
Hashing (Κατακερματισμός)

Manolis Koubarakis

Data Structures and Programming
Techniques

1

The Symbol Table ADT (Reminder)

• A symbol table 𝑇 is an abstract storage that
contains table entries that are either empty or
are pairs of the form (𝐾, 𝐼) where 𝐾 is a key
and 𝐼 is some information associated with the
key.

• Distinct table entries have distinct keys.

Data Structures and Programming
Techniques

2

Operations for the Symbol Table ADT

• Initialize the table 𝑇 to be the empty table. The empty
table is filled with empty table entries (𝐾0, 𝐼0) where 𝐾0 is
a special empty key, distinct from all other nonempty keys.

• Determine whether or not the table 𝑇 is full.
• Insert a new table entry (𝐾, 𝐼) into the table provided that
𝑇 is not already full.

• Delete the table entry (𝐾, 𝐼) from table 𝑇.
• Given a search key 𝐾, retrieve the information 𝐼 from the

table entry (𝐾, 𝐼) in table 𝑇.
• Update the table entry (𝐾, 𝐼) in table 𝑇 by replacing it with

a new table entry 𝐾, 𝐼′ .
• Enumerate the table entries (𝐾, 𝐼) in table 𝑇 in increasing

order of their keys.

Data Structures and Programming
Techniques

3

Possible Representations for the
Symbol Table ADT

• We have already discussed the following data
structures for symbol tables:
– Arrays of structs sorted in ascending order of their

keys

– Linked lists of structs

– Binary search trees

– AVL trees

– (2,4) trees

– Red-black trees

Data Structures and Programming
Techniques

4

Hashing

• We will introduce a new method to
implement a symbol table called hashing.

• Hashing differs from the representations
based on searching by key comparisons
because we are trying to refer directly to
elements of the table by transforming keys
into addresses in the table.

Data Structures and Programming
Techniques

5

Introducing Hashing by Example

• We will use as keys letters of the alphabet having as
subscripts their order in the alphabet. For example,
𝐴1, 𝐶3, 𝑅18.

• We will use a small table 𝑇 of 7 positions as storage.
We call it hash table (πίνακας κατακερματισμού).

• We will find the location to store a key 𝐿𝑛 by using the
following hash function (συνάρτηση
κατακερματισμού):

ℎ 𝐿𝑛 = 𝑛 % 7

• 𝑥 % 𝑦 computes the remainder of the integer division
of 𝑥 with 𝑦.

Data Structures and Programming
Techniques

6

Table T after Inserting keys
𝐵2, 𝐽10, 𝑆19, 𝑁14

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4

5 𝑆19

6

Data Structures and Programming
Techniques

7

Keys are stored in their hash addresses. The cells of the table are often
called buckets (κάδοι).

Insert 𝑋24

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4

5 𝑆19

6

Data Structures and Programming
Techniques

8

ℎ 𝑋24 = 3

Now we have a collision (σύγκρουση). We will use the collision resolution policy
(πολιτική επίλυσης συγκρούσεων) of looking at lower locations of the table to
find a place for the key.

Insert 𝑋24

Table T

0 𝑁14

1 𝑋24

2 𝐵2

3 𝐽10

4

5 𝑆19

6

Data Structures and Programming
Techniques

9

ℎ 𝑋24 = 3
1st probe

2nd probe

3rd probe

Insert 𝑊23

Table T

0 𝑁14

1 𝑋24

2 𝐵2

3 𝐽10

4

5 𝑆19

6 𝑊23

Data Structures and Programming
Techniques

10

ℎ 𝑤23 = 2
1st probe

2nd probe

3rd probe

4th probe

Open Addressing

• The method of inserting colliding keys into empty
locations of the table is called open addressing
(ανοικτή διευθυνσιοδότηση).

• The inspection of each location is called a probe
(διερεύνηση).

• The locations we examined are called a probe
sequence.

• The probing process we followed is called linear
probing (γραμμική διερεύνηση).

• So our hashing technique is called open
addressing with linear probing.

Data Structures and Programming
Techniques

11

Double Hashing

• Double hashing is another open addressing
technique, which uses non-linear probing by
computing different probe decrements for
different keys using a second hash function
𝑝(𝐿𝑛).

• Let us define the following probe decrement
function:

𝑝 𝐿𝑛 = max(1, Τ𝑛 7)

Data Structures and Programming
Techniques

12

Table T after Inserting keys
𝐵2, 𝐽10, 𝑆19, 𝑁14

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4

5 𝑆19

6

Data Structures and Programming
Techniques

13

Insert 𝑋24

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4 𝑋24

5 𝑆19

6

Data Structures and Programming
Techniques

14

ℎ 𝑋24 = 3
1st probe

2nd probe

3rd probe

We use a probe decrement of 𝑝 𝑋24 = 3.

Insert 𝑊23

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4 𝑋24

5 𝑆19

6 𝑊23

Data Structures and Programming
Techniques

15

ℎ 𝑊23 = 2
1st probe

2nd probe

We use a probe decrement of 𝑝 𝑊23 = 3.
In general probe decrements will be 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 for different keys. Try
inserting key 𝑃16 on your own.

Collision Resolution by Separate
Chaining

• The method of collision resolution by
separate chaining (χωριστή αλυσίδωση) uses
a linked list to store keys at each table entry.

• This method should not be chosen if space is
at a premium, for example, if we are
implementing a hash table for a mobile
device.

Data Structures and Programming
Techniques

16

Example

Table T

0

1

2

3

4

5

6

Data Structures and Programming
Techniques

17

𝑆19

.

.

.

.

𝑁14

𝐵2 𝑊23

𝐽10 𝑋24

𝑆19

Good Hash Functions

• Suppose 𝑇 is a hash table having 𝑀 entries whose
addresses lie in the range 0 to 𝑀 − 1.

• An ideal hashing function ℎ(𝐾) maps keys onto
table addresses in a uniform and random
fashion.

• In other words, for any arbitrarily chosen key, any
of the possible table addresses is equally likely to
be chosen (the probability of being chosen is

1

𝑀
).

• Also, the computation of a hash function should
be very fast.

Data Structures and Programming
Techniques

18

Collisions

• A collision between two keys 𝐾 and 𝐾′ happens if,
when we try to store both keys in a hash table 𝑇, both
keys have the same hash address ℎ 𝐾 = ℎ 𝐾′ .

• Collisions are relatively frequent even in sparsely
occupied hash tables.

• The von Mises paradox: if there are more than 23
people in a room, there is a greater than 50% chance
that two of them will have the same birthday (𝑀 =
365). See the proof in the book by Standish.

• A good hash function should minimize collisions.

Data Structures and Programming
Techniques

19

Primary clustering

• Linear probing suffers from what we call primary
clustering (πρωταρχική συσταδοποίηση).

• A cluster (συστάδα) is a sequence of adjacent
occupied entries in a hash table.

• In open addressing with linear probing such clusters
are formed and then grow bigger and bigger. This
happens because all keys colliding in the same initial
location trace out identical search paths when looking
for an empty table entry.

• Double hashing does not suffer from primary clustering
because initially colliding keys search for empty
locations along separate probe sequence paths.

Data Structures and Programming
Techniques

20

Ensuring that Probe Sequences Cover
the Table

• In order for the open addressing hash
insertion and hash searching algorithms to
work properly, we have to guarantee that
every probe sequence used can probe all
locations of the hash table.

• This is obvious for linear probing.

• Is it true for double hashing?

Data Structures and Programming
Techniques

21

Choosing Table Sizes and Probe
Decrements

• If we choose the table size to be a prime
number (πρώτος αριθμός) 𝑴 and probe
decrements to be positive integers in the
range 𝟏 ≤ 𝒑 𝑲 ≤ 𝑴 then we can ensure
that the probe sequences cover all table
addresses in the range 0 to 𝑀 − 1 exactly
once.

• Proof?

Data Structures and Programming
Techniques

22

Proof

• For a key 𝐾 for which there is a collision, the
locations visited by the probe sequence are of
the form

ℎ 𝐾 − 𝑖 ∗ 𝑝 𝐾 %𝑀

for 𝑖 in the range 0 ≤ 𝑖 ≤ 𝑀 − 1.

• We will prove the result by contradiction.

Data Structures and Programming
Techniques

23

Proof (cont’d)

• Let us suppose that there are two distinct
integers 𝑗 and 𝑘 in the range 0 to 𝑀 − 1 which
generate the same probe location.

• In this case

ℎ 𝐾 − 𝑗 ∗ 𝑝 𝐾 %𝑀 = ℎ 𝐾 − 𝑘 ∗ 𝑝 𝐾 %𝑀.

• This can be written in number-theoretic terms as

{[ℎ 𝐾 − 𝑗 ∗ 𝑝 𝐾] ≡ [
]

ℎ 𝐾 − 𝑘 ∗
𝑝 𝐾 } (𝑚𝑜𝑑𝑢𝑙𝑜 𝑀).

Data Structures and Programming
Techniques

24

Proof (cont’d)

• We can subtract ℎ(𝐾) from both sides of this
congruence and we can multiply by −1 to get

𝑗 ∗ 𝑝 𝐾 ≡ 𝑘 ∗ 𝑝 𝐾 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑀).
• Because 𝑝(𝐾) and 𝑀 are relatively prime

(σχετικώς πρώτοι), we can divide by 𝑝(𝐾) to
arrive at

𝑗 ≡ 𝑘 𝑚𝑜𝑑𝑢𝑙𝑜 𝑀 .
• Using the definition of congruence, the above is

equivalent to
𝑗%𝑀 = 𝑘%𝑀 .

Data Structures and Programming
Techniques

25

Proof (cont’d)

• Now recall that 𝑗 and 𝑘 are integers in the
range 0 to 𝑀 − 1.

• Therefore the above is equivalent to 𝑗 = 𝑘.

• But this contradicts our initial assumption that
𝑗 and 𝑘 were distinct integers.

• Thus we have proven that probe sequences
cover all the addresses of the entire hash
table exactly once.

Data Structures and Programming
Techniques

26

Proof (cont’d)

• Two integers 𝑎 and 𝑏 are relatively prime if
they have no other common divisor than 1.

• Since 𝑀 is prime, its divisors are 1 and 𝑀
itself. Thus it is relatively prime with 𝑝(𝐾)
such that 1 ≤ 𝑝 𝐾 ≤ 𝑀 − 1.

Data Structures and Programming
Techniques

27

Good Double Hashing Choices

• Choose the table size 𝑀 to be a prime
number, and choose probe decrements, any
integer in the range 1 to 𝑀 − 1.

• Choose the table size 𝑀 to be a power of 2
and choose as probe decrements any odd
integer in the range 1 to 𝑀 − 1.

• In other words, it is good to choose probe
decrements to be relatively prime with 𝑴.

Data Structures and Programming
Techniques

28

Open Addressing with Double Hashing
Implemented in C

• We will use the following two constants:
#define M 997 /* 997 is prime */

#define EmptyKey 0

Data Structures and Programming
Techniques

29

Open Addressing (cont’d)

• We will define the following types:

typedef int KeyType;

typedef struct {

/* some members of various types giving */

/* information associated with search keys */

} InfoType;

typedef struct {

KeyType Key;

InfoType Info;

} TableEntry;

typedef TableEntry Table[M];

Data Structures and Programming
Techniques

30

Initialization

/* global variable T for the hash table */

Table T;

void Initialize(void)

{

int i;

for (i=0; i<M; i++)

T[i].Key=EmptyKey

}

Data Structures and Programming
Techniques

31

Insertion

void HashInsert(KeyType K, InfoType I)

{

int i;

int ProbeDecrement;

i=h(K);

ProbeDecrement=p(K);

while (T[i].Key != EmptyKey){

i-=ProbeDecrement;

if (i<0)

i+=M;

}

T[i].Key=K;

T[i].Info=I;

}

Data Structures and Programming
Techniques

32

Search

int HashSearch(KeyType K)

{

int I;

int ProbeDecrement;

KeyType ProbeKey;

/*Initializations */

i=h(K);

ProbeDecrement=p(K);

ProbeKey=T[i].Key;

/* Search loop */

while ((K!=ProbeKey) && (ProbeKey!=EmptyKey)){

i-=ProbeDecrement;

if (i<0)

i+=M;

ProbeKey=T[i].Key;

}

/* Determine success or failure */

if (ProbeKey==EmptyKey)

return -1;

else

return i;

}

Data Structures and Programming
Techniques

33

Deletion

• The function for deletion from a hash table is left as an exercise.
• But notice that deletion poses some problems.
• If we delete an entry and leave a table entry with an empty key in

its place then we destroy the validity of subsequent search
operations because a search terminates when an empty key is
encountered.

• As a solution, we can leave the deleted entry in its place and mark it
as deleted (or substitute it by a special entry “available”). Then
search algorithms can treat these entries as not deleted while insert
algorithms can treat them as deleted and insert other entries in
their place.

• However, in this case, if we have many deletions, the hash table can
easily become clogged with entries marked as deleted.

Data Structures and Programming
Techniques

34

Load Factor

• The load factor (συντελεστής πλήρωσης) 𝛼 of
a hash table of size 𝑀 with 𝑁 occupied entries
is defined by

𝛼 =
𝑁

𝑀
.

• The load factor is an important parameter in
characterizing the performance of hashing
techniques.

Data Structures and Programming
Techniques

35

Performance Formulas

• Let 𝑇 be a hash table of size 𝑀 with exactly 𝑁

occupied entries i.e., with load factor 𝛼 =
𝑁

𝑀
.

• Let 𝐶𝑁 be the average number of probe
addresses examined during a successful search.

• Let 𝐶′𝑁 be the average number of probe
addresses examined during an unsuccessful
search (or insertion).

• For the following results, we assume that our
hash functions ℎ and 𝑝 are uniform and random.

Data Structures and Programming
Techniques

36

Efficiency of Linear Probing

• For open addressing with linear probing, we have the
following performance formulas:

𝐶𝑁 =
1

2
(1 +

1

1 − 𝛼
)

𝐶′𝑁 =
1

2
(1 + (

1

1 − 𝑎
)2)

• The formulas are known to apply when the table 𝑇 is
up to 70% full (i.e., when 𝛼 ≤ 0.7).

• This is an important result proved by Donald Knuth in
1962.

Data Structures and Programming
Techniques

37

Donald Knuth

• Donald Knuth is one of the most important theoretical
computer scientists
(https://en.wikipedia.org/wiki/Donald_Knuth).

• He won the Turing Award in 1974.

Data Structures and Programming
Techniques

38

https://en.wikipedia.org/wiki/Donald_Knuth

Efficiency of Double Hashing

• For open addressing with double hashing, we
have the following performance formulas:

𝐶𝑁 =
1

𝛼
ln(

1

1 − 𝛼
)

𝐶′𝑁 =
1

1 − 𝛼

• This important result was proven by Guibas
and Szeredi in 1976.

Data Structures and Programming
Techniques

39

Efficiency of Separate Chaining

• For separate chaining, we have the following
performance formulas:

𝐶𝑁 = 1 +
1

2
𝛼

𝐶′𝑁 = α

• In a separate-chaining hash table of size 𝑀 and 𝑁
keys, the probability that the number of keys in
each list is within a small constant factor of

𝑁

𝑀
is

extremely close to 1.

Data Structures and Programming
Techniques

40

Proof

• Let us give only the easy proof that 𝐶′𝑁 = α for the
case of separate chaining.

• When we hash a key 𝐾 into table 𝑇, we find a chain at
location ℎ 𝐾 which contains, let us say, 𝑗 keys. It is
possible that 𝑗 = 0, if the chain at location ℎ 𝐾 is
empty.

• Under the assumption that the hash function is
uniform and random, all of the keys 𝑁 previously
stored in table 𝑇 are distributed uniformly over all of
the 𝑀 table locations, forming 𝑀 separate chains
(some of which are empty, and some of which contain
one or more keys).

Data Structures and Programming
Techniques

41

Proof (cont’d)

• Thus the average chain length equals the number
of keys 𝑁 in all of the chains divided by the total
number of chains 𝑀. In other words, the average

chain length is 𝛼 =
𝑁

𝑀
.

• Since on the average, an unsuccessful search
must compare the search key 𝐾 with all keys in
the chain, the average number of comparisons
𝐶′𝑁, for unsuccessful searching is just α.

Data Structures and Programming
Techniques

42

Important

• Note that the previous formulas show that the
performance of a hash table depends only on
the load factor and not on the number of keys
or the size of the table.

Data Structures and Programming
Techniques

43

Theoretical Results: Apply the
Formulas

• Let us now compare the performance of the
techniques we have seen for different load
factors using the formulas we presented.

• We apply the formulas to a table with size
997.

• Experimental results obtained after
implementing the algorithms are similar.

Data Structures and Programming
Techniques

44

Successful Search

• The cells of the table give 𝐶𝑁, the average number of probe addresses, for
each of the hashing techniques.

• Notice that 𝐶𝑁 increases when the load factor increases.
• Open addressing with linear probing performs worse than the other two

techniques for big load factor.
• The best performing technique is separate chaining.

Data Structures and Programming
Techniques

45

0.10 0.25 0.50 0.75 0.90 0.99

Separate chaining 1.05 1.12 1.25 1.37 1.45 1.49

Open/linear probing 1.06 1.17 1.50 2.50 5.50 50.5

Open/double hashing 1.05 1.15 1.39 1.85 2.56 4.65

Load Factors

Unsuccessful Search

• The cells of the table give 𝐶′𝑁, the average number of probe addresses, for
each of the hashing techniques.

• Notice that 𝐶′𝑁 increases when the load factor increases.
• Open addressing with linear probing performs worse than the other two

techniques for big load factor.
• The best performing technique is separate chaining.

Data Structures and Programming
Techniques

46

0.10 0.25 0.50 0.75 0.90 0.99

Separate chaining 0.10 0.25 0.50 0.75 0.90 0.99

Open/linear probing 1.12 1.39 2.50 8.50 50.5 5000.5

Open/double hashing 1.11 1.33 2.50 4.00 10.0 100.0

Load Factors

Complexity of Hashing

• Let us assume that we will use a hash table that is never more than
half-full (𝛼 ≤ 0.50).

• If the table becomes more than half-full, we can expand the table
by choosing a new table twice as big and by rehashing the entries
in the new table.

• Suppose also that we use one of the hashing methods we
presented.

• Then the previous tables show that successful search can never
take more than 𝟏. 𝟓𝟎 key comparisons and unsuccessful search
can never take more than 𝟐. 𝟓𝟎 key comparisons.

• So the behaviour of hash tables is independent of the size of the
table or the number of keys, hence the complexity of searching is
𝑶 𝟏 .

Data Structures and Programming
Techniques

47

Complexity of Hashing (cont’d)

• Insertion takes the same number of
comparisons as an unsuccessful search, so it
has complexity 𝑶(𝟏) as well.

• Retrieving and updating also take 𝑶(𝟏) time.

• Deletion also takes 𝑶(𝟏) time.

• To enumerate the entries of a hash table, we
must first sort the entries into ascending order
of their keys. This requires time 𝑶(𝒏 𝐥𝐨𝐠𝒏)
using a good sorting algorithm.

Data Structures and Programming
Techniques

48

Load Factors and Rehashing

• In all the hash table schemes we discussed, the load factor
𝑎 should be kept below 1.

• Experiments and average case analysis suggest that we
should maintain 𝒂 < 𝟎. 𝟓 for open addressing schemes
and 𝒂 < 𝟎. 𝟗 for separate chaining.

• With open addressing, as the load factor grows beyond 0.5
and starts approaching 1, clusters of items in the table start
to grow as well.

• At the limit, when 𝒂 is close to 𝟏, all table operations have
linear expected running times since, in this case, we expect
to encounter a linear number of occupied cells before
finding one of the few remaining empty cells.

Data Structures and Programming
Techniques

49

Load Factors and Rehashing (cont’d)

• If the load factor of a hash table goes significantly
above a specified threshold, then it is common to
require the table to be resized to regain the
specified load factor. This process is called
rehashing (ανακατακερματισμός) or dynamic
hashing (δυναμικός κατακερματισμός).

• When rehashing to a new table, a good
requirement is having the new array’s size be at
least double the previous size.

Data Structures and Programming
Techniques

50

Summary: Open Addressing or
Separate Chaining?

• Open addressing schemes save space but they
are not faster.

• As you can see in the above theoretical results
(and corresponding experimental results), the
separate chaining method is either competitive or
faster than the other methods depending on the
load factor of the table.

• So, if memory is not a major issue, the collision
handling method of choice is separate chaining.

Data Structures and Programming
Techniques

51

Comparing the Performance of Some
Table ADT Representations

Initialize Determine
if full

Search
Retrieve
Update

Insert Delete Enumerate

Sorted
array of
structs

𝑂(𝑛) 𝑂(1) 𝑂(log 𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

AVL tree
of structs
(or (2,4)
tree or
red-black
tree)

𝑂(1) 𝑂(1) 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

Hashing 𝑂(𝑛) 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(𝑛 log𝑛)

Data Structures and Programming
Techniques

52

Choosing a Good Hash Function

• Ideally, a hash function will map keys
uniformly and randomly onto the entire range
of the hash table locations with each location
being equally likely to be the target of the
function for a randomly chosen key.

Data Structures and Programming
Techniques

53

Example of a Bad Choice

• Suppose our keys are variables up to three
characters in a particular assembly language
using 8-bit ASCII characters. Thus we can
represent each key by a 24-bit integer divided
into three equal 8-bit sections each representing
an ASCII character.

• Suppose we use open addressing with double
hashing.

• Suppose we select a table size 𝑀 = 28 = 256.
• Suppose we define our hashing function as
ℎ 𝐾 = 𝐾%256.

Data Structures and Programming
Techniques

54

Example (cont’d)

• This hash function is a poor one because it
selects the low-order character of the three-
character key as the value of ℎ 𝐾 .

• If the key is 𝐶3𝐶2𝐶1, when considered as a 24-
bit integer, it has the numerical value

𝐶3 ∗ 256
2 + 𝐶2 ∗ 256

1 +𝐶1 ∗ 256
0.

• Thus when we take the remainder of the
integer division with 256, we get the value 𝐶1.

Data Structures and Programming
Techniques

55

Example (cont’d)

• Now consider what happens when we hash the keys
𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3 using this hash function:

ℎ 𝑋1 = ℎ 𝑌1 = 1
ℎ 𝑋2 = ℎ 𝑌2 = 2
ℎ 𝑋3 = ℎ 𝑌3 = 3

• So the six keys will be mapped into a common cluster of
three contiguous table addresses.

• Thus this hash function will create and preserve clusters
instead of spreading them as a good hash function will do.

• Hash functions should take into account all the bits of a
key, not just some of them.

Data Structures and Programming
Techniques

56

Designing Hash Functions

• Let 𝑀 be the size of the hash table.

• We can view the evaluation of a hash function
ℎ(𝐾) as consisting of two actions:

– Mapping the key 𝐾 to an integer, called the hash
code, and

– Mapping the hash code to an integer within the
range of indices 0 to 𝑀 − 1. This is called the
compression function.

Data Structures and Programming
Techniques

57

Hash Codes

• The first action that a hash function performs
is to take an arbitrary key 𝐾 and map it into an
integer value.

• This integer need not be in the range 0 to 𝑀 −
1 and may even be negative, but we want the
set of hash codes to avoid collisions.

• If the hash codes of our keys cause collisions,
then there is no hope for the compression
function to avoid them.

Data Structures and Programming
Techniques

58

Hash Codes for Elements of C
Datatypes

• The hash codes for elements of C datatypes
described below are based on the assumption
that the number of bits of each data type is
known.

Data Structures and Programming
Techniques

59

Converting to an Integer

• For any data type 𝐷 that is represented using
at most as many bits as our integer hash
codes, we can simply take an integer
interpretation of the bits as a hash code for
elements of 𝐷.

• Thus, for the C basic types char, short
int and int, we can achieve a good hash
code simply by casting this type to int.

Data Structures and Programming
Techniques

60

Converting to an Integer (cont’d)

• On many machines, the type long int has a bit
representation that is twice as long as type int.

• One possible hash code for a long int element is to
simply cast it down to an int.

• But notice that this hash code ignores half of the
information present in the original value. So, if many of
the keys differ only in these bits, they will collide using
this simple hash code.

• A better hash code, which takes all the original bits
into consideration, sums an integer representation of
the high-order bits with an integer representation of
the low-order bits.

Data Structures and Programming
Techniques

61

Converting to an Integer (cont’d)

• In general, if we have an object 𝒙 whose
binary representation can be viewed as a 𝒌-
tuple of integers 𝑥0, 𝑥1, … , 𝑥𝑘−1 , we can

form a hash code for 𝑥 as σ𝑖=0
𝑘−1 𝑥𝑖 .

• Example: Given any floating-point
number 𝑚𝐸𝑒, we can sum its mantissa 𝑚 and
exponent 𝑒 as long integers and then apply a
hash code for long integers to the result.

Data Structures and Programming
Techniques

62

Summation Hash Codes

• The summation hash code, described above, is not a
good choice for character strings or other variable-
length objects that can be viewed as tuples of the form
𝑥0, 𝑥1, … , 𝑥𝑘−1 where the order of the 𝑥𝑖’s is

significant.

• Example: Consider a hash code for a string 𝑠 that sums
the ASCII values of the characters in 𝑠. This hash code
produces lots of unwanted collisions for common
groups of strings e.g., temp01 and temp10.

• A better hash code should take the order of the 𝑥𝑖’s
into account.

Data Structures and Programming
Techniques

63

Polynomial Hash Codes

• Let 𝑎 be an integer constant such that 𝑎 ≠ 1.

• We can use the polynomial
𝑥0𝑎

𝑘−1 + 𝑥1𝑎
𝑘−2 +⋯+ 𝑥𝑘−2𝑎 + 𝑥𝑘−1

as a hash code for 𝑥0, 𝑥1, … , 𝑥𝑘−1 .

• This is called a polynomial hash code.

Data Structures and Programming
Techniques

64

Polynomial Hash Codes (cont’d)

• To evaluate the polynomial, we should use the
efficient Horner’s method.

• The idea behind this method is the following
identity:

𝑥0𝑎
𝑘−1 + 𝑥1𝑎

𝑘−2 +⋯+ 𝑥𝑘−2𝑎 + 𝑥𝑘−1 =

𝑥𝑘−1 + 𝑎(𝑥𝑘−2 + 𝑎 𝑥𝑘−3 +⋯+ 𝑎 𝑥1 + 𝑎𝑥0 ⋯))

• This allows us to evaluate the polynomial with
just 𝒏 additions and 𝒏 multiplications.

Data Structures and Programming
Techniques

65

Polynomial Hash Codes (cont’d)

• Experiments show that in a list of over 50,000
English words, if we choose 𝑎 = 33, 37, 39 or
41, we produce less than seven collisions in
each case.

• For the sake of speed, we can apply the hash
code to only a fraction of the characters in a
long string.

Data Structures and Programming
Techniques

66

Polynomial Hash Codes (cont’d)

/* This is a complete hash function, not just a
hash code. */

int hash(char *K)

{

int h=0, a=33;

for (; *K!='\0'; K++)

h=(a*h + *K) % Μ;

return h;

}

Data Structures and Programming
Techniques

67

Polynomial Hash Codes (cont’d)

• In theory, we first compute a polynomial hash code and then apply
the compression function modulo 𝑀 (another way of saying that we
compute the remainder of the integer division with 𝑀).

• The previous hash function takes the modulo 𝑀 at each step.
• The two approaches are the same because the following equality

holds for all 𝑎, 𝑏, 𝑥,𝑀 that are nonnegative integers:

𝑎𝑥 𝑚𝑜𝑑 𝑀 + 𝑏 𝑚𝑜𝑑 𝑀 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑀

• Note: the 𝑚𝑜𝑑 operator is the same as %
• The approach of the previous function is preferable because,

otherwise, we get errors with long strings when the polynomial
computation produces overflows (try it!).

Data Structures and Programming
Techniques

68

Cyclic Shift Hash Codes

• A variant of the polynomial hash code replaces
multiplication by 𝑎 with a cyclic shift of a partial
sum by a certain number of bits.

• Experiments with a list of 25,000 English words
show that with a 5-bit cyclic shift, we have at
most 2 collisions for any one hash code.

• The following function achieves a 5-bit cyclic shift
by taking the bitwise OR of a 5-bit left shift and a
27-bit right shift.

Data Structures and Programming
Techniques

69

Cyclic Shift Hash Codes (cont’d)

int hashCode(const char *p, int len){

unsigned int h=0;

int i;

for (i=0; i<len; i++){

h=(h << 5) | (h >> 27);

h+=(unsigned int) p[i];

}

return h;

}

Data Structures and Programming
Techniques

70

Hash Codes for Floating Point
Numbers

• We can achieve a better hash code for floating
point numbers than casting them down to
int as follows.

• Assuming that a char is stored as an 8-bit
byte, we could interpret a 32-bit float as a
four-element character array and use the
hash code functions we discussed for strings.

Data Structures and Programming
Techniques

71

Compression Functions

• Once we have determined an integer hash
code for a key 𝐾, there is still the issue of
mapping that integer into the range 0 to 𝑀 −
1.

• This can be done using the following methods.

Data Structures and Programming
Techniques

72

The Division Method

• One good method for choosing a compression
function is the division method we have
demonstrated already in the context of double
hashing:

–𝑀 is chosen to be a prime number (important!)

– ℎ 𝐾 = 𝐾%𝑀

– 𝑝 𝐾 = max(1, Τ𝐾 𝑀)

Data Structures and Programming
Techniques

73

Precautions

• If there is a repeated pattern of key values of
the form 𝑖𝑀 + 𝑗 for several different 𝑖, then
there are still collisions.

Data Structures and Programming
Techniques

74

Precautions (cont’d)

• If 𝑟 is the radix (or base) of the character set
for the keys and 𝑘 and 𝑎 are small integers,
then we should not choose a prime of the
form 𝑀 = 𝑟𝑘 ± 𝑎.

Data Structures and Programming
Techniques

75

Example

• Let us suppose we again consider three character
keys 𝐶3𝐶2𝐶1 in 8-bit ASCII where the radix of the
character set is again 28 = 256.

• Suppose we choose 𝑀 = 216 + 1 = 65537.
• Then ℎ(𝐶3𝐶2𝐶1)= (𝐶2𝐶1 − 𝐶3)256.
• Generally, if 𝑀 = 𝑟𝑘 ± 𝑎, the value of ℎ(𝐾) will

tend to be simple sums and differences of
products of the characters 𝐶𝑖 .

• Such a hash function will not spread clusters of
keys, nor will it map keys uniformly and
randomly onto the space of hash table locations.

Data Structures and Programming
Techniques

76

Double Hashing

• Another good way to choose 𝑝(𝐾) in double
hashing is the following:

𝑝 𝐾 = 𝑄 − 𝐾%𝑄

where 𝑄 is prime and 𝑄 < 𝑀.

• The values of 𝑝(𝐾) are 1,… , 𝑄.

Data Structures and Programming
Techniques

77

The MAD Method

• A more sophisticated compression function which
helps eliminate repeated patterns in a set of integer
hash codes is the multiply and divide (or MAD)
method.

• In this case, the compression function maps integer 𝑖 to
ℎ 𝑖 = (𝑎𝑖 + 𝑏 % 𝑝) %𝑀

where 𝑀 is the size of the hash table, 𝑝 is a prime
number greater than 𝑀, 𝑎 and 𝑏 are nonnegative
integers randomly chosen in the interval [0, 𝑝 − 1] and
𝑎 > 0.

Data Structures and Programming
Techniques

78

Some Applications of Hash Tables

• Databases (including hashing for external
storage).

• Cryptography

• Symbol tables in compilers

• Browser caches

• Peer-to-peer systems and torrents (distributed
hash tables)

• …

Data Structures and Programming
Techniques

79

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.
– Chapter 11

• M.T. Goodrich, R. Tamassia and D. Mount. Data
Structures and Algorithms in C++. 2nd edition.
– Chapter 9

• M. T. Goodrich, R. Tamassia. Δομές Δεδομένων και
Αλγόριθμοι σε Java. 5η έκδοση. Εκδόσεις Δίαυλος.
– Chapter 9

• R. Sedgewick. Αλγόριθμοι σε C. 3η Αμερικανική
Έκδοση. Εκδόσεις Κλειδάριθμος.
– Κεφάλαιο 14

Data Structures and Programming
Techniques

80

