list L of the vertices of G (a linear
ordering) such that if there is a directed path
from vertex A to vertex Bin G, then A comes
before Fin the list L.

Example

* ('might be a graph in which the vertices
represent university courses to take and in
which an edge is directed from the vertex for
course A to the vertex for course Bif course 4
is a prerequisite of 5.

* Then a topological ordering of the vertices of
(G gives us a possible way to organize one’s
studies.

Example

G@

A Topological Ordering

Data Structures and Programming

1
Techniques o3

Example (cont’d)

Another Topological Ordering

Data Structures and Programming

1
Techniques o4

Another Example

06@@

A Topological Ordering
A DAG

Data Structures and Programming

1
Techniques =

Important

* |[n general, there can be more than one
topological orderings for a given dag.

* Question: How many topological orderings do
the previous two dags have?

Computing a Topological Ordering

We will compute a list of vertices L. that contains the vertices
of G in topological order.

We will use an array D such that D[v] gives the number of
predecessors p of vertex v in graph G such that pis not in L.

We will use a queue Q of vertices from where we will take
vertices to process (from the front of the queue).

The vertices of G in Q will be processed in breadth-first order.

Initially © will contain all the vertices of G with no
predecessors.

When we find a vertex w of G such that D [w] ==0, we see
that w has all its predecessors in list . so we add w to the
rear of queue Q so it can be processed.

Algorithm for Topological Ordering

vold BreadthTopSort (Graph G, List *L)
{
Let G=(V,E) be the 1nput graph.
Let L be a list of wvertices.
Let Q be a gqueue of vertices.
Let D[V] be an array of vertices indexed by vertices
in V.

/* Compute the in-degrees D[x] of the vertices x
in G */
for (each vertex x in V) D[x]=0;
for (each vertex x in V) {
for (each successor w in Succ(x)) D[w]++;

Algorithm for Topological Ordering
(cont’d)

/* Initialize the queue Q to contain all
vertices having zero in-degrees */

Initialize (&Q) ;
for (each vertex x 1n V) {

1f (D[x]==0) Insert(x, &Q):

Algorithm for Topological Ordering
(cont’d)

/* Initialize the list L to be the empty list */
InitializelList (&L) ;

/* Process vertices in the queue Q until the queue becomes
empty */
while (!Empty (&Q)) {
Remove (&Q, x) ;
AddToList (x, &L) ;
for (each successor w 1n Succ (x)) {
Dlw]-=;
if (D[w]==0) Insert(w, &Q);

}

/* The list L now contains the vertices of G in
topological order */

Implementing Topological Sort in C

* We first need to define a new type for an array
that will be used to store the vertices of a
graph in topological order:

typedef Vertex Toporder [MAXVERTEX];

 We will also use the functions for the ADT
gueue that we have defined in a previous
lecture.

Topological Sort in C (cont’d)

/* BreadthTopSort: generates breadth-first topological ordering
Pre: G is a directed graph with no cycles implemented with a contiguous list of vertices
and linked adjacency lists.
Post: The function makes a breadth-first traversal of G and generates the resulting
topological order in T

Uses: Queue functions */

void BreadthTopSort (Graph G, Toporder T)
{

int predecessorcount [MAXVERTEX] ; /* number of predecessors of each vertex */

Queue Q;
Vertex v, succ;
Edge *curedge;
int place;

/* initialize all the predecessor counts to 0 */
for (v=0; v < G.n; v++)

predecessorcount [v]=0;

/* increase the predecessor count for each vertex that is a successor of another one */
for (v=0; v < G.n; v++)
for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge)

predecessorcount [curedge->endpoint]++;

Data Structures and Programming

172
Techniques

Topological Sort in C (cont’d)

/* initialize a queue */
InitializeQueue (&Q) ;

/* place all vertices with no predecessors into the queue */
for (v=0; v < G.n; v++)
if (predecessorcount[v]==0)
Insert (v, &Q);

/* start the breadth-first traversal */
place=-1;
while (!Empty(&Q)) {
/* visit v by placing it into the topological order */
Remove (&Q, &v);
place++;
T[placel=v;

/* traverse the list of successors of v */
for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge) {
/* reduce the predecessor count for each successor */
succ=curedge->endpoint;
predecessorcount [succ]--;
if (predecessorcount[succ]==0)
/* succ has no further predecessors, so it is ready to process */
Insert (succ, &Q);

Data Structures and Programming

. 173
Techniques

Complexity of Topological Sort

 We can easily see that the complexity of
topological sortis O(n + e).

Strongly Connected Components of a
Directed Graph (Reminder)

* A strongly connected component (Loxupd cuveKTIKA
ocuvictwoa) of a directed graph is a maximal set of vertices
in which there is a path from any one vertex in the set to
any other vertex.

* More formally, let G = (V, E) be a directed graph. We can
partition I/ into equivalence classes I/;, 1 < i < r, such that
vertices v and w are equivalent if and only if there is a path
fromvtowandapathfromwtov.lLetE;,1 <i<r,be
the set of edges with endpoints in V;. The graphs G; =
(V;, E;) are called the strongly connected components or
just strong components (Loxupec cuviotwoec) of G.

* Adirected graph with only one strong component is
strongly connected (Loxupd ocuveKTLKOC).

Example Directed Graph

Data Structures and Programming
Techniques

176

The Strong Components of the Digraph

Data Structures and Programming
Techniques

177

Strong Components (cont’d)

Every vertex of a directed graph G is in some strong
component, but certain edges may not be in any
component.

Such edges, called cross-component edges, go from
one vertex in one component to a vertex in another.

We can represent the interconnections among
components by constructing a reduced graph
(eAattwpévo ypado) for G. There is an edge from
vertex C to vertex C' of the reduced graph if there is an
edge in G from some vertex in the component C to
some vertex in the component C'.

The reduced graph is always a dag.

Example Directed Graph G

Data Structures and Programming
Techniques

179

Example Reduced Graph for G

Data Structures and Programming

180
Techniques

Kosaraju’s Algorithm for Computing

Strong Components

* We can use DFS to compute the strong components of a
given directed graph G as follows:

1.

Perform a DFS of G and number the vertices in order of
completion of the recursive calls of function Traverse
(postorder numbering).

Construct the reverse of (¢, a new directed graph G, by
reversing the direction of each edge in G.

Perform a DFS of G,., starting the search from the highest
numbered vertex according to the postorder numbering
assigned in Step 1. If the DFS does not reach all vertices, start
the next DFS from the highest-numbered remaining vertex.

Each tree in the resulting spanning forest of G, gives us a
strongly connected component of G.

Example Directed Graph G

* We first perform a DFS starting from vertex A.

Data Structures and Programming

182
Techniques

After Step 1

Tree edges

Forward edges

* The numbers show the post-order numbering. Back edges

Data Structures and Programming

1
Techniques 83

The Reverse Directed Graph G,

* Then we perform a DFS of G, starting from the highest-numbered
vertex A. The search which will visit the vertices in the order A, C, B
and D.

Data Structures and Programming

. 184
Techniques

Characterization of Edges of G,

Tree edges

Cross edges

Back edges

Data Structures and Programming

185
Techniques

Depth-first Spanning Forest for G..

Data Structures and Programming
Techniques

186

The Strong Components of G

Data Structures and Programming
Techniques

187

Complexity of Algorithm for
Computing Strong Components

* The complexity of the algorithm we presented
for computing strong components is again
Oo(n+e).

* This can be seen easily because the

complexity for every step of the algorithm is
O(n+ e).

Readings

T. A. Standish. Data Structures , Algorithms and Software Principles
in C.
— Chapter 10

A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data Structures and
Algorithms.

— Chapters 6 and 7

M. T. Goodrich, R. Tamassia and D. Mount. Data Structures and
Algorithms in C++. 2" edition.

— Chapter 13

M. T. Goodrich, R. Tamassia. Aouec Aedouevwy kat AAyoptBuol oe
Java. 5" €kboon. Ekdooelc AlauvAoc.

— Chapter 13
R. Sedgewick. Algorithms in C. 3" edition. Part 5. Graph Algorithms.
— Chapters 18 and 19

