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Linked Data Representations

• Linked data representations such as lists, stacks, 
queues, sets and trees are very useful in Computer 
Science and applications. E.g., in Databases, 
Artificial Intelligence, Graphics, Web, Hardware etc.

• We will cover all of these data structures in this 
course.

• Linked data representations are useful when it is 
difficult to predict the size and shape of the data 
structures needed.
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Levels of Data Abstraction
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Pointers

• The best way to realize linked data 
representations is using pointers.

• A pointer (δείκτης)δείκτης)) is a variable that 
references a unit of storage.

• Graphical notation (α is a pointer to β):α is a pointer to β):):

α: β)::β):

α:

β)::
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Pointers in C

typedef int *IntegerPointer;
IntegerPointer A, B;       
/* the declaration int *A, *B has the same effect */

A=(IntegerPointer)malloc(sizeof(int));
B=(int *)malloc(sizeof(int));

The above code results in the following situation:

A:

B:
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typedef

• C provides a facility called typedef for 
creating new data type names.

• typedefs are useful because:
– They help to organize our data type definitions 

nicely.

– They provide better documentation for our 
program.

– They make our program portable.
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Pointers in C (α is a pointer to β):cont’d)

• The previous statements first define a new data type name 
IntegerPointer which consists of a pointer to an 
integer.

• Then they define two variables A and B of type 
IntegerPointer.

• Then they allocate two blocks of storage for two integers 
and place two pointers to them in A and B.

• The void pointer returned by malloc is casted into a 
pointer to a block of storage holding an integer. You can 
omit this casting and your program will still work correctly.
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malloc

• void *malloc(size_t size) is a function of the 
standard library stdlib.

• malloc returns a pointer to space for an object of 
size size, or NULL if the request cannot be satisfied. 
The space is obtained from the heap and is 
uninitialized.

• This is called dynamic storage allocation (δείκτης)δυναμική 
δέσμευση μνήμης)).

• size_t is the unsigned integer type returned by the 
sizeof operator.
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Program Memory
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The Operator *

*A=5;
*B=17;

A:

B:

5

17

The unary operator * (α is a pointer to β):τελεστής) αναφοράς)) on the left side of the assignment 
designates the storage location to which the pointer A refers. We call this 
pointer dereferencing.
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The Operator &

int X=3;
A=&X;

A:

X:

3

The unary operator & (α is a pointer to β):τελεστής) διεύθυνσης)) gives the address of some object 
(α is a pointer to β):in the above diagram the address of variable X).
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Pointers in C (α is a pointer to β):cont’d)

• Consider again the following statements:

int *A, *B;
*A=5;
*B=17;

• Question: What happens if we now execute 
B=20;?
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Pointers in C (α is a pointer to β):cont’d)

• Answer: We have a type mismatch error since 
20 is an integer but B holds a pointer to 
integers.

• The compiler gcc will give a warning: 
“assignment makes pointer from an integer 
without a cast.”
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Pointers in C (α is a pointer to β):cont’d)

Suppose we start with the diagram below:

A:

B:

5

17
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Pointers in C (α is a pointer to β):cont’d)

Question: If we execute A=B; which one of the following two diagrams 
results?

A:

B:

17

17

A: 5

B: 17
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Pointers in C (α is a pointer to β):cont’d)

A=B;

A:

B:

5

17

Answer: The right diagram. Now A and B are called aliases because they name 
the same storage location. Note that the storage block containing 5 is now inaccessible. 
Some languages such as Lisp have a garbage collection facility for such storage.
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Recycling Used Storage

We can reclaim the storage space to which A points by using the reclamation 
function free:

free(A);
A=B;

A:

B: 17
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Dangling Pointers

Let us now consider the following situation:

Question: Suppose now we call free(B). What is the value of *A+3 then?

A:

B: 17
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Dangling Pointers (α is a pointer to β):cont’d)

Answer: We do not know. Storage location A now contains a dangling 
pointer and should not be used.

A:

B:
?
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NULL

There is a special address denoted by the constant NULL which is not the 
address of any node. The situation that results after we execute A=NULL; is 
shown graphically below:

A:
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NULL is automatically considered to be a value of any pointer type that can be defined in
C. NULL is defined in  the standard input/output library <stdio.h> and has the value 0.

.
Now we cannot access the storage location to which A pointed to earlier. So 
something like  *A=5; will give us “segmentation fault”.



Pointers and Function Arguments

• Let us suppose that we have a sorting routine that works by exchanging two 
out-of-order elements using a function Swap.

• Question: Can we call Swap(A,B) where the Swap function is defined as 
follows?

void Swap(int X, int Y)
{
   int Temp;
   
   Temp=X;
   X=Y;
   Y=Temp;
}
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Pointers and Function Arguments (α is a pointer to β):cont’d)

• Answer: No. C passes arguments to functions by 
value (δείκτης)κατ’ αξία) therefore Swap can’t affect the 
arguments A and B in the routine that called it. 
Swap only swaps copies of A and B.

• The way to have the desired effect is for the 
calling program to pass pointers to the values to 
be changed: 

    Swap(&A, &B);
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The Correct Function Swap

void Swap(int *P, int *Q)
{
    int Temp;
    
    Temp=*P;
    *P=*Q;
    *Q=Temp;
}
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In Pictures
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A:

Q:

B:

P:

In the calling program:

In Swap:



Linked Lists

• A linear linked list (α is a pointer to β):or linked list) is a sequence of nodes in 
which each node, except the last, links to a successor node.

• We usually have a pointer variable L containing a pointer to 
the first node on the list.

• The link field of the last node contains NULL.

• Example: a list representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN
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Diagrammatic Notation for Linked Lists

L:

Info Link InfoInfo LinkLink

Last:

.
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Declaring Data Types for Linked Lists

The following statements declare appropriate data types for our linked list:

typedef char AirportCode[4];
typedef struct NodeTag {
                        AirportCode Airport;
                        struct NodeTag *Link;
                } NodeType;
typedef NodeType *NodePointer;

We can now define variables of these datatypes:

NodePointer L;
or equivalently

NodeType *L;
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Structures in C

• A structure (δείκτης)δομή) is a collection of one or 
more variables possibly of different types, 
grouped together under a single name.

• The variables named in a structure are called 
members (δείκτης)μέλη).

• In the previous structure definition, the name 
NodeTag is called a structure tag and can be 
used subsequently as a shorthand for the part 
of the declaration in braces.
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Example

• Given the previous typedefs, what would be the output of the 
following piece of code:

AirportCode C;
NodePointer L;

strcpy(C, “BRU”);
printf(“%s\n”, C);

L=(NodePointer)malloc(sizeof(NodeType));
strcpy(L->Airport, C);
printf(“%s\n”, L->Airport);
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The Function strcpy

• The function strcpy(s,ct) copies string 
ct to string s, including ‘\0’. It returns s.

• The function is defined in header file 
<string.h>.
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Accessing Members of a Structure

• To access a member of a structure, we use the 
dot notation as follows:

  structure-name.member

• To access a member of a structure pointed to 
by a pointer P, we can use the notation 
(*P).member or the equivalent arrow 
notation P->member.
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Question

• Why didn’t I write C=“BRU”; and 

    L->Airport=“BRU” in the previous piece

    of code?
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Answer

• The assignment C=“BRU”; assigns to 
variable C a pointer to the character array 
“BRU”. This would result in an error (α is a pointer to β):type 
mismatch) because C is of type 
AirportCode.

• Similarly for the second assignment.
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Example

• Given the previous typedefs, what does the following piece of code do?:

NodePointer L, M;

L=(NodePointer)malloc(sizeof(NodeType));
strcpy(L->Airport, “DUS”);

M=(NodePointer)malloc(sizeof(NodeType));
strcpy(M->Airport, “ORD”);

L->Link=M;
M->Link=NULL;

 

Data Structures and Programming 
Techniques

34



Answer

• The piece of code on the previous slide constructs the 
following linked list of two elements:

L:

Airport

.
Link LinkAirport

DUS ORD
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Inserting a New Second Node on a List

• Example: adding one more airport to our list 
representing a flight

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

BRU

Airport Link
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Inserting a New Second Node on a List

void InsertNewSecondNode(void)
{
      NodeType *N;
      N=(NodeType *)malloc(sizeof(NodeType));
      strcpy(N->Airport,”BRU”);
      N->Link=L->Link;
      L->Link=N;
}
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Inserting a New Second Node on a List 
(α is a pointer to β):cont’d)

Let us execute the previous function step by step:

      
N=(NodeType *)malloc(sizeof(NodeType));

    
  

strcpy(N->Airport,”BRU”);

   
  

?

Airport Link

N: ?

BRU

Airport

N: ?

Link
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Inserting a New Second Node on a List 
(α is a pointer to β):cont’d)

N->Link=L->Link;

BRU

Airport

N: ?

Link

X

L:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN
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Inserting a New Second Node on a List 
(α is a pointer to β):cont’d)

L->Link=N;

BRU

Airport

N:

Link

XL:

Airport

.
Link AirportLink LinkAirport

DUS ORD SAN

Data Structures and Programming 
Techniques

40



Comments

• In the function InsertNewSecondNode, 
variable N is local. Therefore it vanishes after 
the end of the function execution. However, 
the dynamically allocated node remains in 
existence after the function has terminated. 
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Searching for an Item on a List

• Let us now define a function which takes as 
input an airport code A and a pointer to a list 
L and returns a pointer to the first node of L 
which has that code. If the code cannot be 
found, then the function returns NULL.
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Searching for an Item on a List

NodeType *ListSearch(char *A, NodeType *L)
{
      NodeType *N;

      N=L;
      while (N != NULL){
        if (strcmp(N->Airport,A)==0){
           return N;
        } else {
           N=N->Link;
        }
      }
      return N;
}
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Comments

• The function strcmp(cs,ct) compares 
string cs to string ct and returns a negative 
integer if cs precedes ct alphabetically, 0 
if cs==ct and a positive integer if cs 
follows ct alphabetically (α is a pointer to β):using the ASCII 
codes of the characters of the strings).
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Comments (α is a pointer to β):cont’d)

• Let us assume that we have the list below and 
we are searching for item “ORD”. When the 
initialization statement N=L is executed, we 
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (α is a pointer to β):cont’d)

• Later on, inside the while loop, the 
statement N=N->Link is executed and we 
have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (α is a pointer to β):cont’d)

• Then, the if inside the while loop is executed and 
the value of N is returned. Assuming that we did not 
find “ORD” here, the statement N=N->Link is 
again executed and we have the following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (α is a pointer to β):cont’d)

• Then, the while loop is executed one more time 
and the statement N=N->Link results in the 
following situation:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Comments (α is a pointer to β):cont’d)

• Then, we exit from the while loop and the 
statement return N returns NULL:

L:

Airport

.
AirportLink

SAN

Link Airport Link

N:

ORDDUS
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Deleting the Last Node of a List

• Let us now write a function to delete the last 
node of a list L.

• If L is empty, there is nothing to do.

• If L has one node, then we need to dispose of 
the node’s storage and then set L to be the 
empty list.

• If L has two or more nodes then we can use a 
pair of pointers to implement the required 
functionality as shown on the next slides.
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Deleting the Last Node of a List (α is a pointer to β):cont’d)

• Note that we need to pass the address of L as 
an actual parameter in the form of &L 
enabling us to change the contents of L inside 
the function.

• Therefore the corresponding formal 
parameter of the function will be a pointer to 
a pointer to NodeType.
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Deleting the Last Node of a List

void DeleteLastNode(NodeType **L)
{
      NodeType *PreviousNode, *CurrentNode;

      if (*L != NULL) {
         if ((*L)->Link == NULL){
            free(*L);
            *L=NULL;
         } else {
            PreviousNode=*L;
            CurrentNode=(*L)->Link;
            while (CurrentNode->Link != NULL){
               PreviousNode=CurrentNode;
               CurrentNode=CurrentNode->Link;
            }
            PreviousNode->Link=NULL;
            free(CurrentNode);
         }
      }
}
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Comments

• When we advance the pointer pair to the next 
pair of nodes, the situation is as follows:

*L:

Airport

.
AirportLink

SAN

Link Airport Link

CurrentNode:

ORDDUS

X

PreviousNode:

X
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Why **?

• This is for the case that L has one node only.

• Then, the value of pointer L must be set to 
NULL in the function  DeleteLastNode.

• This can only be done by passing &L in the call 
of the function.
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Inserting a New Last Node on a List

void InsertNewLastNode(char *A, NodeType **L)
{
      NodeType *N, *P;

      N=(NodeType *)malloc(sizeof(NodeType));
      strcpy(N->Airport, A);
      N->Link=NULL;

      if (*L == NULL) {
         *L=N;
      } else {
         P=*L;
         while (P->Link != NULL) P=P->Link; 
         P->Link=N;
      }

}
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Why **?

• This is for the case that L is empty.

• Then, the value of pointer L must be set to 
point to the new node in the function  
DeleteLastNode.

• This can only be done by passing &L in the call 
of the function.

Data Structures and Programming 
Techniques

56



Question

• Assume now that we have a pointer Tail 
pointing to the last element of a linked list.

• How would the operations of deleting the last 
node of a list or inserting a new last node on a 
list change to exploit the pointer Tail?
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Printing a List

void PrintList(NodeType *L)
{
      NodeType *N;

      printf(“(“);
      N=L;
      while(N != NULL) {
         printf(“%s”, N->Airport);
         N=N->Link;
         if (N!=NULL) printf(“,”);
      }
      printf(“)\n”);
}
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The Main Program

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

typedef char AirportCode[4];
typedef struct NodeTag {
                        AirportCode Airport;
                        struct NodeTag *Link;
                } NodeType;
typedef NodeType *NodePointer;

/* function prototypes */
void InsertNewLastNode(char *, NodeType **);
void DeleteLastNode(NodeType **);
NodeType *ListSearch(char *, NodeType *);
void PrintList(NodeType *);
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The Main Program (α is a pointer to β):cont’d)

int main(void)
{
      NodeType *L;

      L=NULL;

      PrintList(L);

      InsertNewLastNode(“DUS”, &L);
      InsertNewLastNode(“ORD”, &L);
      InsertNewLastNode(“SAN”, &L);  
      PrintList(L);

      
      DeleteLastNode(&L);
      PrintList(L);

      if (ListSearch(“DUS",L) != NULL) {
         printf(“DUS is an element of the list\n");
      }      
}

/* Code for functions InsertNewLastNode, PrintList,  */
/* ListSearch and DeleteLastNode goes here. */
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Linked Lists vs. Arrays

• Compare the data structure linked list that we 
defined in these slides with arrays.

• What are the pros and cons of each data 
structure?
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Linked Lists vs. Arrays

• The simplicity of inserting and deleting a node is what 
characterizes linked lists. This operation is more involved 
in an array because all the elements of the array that 
follow the affected element need to be moved.

• Linked lists are not appropriate for finding the i-th 
element of a list because we have to follow i pointers. In 
an array, the same functionality is implemented with one 
operation.

• Such discussion is important when we want to choose a 
data structure for solving a practical problem.
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C.

    Chapter 2.

• (α is a pointer to β):προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C. 
Κεφάλαιο 3.
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