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The Symbol Table ADT (Reminder)

• A symbol table 𝑇 is an abstract storage that 
contains table entries that are either empty or 
are pairs of the form (𝐾, 𝐼) where 𝐾 is a key
and 𝐼 is some information associated with the 
key.

• Distinct table entries have distinct keys.
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Operations for the Symbol Table ADT

• Initialize the table 𝑇 to be the empty table. The empty 
table is filled with empty table entries (𝐾0, 𝐼0) where 𝐾0 is 
a special empty key, distinct from all other nonempty keys.

• Determine whether or not the table 𝑇 is full.
• Insert a new table entry (𝐾, 𝐼) into the table provided that 
𝑇 is not already full.

• Delete the table entry (𝐾, 𝐼) from table 𝑇.
• Given a search key 𝐾, retrieve the information 𝐼 from the 

table entry (𝐾, 𝐼) in table 𝑇.
• Update the table entry (𝐾, 𝐼) in table 𝑇 by replacing it with 

a new table entry 𝐾, 𝐼′ .
• Enumerate the table entries (𝐾, 𝐼) in table 𝑇 in increasing 

order of their keys.
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Possible Representations for the 
Symbol Table ADT

• We have already discussed the following data 
structures for symbol tables:
– Arrays of structs sorted in ascending order of their 

keys

– Linked lists of structs

– Binary search trees

– AVL trees

– (2,4) trees

– Red-black trees
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Hashing

• We will introduce a new method to 
implement a symbol table called hashing. 

• Hashing differs from the representations 
based on searching by key comparisons 
because we are trying to refer directly to 
elements of the table by transforming keys 
into addresses in the table.
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Introducing Hashing by Example

• We will use as keys letters of the alphabet having as 
subscripts their order in the alphabet. For example, 
𝐴1, 𝐶3, 𝑅18.

• We will use a small table 𝑇 of 7 positions as storage. 
We call it hash table (πίνακας κατακερματισμού).

• We will find the location to store a key 𝐿𝑛 by using the 
following hash function (συνάρτηση 
κατακερματισμού):

ℎ 𝐿𝑛 = 𝑛 % 7

• 𝑥 % 𝑦 computes the remainder of the integer division 
of 𝑥 with 𝑦.
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Table T after Inserting keys 
𝐵2, 𝐽10, 𝑆19, 𝑁14

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4

5 𝑆19

6
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Keys are stored in their hash addresses. The cells of the table are often 
called buckets (κάδοι).



Insert 𝑋24

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4

5 𝑆19

6
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ℎ 𝑋24 = 3

Now we have a collision (σύγκρουση). We will use the collision resolution policy
(πολιτική επίλυσης συγκρούσεων) of looking at lower locations of the table to 
find a place for the key.



Insert 𝑋24

Table T

0 𝑁14

1 𝑋24

2 𝐵2

3 𝐽10

4

5 𝑆19

6
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ℎ 𝑋24 = 3
1st probe

2nd probe

3rd probe



Insert 𝑊23

Table T

0 𝑁14

1 𝑋24

2 𝐵2

3 𝐽10

4

5 𝑆19

6 𝑊23
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ℎ 𝑤23 = 2
1st probe

2nd probe

3rd probe

4th probe



Open Addressing

• The method of inserting colliding keys into empty 
locations of the table is called open addressing
(ανοικτή διευθυνσιοδότηση).

• The inspection of each location is called a probe
(διερεύνηση).

• The locations we examined are called a probe 
sequence. 

• The probing process we followed is called linear 
probing (γραμμική διερεύνηση).

• So our hashing technique is called open 
addressing with linear probing.
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Double Hashing

• Double hashing is another open addressing 
technique, which uses non-linear probing by 
computing different probe decrements for 
different keys using a second hash function 
𝑝(𝐿𝑛).

• Let us define the following probe decrement 
function:

𝑝 𝐿𝑛 = max(1, Τ𝑛 7)

Data Structures and Programming 
Techniques

12



Table T after Inserting keys 
𝐵2, 𝐽10, 𝑆19, 𝑁14

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4

5 𝑆19

6
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Insert 𝑋24

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4 𝑋24

5 𝑆19

6

Data Structures and Programming 
Techniques

14

ℎ 𝑋24 = 3
1st probe

2nd probe

3rd probe

We use a probe decrement of 𝑝 𝑋24 = 3.



Insert 𝑊23

Table T

0 𝑁14

1

2 𝐵2

3 𝐽10

4 𝑋24

5 𝑆19

6 𝑊23
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ℎ 𝑊23 = 2
1st probe

2nd probe

We use a probe decrement of 𝑝 𝑊23 = 3.
In general probe decrements will be 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 for different keys. Try
inserting key 𝑃16 on your own.



Collision Resolution by Separate 
Chaining

• The method of collision resolution by 
separate chaining (χωριστή αλυσίδωση) uses 
a linked list to store keys at each table entry.

• This method should not be chosen if space is 
at a premium, for example, if we are 
implementing a hash table for a mobile 
device.
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Example

Table T

0

1

2

3

4

5

6
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𝑆19

.

.

.

.

𝑁14

𝐵2 𝑊23

𝐽10 𝑋24

𝑆19



Good Hash Functions

• Suppose 𝑇 is a hash table having 𝑀 entries whose 
addresses lie in the range 0 to 𝑀 − 1.

• An ideal hashing function ℎ(𝐾) maps keys onto 
table addresses in a uniform and random 
fashion.

• In other words, for any arbitrarily chosen key, any 
of the possible table addresses is equally likely to 
be chosen (the probability of being chosen is 

1

𝑀
).

• Also, the computation of a hash function should 
be very fast.
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Collisions

• A collision between two keys 𝐾 and 𝐾′ happens if, 
when we try to store both keys in a hash table 𝑇, both 
keys have the same hash address ℎ 𝐾 = ℎ 𝐾′ .

• Collisions are relatively frequent even in sparsely 
occupied hash tables.

• The von Mises paradox: if there are more than 23 
people in a room, there is a greater than 50% chance 
that two of them will have the same birthday (𝑀 =
365). See the proof in the book by Standish.

• A good hash function should minimize collisions.
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Primary clustering

• Linear probing suffers from what we call primary 
clustering (πρωταρχική συσταδοποίηση).

• A cluster (συστάδα) is a sequence of adjacent 
occupied entries in a hash table.

• In open addressing with linear probing such clusters 
are formed and then grow bigger and bigger. This 
happens because all keys colliding in the same initial 
location trace out identical search paths when looking 
for an empty table entry.

• Double hashing does not suffer from primary clustering 
because initially colliding keys search for empty 
locations along separate probe sequence paths.
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Ensuring that Probe Sequences Cover 
the Table

• In order for the open addressing hash 
insertion and hash searching algorithms to 
work properly, we have to guarantee that 
every probe sequence used can probe all 
locations of the hash table.

• This is obvious for linear probing.

• Is it true for double hashing?
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Choosing Table Sizes and Probe 
Decrements

• If we choose the table size to be a prime 
number (πρώτος αριθμός) 𝑴 and probe 
decrements to be positive integers in the 
range 𝟏 ≤ 𝒑 𝑲 ≤ 𝑴 then we can ensure 
that the probe sequences cover all table 
addresses in the range 0 to 𝑀 − 1 exactly 
once.

• Proof?

Data Structures and Programming 
Techniques

22



Proof

• For a key 𝐾 for which there is a collision, the 
locations visited by the probe sequence are of 
the form

ℎ 𝐾 − 𝑖 ∗ 𝑝 𝐾 %𝑀

for 𝑖 in the range 0 ≤ 𝑖 ≤ 𝑀 − 1.

• We will prove the result by contradiction.
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Proof (cont’d)

• Let us suppose that there are two distinct 
integers 𝑗 and 𝑘 in the range 0 to 𝑀 − 1 which 
generate the same probe location.

• In this case 

ℎ 𝐾 − 𝑗 ∗ 𝑝 𝐾 %𝑀 = ℎ 𝐾 − 𝑘 ∗ 𝑝 𝐾 %𝑀.

• This can be written in number-theoretic terms as

{[ℎ 𝐾 − 𝑗 ∗ 𝑝 𝐾 ] ≡ [
]

ℎ 𝐾 − 𝑘 ∗
𝑝 𝐾 } (𝑚𝑜𝑑𝑢𝑙𝑜 𝑀).
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Proof (cont’d)

• We can subtract ℎ(𝐾) from both sides of this 
congruence and we can multiply by −1 to get

𝑗 ∗ 𝑝 𝐾 ≡ 𝑘 ∗ 𝑝 𝐾 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑀).
• Because 𝑝(𝐾) and 𝑀 are relatively prime

(σχετικώς πρώτοι), we can divide by 𝑝(𝐾) to 
arrive at

𝑗 ≡ 𝑘 𝑚𝑜𝑑𝑢𝑙𝑜 𝑀 .
• Using the definition of congruence, the above is 

equivalent to
𝑗%𝑀 = 𝑘%𝑀 .
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Proof (cont’d)

• Now recall that 𝑗 and 𝑘 are integers in the 
range 0 to 𝑀 − 1.

• Therefore the above is equivalent to 𝑗 = 𝑘.

• But this contradicts our initial assumption that 
𝑗 and 𝑘 were distinct integers.

• Thus we have proven that probe sequences 
cover all the addresses of the entire hash 
table exactly once.
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Proof (cont’d)

• Two integers 𝑎 and 𝑏 are relatively prime if 
they have no other common divisor than 1.

• Since 𝑀 is prime, its divisors are 1 and 𝑀
itself. Thus it is relatively prime with 𝑝(𝐾)
such that  1 ≤ 𝑝 𝐾 ≤ 𝑀 − 1.
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Good Double Hashing Choices

• Choose the table size 𝑀 to be a prime 
number, and choose probe decrements, any 
integer in the range 1 to 𝑀 − 1.

• Choose the table size 𝑀 to be a power of 2 
and choose as probe decrements any odd 
integer in the range 1 to 𝑀 − 1.

• In other words, it is good to choose probe 
decrements to be relatively prime with 𝑴.
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Open Addressing with Double Hashing 
Implemented in C

• We will use the following two constants:
#define M 997   /* 997 is prime */

#define EmptyKey 0
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Open Addressing (cont’d)

• We will define the following types:

typedef int KeyType;

typedef struct {

/* some members of various types giving */

/* information associated with search keys */

} InfoType;

typedef struct {

KeyType Key;

InfoType Info;

} TableEntry;

typedef TableEntry Table[M];
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Initialization

/* global variable T for the hash table */

Table T;

void Initialize(void)

{

int i;

for (i=0; i<M; i++)

T[i].Key=EmptyKey

}
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Insertion

void HashInsert(KeyType K, InfoType I)

{

int i;

int ProbeDecrement;

i=h(K);

ProbeDecrement=p(K);

while (T[i].Key != EmptyKey){

i-=ProbeDecrement;

if (i<0)

i+=M;

}

T[i].Key=K;

T[i].Info=I;

}
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Search

int HashSearch(KeyType K)

{

int I;

int ProbeDecrement;

KeyType ProbeKey;

/*Initializations */

i=h(K);

ProbeDecrement=p(K);

ProbeKey=T[i].Key;

/* Search loop */

while ((K!=ProbeKey) && (ProbeKey!=EmptyKey)){

i-=ProbeDecrement;

if (i<0)

i+=M;

ProbeKey=T[i].Key;

}

/* Determine success or failure */

if (ProbeKey==EmptyKey)

return -1;

else

return i;

}
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Deletion

• The function for deletion from a hash table is left as an exercise.
• But notice that deletion poses some problems.
• If we delete an entry and leave a table entry with an empty key in 

its place then we destroy the validity of subsequent search 
operations because a search terminates when an empty key is 
encountered.

• As a solution, we can leave the deleted entry in its place and mark it 
as deleted (or substitute it by a special entry “available”).  Then 
search algorithms can treat these entries as not deleted while insert 
algorithms can treat them as deleted and insert other entries in 
their place.

• However, in this case, if we have many deletions, the hash table can 
easily become clogged with entries marked as deleted.
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Load Factor

• The load factor (συντελεστής πλήρωσης) 𝛼 of 
a hash table of size 𝑀 with 𝑁 occupied entries 
is defined by

𝛼 =
𝑁

𝑀
.

• The load factor is an important parameter in 
characterizing the performance of hashing 
techniques.
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Performance Formulas

• Let 𝑇 be a hash table of size 𝑀 with exactly 𝑁

occupied entries i.e., with load factor 𝛼 =
𝑁

𝑀
.

• Let 𝐶𝑁 be the average number of probe 
addresses examined during a successful search.

• Let 𝐶′𝑁 be the average number of probe 
addresses examined during an unsuccessful 
search (or insertion).

• For the following results, we assume that our 
hash functions ℎ and 𝑝 are uniform and random.
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Efficiency of Linear Probing

• For open addressing with linear probing, we have the 
following performance formulas:

𝐶𝑁 =
1

2
(1 +

1

1 − 𝛼
)

𝐶′𝑁 =
1

2
(1 + (

1

1 − 𝑎
)2)

• The formulas are known to apply when the table 𝑇 is 
up to 70% full (i.e., when 𝛼 ≤ 0.7).

• This is an important result proved by Donald Knuth in 
1962.
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Donald Knuth

• Donald Knuth is one of the most important theoretical 
computer scientists 
(https://en.wikipedia.org/wiki/Donald_Knuth).

• He won the Turing Award in 1974.
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Efficiency of Double Hashing

• For open addressing with double hashing, we 
have the following performance formulas:

𝐶𝑁 =
1

𝛼
ln(

1

1 − 𝛼
)

𝐶′𝑁 =
1

1 − 𝛼

• This important result was proven by Guibas
and Szeredi in 1976.
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Efficiency of Separate Chaining

• For separate chaining, we have the following 
performance formulas:

𝐶𝑁 = 1 +
1

2
𝛼

𝐶′𝑁 = α

• In a separate-chaining hash table of size 𝑀 and 𝑁
keys, the probability that the number of keys in 
each list is within a small constant factor of 

𝑁

𝑀
is 

extremely close to 1.
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Proof

• Let us give only the easy proof that 𝐶′𝑁 = α for the 
case of separate chaining.

• When we hash a key 𝐾 into table 𝑇, we find a chain at 
location ℎ 𝐾 which contains, let us say, 𝑗 keys. It is 
possible that 𝑗 = 0, if the chain at location ℎ 𝐾 is 
empty.

• Under the assumption that the hash function is 
uniform and random, all of the keys 𝑁 previously 
stored in table 𝑇 are distributed uniformly over all of 
the 𝑀 table locations, forming 𝑀 separate chains 
(some of which are empty, and some of which contain 
one or more keys).
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Proof (cont’d)

• Thus the average chain length equals the number 
of keys 𝑁 in all of the chains divided by  the total 
number of chains 𝑀. In other words, the average 

chain length is 𝛼 =
𝑁

𝑀
.

• Since on the average, an unsuccessful search 
must compare the search key 𝐾 with all keys in 
the chain, the average number of comparisons  
𝐶′𝑁, for unsuccessful searching is just α.
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Important

• Note that the previous formulas show that the 
performance of a hash table depends only on 
the load factor and not on the number of keys 
or the size of the table.
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Theoretical Results: Apply the 
Formulas

• Let us now compare the performance of the 
techniques we have seen for different load 
factors using the formulas we presented.

• We apply the formulas to a table with size 
997.

• Experimental results obtained after 
implementing the algorithms are similar.
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Successful Search

• The cells of the table give 𝐶𝑁, the average number of probe addresses, for 
each of the hashing techniques.

• Notice that 𝐶𝑁 increases when the load factor increases.
• Open addressing with linear probing performs worse than the other two 

techniques for big load factor.
• The best performing technique is separate chaining.
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0.10 0.25 0.50 0.75 0.90 0.99

Separate chaining 1.05 1.12 1.25 1.37 1.45 1.49

Open/linear probing 1.06 1.17 1.50 2.50 5.50 50.5

Open/double hashing 1.05 1.15 1.39 1.85 2.56 4.65

Load Factors



Unsuccessful Search

• The cells of the table give 𝐶′𝑁, the average number of probe addresses, for 
each of the hashing techniques.

• Notice that 𝐶′𝑁 increases when the load factor increases.
• Open addressing with linear probing performs worse than the other two 

techniques for big load factor.
• The best performing technique is separate chaining.
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0.10 0.25 0.50 0.75 0.90 0.99

Separate chaining 0.10 0.25 0.50 0.75 0.90 0.99

Open/linear probing 1.12 1.39 2.50 8.50 50.5 5000.5

Open/double hashing 1.11 1.33 2.50 4.00 10.0 100.0

Load Factors



Complexity of Hashing

• Let us assume that we will use a hash table that is never more than 
half-full (𝛼 ≤ 0.50).

• If the table becomes more than half-full, we can expand the table 
by choosing a new table twice as big and by rehashing the entries 
in the new table.

• Suppose also that we use one of the hashing methods we 
presented.

• Then the previous tables show that successful search can never 
take more than 𝟏. 𝟓𝟎 key comparisons and unsuccessful search 
can never take more than 𝟐. 𝟓𝟎 key comparisons.

• So the behaviour of hash tables is independent of the size of the 
table or the number of keys, hence the complexity of searching is 
𝑶 𝟏 .
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Complexity of Hashing (cont’d)

• Insertion takes the same number of 
comparisons as an unsuccessful search, so it 
has complexity 𝑶(𝟏) as well.

• Retrieving and updating also take 𝑶(𝟏) time.

• Deletion also takes 𝑶(𝟏) time.

• To enumerate the entries of a hash table, we 
must first sort the entries into ascending order 
of their keys. This requires time 𝑶(𝒏 𝐥𝐨𝐠𝒏)
using a good sorting algorithm.
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Load Factors and Rehashing

• In all the hash table schemes we discussed, the load factor 
𝑎 should be kept below 1.

• Experiments and average case analysis suggest that we 
should maintain 𝒂 < 𝟎. 𝟓 for open addressing schemes 
and 𝒂 < 𝟎. 𝟗 for separate chaining.

• With open addressing, as the load factor grows beyond 0.5
and starts approaching 1, clusters of items in the table start 
to grow as well.

• At the limit, when 𝒂 is close to 𝟏, all table operations have 
linear expected running times since, in this case, we expect 
to encounter a linear number of occupied cells before 
finding one of the few remaining empty cells.
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Load Factors and Rehashing (cont’d)

• If the load factor of a hash table goes significantly 
above a specified threshold, then it is common to 
require the table to be resized to regain the 
specified load factor. This process is called 
rehashing (ανακατακερματισμός) or dynamic 
hashing (δυναμικός κατακερματισμός).

• When rehashing to a new table, a good 
requirement is having the new array’s size be at 
least double the previous size.
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Summary: Open Addressing or 
Separate Chaining?

• Open addressing schemes save space but they 
are not faster.

• As you can see in the above theoretical results 
(and corresponding experimental results), the 
separate chaining method is either competitive or 
faster than the other methods depending on the 
load factor of the table.

• So, if memory is not a major issue, the collision 
handling method of choice is separate chaining.
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Comparing the Performance of Some 
Table ADT Representations

Initialize Determine 
if full

Search
Retrieve
Update

Insert Delete Enumerate

Sorted 
array of 
structs

𝑂(𝑛) 𝑂(1) 𝑂(log 𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)

AVL tree 
of structs 
(or (2,4) 
tree or 
red-black 
tree)

𝑂(1) 𝑂(1) 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

Hashing 𝑂(𝑛) 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(1) 𝑂(𝑛 log𝑛)
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Choosing a Good Hash Function

• Ideally, a hash function will map keys 
uniformly and randomly onto the entire range 
of the hash table locations with each location 
being equally likely to be the target of the 
function for a randomly chosen key.
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Example of a Bad Choice

• Suppose our keys are variables up to three 
characters in a particular assembly language 
using 8-bit ASCII characters. Thus we can 
represent each key by a 24-bit integer divided 
into three equal 8-bit sections each representing 
an ASCII character.

• Suppose we use open addressing with double 
hashing.

• Suppose we select a table size 𝑀 = 28 = 256.
• Suppose we define our hashing function as 
ℎ 𝐾 = 𝐾%256.
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Example (cont’d)

• This hash function is a poor one because it 
selects the low-order character of the three-
character key as the value of ℎ 𝐾 .

• If the key is 𝐶3𝐶2𝐶1, when considered as a 24-
bit integer, it has the numerical value

𝐶3 ∗ 256
2 + 𝐶2 ∗ 256

1 +𝐶1 ∗ 256
0.

• Thus when we take the remainder of the 
integer division with 256, we get the value 𝐶1.
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Example (cont’d)

• Now consider what happens when we hash the keys 
𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3 using this hash function:

ℎ 𝑋1 = ℎ 𝑌1 = 1
ℎ 𝑋2 = ℎ 𝑌2 = 2
ℎ 𝑋3 = ℎ 𝑌3 = 3

• So the six keys will be mapped into a common cluster of 
three contiguous table addresses.

• Thus this hash function will create and preserve clusters 
instead of spreading them as a good hash function will do.

• Hash functions should take into account all the bits of a 
key, not just some of them.
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Designing Hash Functions

• Let 𝑀 be the size of the hash table.

• We can view the evaluation of a hash function 
ℎ(𝐾) as consisting of two actions:

– Mapping the key 𝐾 to an integer, called the hash
code, and

– Mapping the hash code to an integer within the 
range of indices 0 to 𝑀 − 1. This is called the 
compression function.
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Hash Codes

• The first action that a hash function performs 
is to take an arbitrary key 𝐾 and map it into an 
integer value.

• This integer need not be in the range 0 to 𝑀 −
1 and may even be negative, but we want the 
set of hash codes to avoid collisions.

• If the hash codes of our keys cause collisions, 
then there is no hope for the compression 
function to avoid them.
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Hash Codes for Elements of C 
Datatypes

• The hash codes for elements of C datatypes 
described below are based on the assumption 
that the number of bits of each data type is 
known.
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Converting to an Integer

• For any data type 𝐷 that is represented using 
at most as many bits as our integer hash 
codes, we can simply take an integer 
interpretation of the bits as a hash code for 
elements of 𝐷.

• Thus, for the C basic types char, short 
int and int, we can achieve a good hash 
code simply by casting this type to int.
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Converting to an Integer (cont’d)

• On many machines, the type long int has a bit 
representation that is twice as long as type int.

• One possible hash code for a long int element is to 
simply cast it down to an int.

• But notice that this hash code ignores half of the 
information present in the original value. So, if many of 
the keys differ only in these bits, they will collide using 
this simple hash code.

• A better hash code, which takes all the original bits 
into consideration, sums an integer representation of 
the high-order bits with an integer representation of 
the low-order bits.
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Converting to an Integer (cont’d)

• In general, if we have an object 𝒙 whose 
binary representation can be viewed as a 𝒌-
tuple of integers 𝑥0, 𝑥1, … , 𝑥𝑘−1 , we can 

form a hash code for 𝑥 as σ𝑖=0
𝑘−1 𝑥𝑖 .

• Example: Given any floating-point 
number 𝑚𝐸𝑒, we can sum its mantissa 𝑚 and 
exponent 𝑒 as long integers and then apply a 
hash code for long integers to the result.
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Summation Hash Codes

• The summation hash code, described above, is not a 
good choice for character strings or other variable-
length objects that can be viewed as tuples of the form 
𝑥0, 𝑥1, … , 𝑥𝑘−1 where the order of the 𝑥𝑖’s is 

significant.

• Example: Consider a hash code for a string 𝑠 that sums 
the ASCII values of the characters in 𝑠. This hash code 
produces lots of unwanted collisions for common 
groups of strings e.g., temp01 and temp10.

• A better hash code should take the order of the 𝑥𝑖’s  
into account.
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Polynomial Hash Codes

• Let 𝑎 be an integer constant such that 𝑎 ≠ 1.

• We can use the polynomial
𝑥0𝑎

𝑘−1 + 𝑥1𝑎
𝑘−2 +⋯+ 𝑥𝑘−2𝑎 + 𝑥𝑘−1

as a hash code for 𝑥0, 𝑥1, … , 𝑥𝑘−1 .

• This is called a polynomial hash code.
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Polynomial Hash Codes (cont’d)

• To evaluate the polynomial, we should use the 
efficient Horner’s method.

• The idea behind this method is the following 
identity:

𝑥0𝑎
𝑘−1 + 𝑥1𝑎

𝑘−2 +⋯+ 𝑥𝑘−2𝑎 + 𝑥𝑘−1 =

𝑥𝑘−1 + 𝑎(𝑥𝑘−2 + 𝑎 𝑥𝑘−3 +⋯+ 𝑎 𝑥1 + 𝑎𝑥0 ⋯))

• This allows us to evaluate the polynomial with 
just 𝒏 additions and 𝒏 multiplications.
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Polynomial Hash Codes (cont’d)

• Experiments show that in a list of over 50,000 
English words, if we choose 𝑎 = 33, 37, 39 or 
41, we produce less than seven collisions in 
each case.

• For the sake of speed, we can apply the hash 
code to only a fraction of the characters in a 
long string.
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Polynomial Hash Codes (cont’d)

/* This is a complete hash function, not just a 
hash code. */

int hash(char *K)

{

int h=0, a=33;

for (; *K!='\0'; K++)

h=(a*h + *K) % Μ;

return h;

}
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Polynomial Hash Codes (cont’d)

• In theory, we first compute a polynomial hash code and then apply 
the compression function modulo 𝑀 (another way of saying that we 
compute the remainder of the integer division with 𝑀).

• The previous hash function takes the modulo 𝑀 at each step.
• The two approaches are the same because the following equality 

holds for all 𝑎, 𝑏, 𝑥,𝑀 that are nonnegative integers:

𝑎𝑥 𝑚𝑜𝑑 𝑀 + 𝑏 𝑚𝑜𝑑 𝑀 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑀

• Note: the 𝑚𝑜𝑑 operator is the same as %
• The approach of the previous function is preferable because, 

otherwise, we get errors with long strings when the polynomial 
computation produces overflows (try it!).
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Cyclic Shift Hash Codes

• A variant of the polynomial hash code replaces 
multiplication by 𝑎 with a cyclic shift of a partial 
sum by a certain number of bits.

• Experiments with a list of 25,000 English words 
show that with a 5-bit cyclic shift, we have at 
most 2 collisions for any one hash code.

• The following function achieves a 5-bit cyclic shift 
by taking the bitwise OR of a 5-bit left shift and a 
27-bit right shift.
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Cyclic Shift Hash Codes (cont’d)

int hashCode(const char *p, int len){

unsigned int h=0;

int i;

for (i=0; i<len; i++){

h=(h << 5) | (h >> 27);

h+=(unsigned int) p[i];

}

return h;

}
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Hash Codes for Floating Point 
Numbers

• We can achieve a better hash code for floating 
point numbers than casting them down to 
int as follows.

• Assuming that a char is stored as an 8-bit 
byte, we could interpret a 32-bit float as a 
four-element character array and use the 
hash code functions we discussed for strings.
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Compression Functions

• Once we have determined an integer hash 
code for a key 𝐾, there is still the issue of 
mapping that integer into the range 0 to 𝑀 −
1.

• This can be done using the following methods.
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The Division Method

• One good method for choosing a compression 
function is the division method we have 
demonstrated already in the context of double 
hashing:

–𝑀 is chosen to be a prime number (important!)

– ℎ 𝐾 = 𝐾%𝑀

– 𝑝 𝐾 = max(1, Τ𝐾 𝑀)
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Precautions

• If there is a repeated pattern of key values of 
the form 𝑖𝑀 + 𝑗 for several different 𝑖, then 
there are still collisions.
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Precautions (cont’d)

• If 𝑟 is the radix (or base) of the character set 
for the keys and 𝑘 and 𝑎 are small integers, 
then we should not choose a prime of the 
form 𝑀 = 𝑟𝑘 ± 𝑎.
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Example

• Let us suppose we again consider three character 
keys 𝐶3𝐶2𝐶1 in 8-bit ASCII where the radix of the 
character set is again 28 = 256.

• Suppose we choose 𝑀 = 216 + 1 = 65537.
• Then ℎ(𝐶3𝐶2𝐶1)= (𝐶2𝐶1 − 𝐶3)256.
• Generally, if 𝑀 = 𝑟𝑘 ± 𝑎, the value of ℎ(𝐾) will 

tend to be simple sums and differences of 
products of the characters 𝐶𝑖 .

• Such a hash function will not spread clusters of 
keys, nor will it map keys uniformly and 
randomly onto the space of hash table locations.
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Double Hashing

• Another good way to choose 𝑝(𝐾) in double 
hashing is the following:

𝑝 𝐾 = 𝑄 − 𝐾%𝑄

where 𝑄 is prime and 𝑄 < 𝑀.

• The values of 𝑝(𝐾) are 1,… , 𝑄.
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The MAD Method

• A more sophisticated compression function which 
helps eliminate repeated patterns in a set of integer 
hash codes is the multiply and divide (or MAD) 
method. 

• In this case, the compression function maps integer 𝑖 to
ℎ 𝑖 = ( 𝑎𝑖 + 𝑏 % 𝑝) %𝑀

where 𝑀 is the size of the hash table, 𝑝 is a prime
number greater than 𝑀, 𝑎 and 𝑏 are  nonnegative
integers randomly chosen in the interval [0, 𝑝 − 1] and
𝑎 > 0.
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Some Applications of Hash Tables

• Databases (including hashing for external 
storage).

• Cryptography 

• Symbol tables in compilers

• Browser caches

• Peer-to-peer systems and torrents (distributed 
hash tables)

• …
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