
Linked Data Representations

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Linked Data Representations

• Linked data representations such as lists, stacks,
queues, sets and trees are very useful in Computer
Science and applications. E.g., in Databases,
Artificial Intelligence, Graphics, Web, Hardware etc.

• We will cover all of these data structures in this
course.

• Linked data representations are useful when it is
difficult to predict the size and shape of the data
structures needed.

Data Structures and Programming
Techniques

2

Levels of Data Abstraction

Data Structures and Programming
Techniques

3

Lists Stacks Sets Trees Queues ADTs

Sequential
Representations

Linked
Representations

Arrays Strings Arrays of
Records

Pointer
Representations

Parallel
Arrays

Pointers

• The best way to realize linked data
representations is using pointers.

• A pointer (δείκτης)δείκτης)) is a variable that
references a unit of storage.

• Graphical notation (α is a pointer to β):α is a pointer to β):):

α: β)::β):

α:

β)::
Data Structures and Programming

Techniques
4

Pointers in C

typedef int *IntegerPointer;
IntegerPointer A, B;
/* the declaration int *A, *B has the same effect */

A=(IntegerPointer)malloc(sizeof(int));
B=(int *)malloc(sizeof(int));

The above code results in the following situation:

A:

B:

Data Structures and Programming
Techniques

5

typedef

• C provides a facility called typedef for
creating new data type names.

• typedefs are useful because:
– They help to organize our data type definitions

nicely.

– They provide better documentation for our
program.

– They make our program portable.

Data Structures and Programming
Techniques

6

Pointers in C (α is a pointer to β):cont’d)

• The previous statements first define a new data type name
IntegerPointer which consists of a pointer to an
integer.

• Then they define two variables A and B of type
IntegerPointer.

• Then they allocate two blocks of storage for two integers
and place two pointers to them in A and B.

• The void pointer returned by malloc is casted into a
pointer to a block of storage holding an integer. You can
omit this casting and your program will still work correctly.

Data Structures and Programming
Techniques

7

malloc

• void *malloc(size_t size) is a function of the
standard library stdlib.

• malloc returns a pointer to space for an object of
size size, or NULL if the request cannot be satisfied.
The space is obtained from the heap and is
uninitialized.

• This is called dynamic storage allocation (δείκτης)δυναμική
δέσμευση μνήμης)).

• size_t is the unsigned integer type returned by the
sizeof operator.

Data Structures and Programming
Techniques

8

Program Memory

Data Structures and Programming
Techniques

9

The Operator *

*A=5;
*B=17;

A:

B:

5

17

The unary operator * (α is a pointer to β):τελεστής) αναφοράς)) on the left side of the assignment
designates the storage location to which the pointer A refers. We call this
pointer dereferencing.

Data Structures and Programming
Techniques

10

The Operator &

int X=3;
A=&X;

A:

X:

3

The unary operator & (α is a pointer to β):τελεστής) διεύθυνσης)) gives the address of some object
(α is a pointer to β):in the above diagram the address of variable X).

Data Structures and Programming
Techniques

11

Pointers in C (α is a pointer to β):cont’d)

• Consider again the following statements:

int *A, *B;
*A=5;
*B=17;

• Question: What happens if we now execute
B=20;?

Data Structures and Programming
Techniques

12

Pointers in C (α is a pointer to β):cont’d)

• Answer: We have a type mismatch error since
20 is an integer but B holds a pointer to
integers.

• The compiler gcc will give a warning:
“assignment makes pointer from an integer
without a cast.”

Data Structures and Programming
Techniques

13

Pointers in C (α is a pointer to β):cont’d)

Suppose we start with the diagram below:

A:

B:

5

17

Data Structures and Programming
Techniques

14

Pointers in C (α is a pointer to β):cont’d)

Question: If we execute A=B; which one of the following two diagrams
results?

A:

B:

17

17

A: 5

B: 17

Data Structures and Programming
Techniques

15

Pointers in C (α is a pointer to β):cont’d)

A=B;

A:

B:

5

17

Answer: The right diagram. Now A and B are called aliases because they name
the same storage location. Note that the storage block containing 5 is now inaccessible.
Some languages such as Lisp have a garbage collection facility for such storage.

Data Structures and Programming
Techniques

16

Recycling Used Storage

We can reclaim the storage space to which A points by using the reclamation
function free:

free(A);
A=B;

A:

B: 17

Data Structures and Programming
Techniques

17

Dangling Pointers

Let us now consider the following situation:

Question: Suppose now we call free(B). What is the value of *A+3 then?

A:

B: 17

Data Structures and Programming
Techniques

18

.

Dangling Pointers (α is a pointer to β):cont’d)

Answer: We do not know. Storage location A now contains a dangling
pointer and should not be used.

A:

B:
?

Data Structures and Programming
Techniques

19

It is reasonable to consider this to be a programming error even though the compiler
or the runtime system will not catch it.

NULL

There is a special address denoted by the constant NULL which is not the
address of any node. The situation that results after we execute A=NULL; is
shown graphically below:

A:

Data Structures and Programming
Techniques

20

NULL is automatically considered to be a value of any pointer type that can be defined in
C. NULL is defined in the standard input/output library <stdio.h> and has the value 0.

.
Now we cannot access the storage location to which A pointed to earlier. So
something like *A=5; will give us “segmentation fault”.

Pointers and Function Arguments

• Let us suppose that we have a sorting routine that works by exchanging two
out-of-order elements using a function Swap.

• Question: Can we call Swap(A,B) where the Swap function is defined as
follows?

void Swap(int X, int Y)
{
 int Temp;

 Temp=X;
 X=Y;
 Y=Temp;
}

Data Structures and Programming
Techniques

21

Pointers and Function Arguments (α is a pointer to β):cont’d)

• Answer: No. C passes arguments to functions by
value (δείκτης)κατ’ αξία) therefore Swap can’t affect the
arguments A and B in the routine that called it.
Swap only swaps copies of A and B.

• The way to have the desired effect is for the
calling program to pass pointers to the values to
be changed:

 Swap(&A, &B);

Data Structures and Programming
Techniques

22

The Correct Function Swap

void Swap(int *P, int *Q)
{
 int Temp;

 Temp=*P;
 *P=*Q;
 *Q=Temp;
}

Data Structures and Programming
Techniques

23

In Pictures

Data Structures and Programming
Techniques

24

A:

Q:

B:

P:

In the calling program:

In Swap:

Linked Lists

• A linear linked list (α is a pointer to β):or linked list) is a sequence of nodes in
which each node, except the last, links to a successor node.

• We usually have a pointer variable L containing a pointer to
the first node on the list.

• The link field of the last node contains NULL.

• Example: a list representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

Data Structures and Programming
Techniques

25

Diagrammatic Notation for Linked Lists

L:

Info Link InfoInfo LinkLink

Last:

.

Data Structures and Programming
Techniques

26

Declaring Data Types for Linked Lists

The following statements declare appropriate data types for our linked list:

typedef char AirportCode[4];
typedef struct NodeTag {
 AirportCode Airport;
 struct NodeTag *Link;
 } NodeType;
typedef NodeType *NodePointer;

We can now define variables of these datatypes:

NodePointer L;
or equivalently

NodeType *L;

Data Structures and Programming
Techniques

27

Structures in C

• A structure (δείκτης)δομή) is a collection of one or
more variables possibly of different types,
grouped together under a single name.

• The variables named in a structure are called
members (δείκτης)μέλη).

• In the previous structure definition, the name
NodeTag is called a structure tag and can be
used subsequently as a shorthand for the part
of the declaration in braces.

Data Structures and Programming
Techniques

28

Example

• Given the previous typedefs, what would be the output of the
following piece of code:

AirportCode C;
NodePointer L;

strcpy(C, “BRU”);
printf(“%s\n”, C);

L=(NodePointer)malloc(sizeof(NodeType));
strcpy(L->Airport, C);
printf(“%s\n”, L->Airport);

Data Structures and Programming
Techniques

29

The Function strcpy

• The function strcpy(s,ct) copies string
ct to string s, including ‘\0’. It returns s.

• The function is defined in header file
<string.h>.

Data Structures and Programming
Techniques

30

Accessing Members of a Structure

• To access a member of a structure, we use the
dot notation as follows:

 structure-name.member

• To access a member of a structure pointed to
by a pointer P, we can use the notation
(*P).member or the equivalent arrow
notation P->member.

Data Structures and Programming
Techniques

31

Question

• Why didn’t I write C=“BRU”; and

 L->Airport=“BRU” in the previous piece

 of code?

Data Structures and Programming
Techniques

32

Answer

• The assignment C=“BRU”; assigns to
variable C a pointer to the character array
“BRU”. This would result in an error (α is a pointer to β):type
mismatch) because C is of type
AirportCode.

• Similarly for the second assignment.

Data Structures and Programming
Techniques

33

Example

• Given the previous typedefs, what does the following piece of code do?:

NodePointer L, M;

L=(NodePointer)malloc(sizeof(NodeType));
strcpy(L->Airport, “DUS”);

M=(NodePointer)malloc(sizeof(NodeType));
strcpy(M->Airport, “ORD”);

L->Link=M;
M->Link=NULL;

Data Structures and Programming
Techniques

34

Answer

• The piece of code on the previous slide constructs the
following linked list of two elements:

L:

Airport

.
Link LinkAirport

DUS ORD

Data Structures and Programming
Techniques

35

M:

Inserting a New Second Node on a List

• Example: adding one more airport to our list
representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

BRU

Airport Link

Data Structures and Programming
Techniques

36

Inserting a New Second Node on a List

void InsertNewSecondNode(void)
{
 NodeType *N;
 N=(NodeType *)malloc(sizeof(NodeType));
 strcpy(N->Airport,”BRU”);
 N->Link=L->Link;
 L->Link=N;
}

Data Structures and Programming
Techniques

37

Inserting a New Second Node on a List
(α is a pointer to β):cont’d)

Let us execute the previous function step by step:

N=(NodeType *)malloc(sizeof(NodeType));

strcpy(N->Airport,”BRU”);

?

Airport Link

N: ?

BRU

Airport

N: ?

Link

Data Structures and Programming
Techniques

38

Inserting a New Second Node on a List
(α is a pointer to β):cont’d)

N->Link=L->Link;

BRU

Airport

N: ?

Link

X

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

Data Structures and Programming
Techniques

39

Inserting a New Second Node on a List
(α is a pointer to β):cont’d)

L->Link=N;

BRU

Airport

N:

Link

XL:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

Data Structures and Programming
Techniques

40

Comments

• In the function InsertNewSecondNode,
variable N is local. Therefore it vanishes after
the end of the function execution. However,
the dynamically allocated node remains in
existence after the function has terminated.

Data Structures and Programming
Techniques

41

Searching for an Item on a List

• Let us now define a function which takes as
input an airport code A and a pointer to a list
L and returns a pointer to the first node of L
which has that code. If the code cannot be
found, then the function returns NULL.

Data Structures and Programming
Techniques

42

Searching for an Item on a List

NodeType *ListSearch(char *A, NodeType *L)
{
 NodeType *N;

 N=L;
 while (N != NULL){
 if (strcmp(N->Airport,A)==0){
 return N;
 } else {
 N=N->Link;
 }
 }
 return N;
}

Data Structures and Programming
Techniques

43

Comments

• The function strcmp(cs,ct) compares
string cs to string ct and returns a negative
integer if cs precedes ct alphabetically, 0
if cs==ct and a positive integer if cs
follows ct alphabetically (α is a pointer to β):using the ASCII
codes of the characters of the strings).

Data Structures and Programming
Techniques

44

Comments (α is a pointer to β):cont’d)

• Let us assume that we have the list below and
we are searching for item “ORD”. When the
initialization statement N=L is executed, we
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

45

Comments (α is a pointer to β):cont’d)

• Later on, inside the while loop, the
statement N=N->Link is executed and we
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

46

Comments (α is a pointer to β):cont’d)

• Then, the if inside the while loop is executed and
the value of N is returned. Assuming that we did not
find “ORD” here, the statement N=N->Link is
again executed and we have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

47

Comments (α is a pointer to β):cont’d)

• Then, the while loop is executed one more time
and the statement N=N->Link results in the
following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

48

.

Comments (α is a pointer to β):cont’d)

• Then, we exit from the while loop and the
statement return N returns NULL:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS

Data Structures and Programming
Techniques

49

.

Deleting the Last Node of a List

• Let us now write a function to delete the last
node of a list L.

• If L is empty, there is nothing to do.

• If L has one node, then we need to dispose of
the node’s storage and then set L to be the
empty list.

• If L has two or more nodes then we can use a
pair of pointers to implement the required
functionality as shown on the next slides.

Data Structures and Programming
Techniques

50

Deleting the Last Node of a List (α is a pointer to β):cont’d)

• Note that we need to pass the address of L as
an actual parameter in the form of &L
enabling us to change the contents of L inside
the function.

• Therefore the corresponding formal
parameter of the function will be a pointer to
a pointer to NodeType.

Data Structures and Programming
Techniques

51

Deleting the Last Node of a List

void DeleteLastNode(NodeType **L)
{
 NodeType *PreviousNode, *CurrentNode;

 if (*L != NULL) {
 if ((*L)->Link == NULL){
 free(*L);
 *L=NULL;
 } else {
 PreviousNode=*L;
 CurrentNode=(*L)->Link;
 while (CurrentNode->Link != NULL){
 PreviousNode=CurrentNode;
 CurrentNode=CurrentNode->Link;
 }
 PreviousNode->Link=NULL;
 free(CurrentNode);
 }
 }
}

Data Structures and Programming
Techniques

52

Comments

• When we advance the pointer pair to the next
pair of nodes, the situation is as follows:

*L:

Airport

.
AirportLink

SAN

Link Airport Link

CurrentNode:

ORDDUS

X

PreviousNode:

X

Data Structures and Programming
Techniques

53

L:

Why **?

• This is for the case that L has one node only.

• Then, the value of pointer L must be set to
NULL in the function DeleteLastNode.

• This can only be done by passing &L in the call
of the function.

Data Structures and Programming
Techniques

54

Inserting a New Last Node on a List

void InsertNewLastNode(char *A, NodeType **L)
{
 NodeType *N, *P;

 N=(NodeType *)malloc(sizeof(NodeType));
 strcpy(N->Airport, A);
 N->Link=NULL;

 if (*L == NULL) {
 *L=N;
 } else {
 P=*L;
 while (P->Link != NULL) P=P->Link;
 P->Link=N;
 }

}

Data Structures and Programming
Techniques

55

Why **?

• This is for the case that L is empty.

• Then, the value of pointer L must be set to
point to the new node in the function
DeleteLastNode.

• This can only be done by passing &L in the call
of the function.

Data Structures and Programming
Techniques

56

Question

• Assume now that we have a pointer Tail
pointing to the last element of a linked list.

• How would the operations of deleting the last
node of a list or inserting a new last node on a
list change to exploit the pointer Tail?

Data Structures and Programming
Techniques

57

Printing a List

void PrintList(NodeType *L)
{
 NodeType *N;

 printf(“(“);
 N=L;
 while(N != NULL) {
 printf(“%s”, N->Airport);
 N=N->Link;
 if (N!=NULL) printf(“,”);
 }
 printf(“)\n”);
}

Data Structures and Programming
Techniques

58

The Main Program

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

typedef char AirportCode[4];
typedef struct NodeTag {
 AirportCode Airport;
 struct NodeTag *Link;
 } NodeType;
typedef NodeType *NodePointer;

/* function prototypes */
void InsertNewLastNode(char *, NodeType **);
void DeleteLastNode(NodeType **);
NodeType *ListSearch(char *, NodeType *);
void PrintList(NodeType *);

Data Structures and Programming
Techniques

59

The Main Program (α is a pointer to β):cont’d)

int main(void)
{
 NodeType *L;

 L=NULL;

 PrintList(L);

 InsertNewLastNode(“DUS”, &L);
 InsertNewLastNode(“ORD”, &L);
 InsertNewLastNode(“SAN”, &L);
 PrintList(L);

 DeleteLastNode(&L);
 PrintList(L);

 if (ListSearch(“DUS",L) != NULL) {
 printf(“DUS is an element of the list\n");
 }
}

/* Code for functions InsertNewLastNode, PrintList, */
/* ListSearch and DeleteLastNode goes here. */

Data Structures and Programming
Techniques

60

Linked Lists vs. Arrays

• Compare the data structure linked list that we
defined in these slides with arrays.

• What are the pros and cons of each data
structure?

Data Structures and Programming
Techniques

61

Linked Lists vs. Arrays

• The simplicity of inserting and deleting a node is what
characterizes linked lists. This operation is more involved
in an array because all the elements of the array that
follow the affected element need to be moved.

• Linked lists are not appropriate for finding the i-th
element of a list because we have to follow i pointers. In
an array, the same functionality is implemented with one
operation.

• Such discussion is important when we want to choose a
data structure for solving a practical problem.

Data Structures and Programming
Techniques

62

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

 Chapter 2.

• (α is a pointer to β):προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C.
Κεφάλαιο 3.

Data Structures and Programming
Techniques

63

	Slide 1
	Linked Data Representations
	Levels of Data Abstraction
	Pointers
	Pointers in C
	typedef
	Pointers in C (cont’d)
	malloc
	Program Memory
	The Operator *
	The Operator &
	Pointers in C (cont’d)
	Pointers in C (cont’d)
	Pointers in C (cont’d)
	Pointers in C (cont’d)
	Pointers in C (cont’d)
	Recycling Used Storage
	Dangling Pointers
	Dangling Pointers (cont’d)
	NULL
	Pointers and Function Arguments
	Pointers and Function Arguments (cont’d)
	The Correct Function Swap
	In Pictures
	Linked Lists
	Diagrammatic Notation for Linked Lists
	Declaring Data Types for Linked Lists
	Structures in C
	Example
	The Function strcpy
	Accessing Members of a Structure
	Question
	Answer
	Example
	Answer
	Inserting a New Second Node on a List
	Inserting a New Second Node on a List
	Inserting a New Second Node on a List (cont’d)
	Inserting a New Second Node on a List (cont’d)
	Inserting a New Second Node on a List (cont’d)
	Comments
	Searching for an Item on a List
	Searching for an Item on a List
	Comments
	Comments (cont’d)
	Comments (cont’d)
	Comments (cont’d)
	Comments (cont’d)
	Comments (cont’d)
	Deleting the Last Node of a List
	Deleting the Last Node of a List (cont’d)
	Deleting the Last Node of a List
	Comments
	Why **?
	Inserting a New Last Node on a List
	Why **?
	Question
	Printing a List
	The Main Program
	The Main Program (cont’d)
	Linked Lists vs. Arrays
	Linked Lists vs. Arrays
	Readings

