
Lists and Strings

Manolis Koubarakis

Data Structures and Programming
Techniques

1

A List ADT

• A list L of items of type T is a sequence of items of type
T on which the following operations are defined:
– Initialize the list L to be the empty list.
– Determine whether or not the list L is empty.
– Find the length of a list L (where the length of L is the

number of items in L and the length of the empty list is 0).
– Select the 𝑖-th item of a list L, where 1 ≤ 𝑖 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ 𝐿 .
– Replace the 𝑖-th item X of a list L with a new item Y where
1 ≤ 𝑖 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ 𝐿 .

– Delete any item X from a nonempty list L.
– Insert a new item X into a list L in any arbitrary position

(such as before the first item of L, after the last item of L or
between any two items of L).

Data Structures and Programming
Techniques

2

Lists

• Lists are more general kinds of containers than
stacks and queues.

• Lists can be represented by sequential
representations and linked representations.

Data Structures and Programming
Techniques

3

Sequential List Representations

• We can use an array A[0:MaxSize-1] as we
show graphically (items are stored
contiguously):

A: x1 x2 x3 x4

MaxSize-1FirstFree

Data Structures and Programming
Techniques

4

Advantages and Disadvantages

• Advantages:

– Fast access to the 𝑖-th item of the list in O(1) time.

• Disadvantages:

– Insertions and deletions may require shifting all
items i.e., an O(n) cost on the average.

– The size of the array should be known in advance.
So if we have small size, we run the risk of
overflow and if we have large size, we will be
wasting space.

Data Structures and Programming
Techniques

5

One-Way Linked Lists Representation

• We can use chains of linked nodes as shown
below:

x1
.L: x2 x3

Data Structures and Programming
Techniques

6

Declaring Data Types for Linked Lists

The following statements declare appropriate data types for our linked lists from
earlier lectures:

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

typedef NodeType *NodePointer;

We can now define variables of these datatypes:
NodePointer L;

or equivalently
NodeType *L;

Data Structures and Programming
Techniques

7

Accessing the ith Item

void PrintItem(int i, NodeType *L)

{

while ((i > 1) && (L != NULL)){

L=L->Link;

i--;

}

if ((i == 1) && (L != NULL)){

printf(“%s”, L->Item);

} else {

printf(“Error – attempt to print an
item that is not on the list.\n”);

}

}

Data Structures and Programming
Techniques

8

Computational Complexity

• Suppose that list L has exactly 𝑛 items. If it is equally
likely that each of these items can be accessed, then
the average number of 𝑛 pointers followed to access
the ith item is:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1 + 2 +⋯+ 𝑛

𝑛
=

𝑛 𝑛 + 1
2
𝑛

=
𝑛

2
+
1

2

• Therefore, the average time to access the ith item is
O(𝑛).

• The complexity bound is the same for inserting before
or after the ith item or deleting it or replacing it.

Data Structures and Programming
Techniques

9

Comparing Sequential and Linked List
Representations

List Operation Sequential Representation Linked List Representation

Finding the length of L O(1) O(𝑛)

Inserting a new first item O(𝑛) O(1)

Deleting the last item O(1) O(𝑛)

Replacing the ith item O(1) O(𝑛)

Deleting the ith item O(𝑛) O(𝑛)

The above table gives average running times. But time is not the only resource that is
of interest. Space can also be an important resource in some applications.

Data Structures and Programming
Techniques

10

Other Linked List Representations

• Circular linked lists

• Two-way linked lists

• Linked lists with header nodes

Data Structures and Programming
Techniques

11

Circular linked lists

• A circular linked list is formed by having the link
in the last node of a one-way linked list point
back to the first node.

• The advantage of a circular linked list is that any
node on it is accessible by any other node.

x1L: x2 x3

Data Structures and Programming
Techniques

12

Two-Way Linked Lists

• Two-way linked lists are formed from nodes
that have pointers to both their right and left
neighbors on the list.

x1L: x2 x3 ..
LLink Item RLink LLink Item RLink RLinkItemLLink

Data Structures and Programming
Techniques

13

Two-Way Linked Lists (cont’d)

• Given a pointer to a node N in a two-way
linked list, we can follow links in either
direction to access other nodes.

• We can insert a node M either before or after
N starting only with the information given by
the pointer to N.

Data Structures and Programming
Techniques

14

Linked Lists with Header Nodes

• Sometimes it is convenient to have a special
header node that points to the first node in a
linked list of item nodes.

x1
.

L:

x2 x3

Header Node

Data Structures and Programming
Techniques

15

Linked Lists with Header Nodes
(cont’d)

• Header nodes can be used to hold information
such as the number of nodes in the list etc.

Data Structures and Programming
Techniques

16

Generalized Lists

• A generalized list is a list in which the
individual list items are permitted to be
sublists.

• Example: (a1, a2, (b1, (c1, c2), b3), a4, (d1, d2), a6)

• If a list item is not a sublist, it is said to be atomic.

• Generalized lists can be represented by sequential or
linked representations.

Data Structures and Programming
Techniques

17

Generalized Lists (cont’d)

• The generalized list L=(((1, 2, 3), 4), 5, 6, (7)) can be
represented without shared sublists as follows:

False FalseTrueTrue

Atom SLLink Atom Atom AtomLink Link LinkItem ItemSLL:

5 6

Atom Item Link

Atom

SL

Link

Atom Item Link

4 7True TrueFalse

Item Item ItemAtom Atom

Atom Link

Link Link

1 2 3 .

.

.

.

True True True

Data Structures and Programming
Techniques

18

Generalized Lists (cont’d)

• The generalized list L=(((1, 2, 3), (1, 2, 3), (2, 3), 6), 4,
5, ((2, 3), 6) can be represented with shared sublists
as follows:

False FalseTrueTrue

Atom SLLink Atom Atom AtomLink Link LinkItem ItemSLL:

4 5

Atom Item Link

Atom

SL

Link

Atom Link

6True TrueFalse

Item Item ItemAtom Atom

Atom Link

Link Link

1 2 3 .

.

.

True True True

Atom SLSL Link

Data Structures and Programming
Techniques

19

Question

• What C datatype can we use to represent a
generalized list?

Data Structures and Programming
Techniques

20

A Datatype for Generalized List Nodes

typedef struct GenListTag {

GenListTag *Link;

int Atom;

union SubNodeTag {

ItemType Item;

struct GenListTag *Sublist;

} SubNode;

} GenListNode;

Data Structures and Programming
Techniques

21

Unions in C

• A union is a variable which can hold objects of
different types and sizes.

• Unions provide a way to manipulate different
kinds of data in a single area of storage.

• The storage allocated to a union variable is
enough to hold the largest of its members.

• Syntactically, members of a union are
accessed as union-name.member or
union-pointer->member.

Data Structures and Programming
Techniques

22

Printing Generalized Lists

void PrintList(GenListNode *L)

{

GenListNode *G;

printf(“(“);

G=L;

while (G != NULL){

if (G->Atom){

printf(“%d”, G->SubNode.Item);

} else {

printList(G->SubNode.SubList);

}

if (G->Link != NULL) printf(“,”);

G=G->Link;

}

printf(“)”);

}

Data Structures and Programming
Techniques

23

Applications of Generalized Lists

• Artificial Intelligence programming languages
LISP and Prolog offer generalized lists as a
language construct.

• Generalized lists are often used in Artificial
Intelligence applications.

• More in the courses “Artificial Intelligence”
and “Logic Programming”.

Data Structures and Programming
Techniques

24

Strings

• Strings are sequences of characters. They have
many applications:

– Word processors

– E-mail systems

– Databases

– …

Data Structures and Programming
Techniques

25

Strings in C

• A string in C is a sequence of characters
terminated by the null character “\0”.

• Example: To represent a string
S==“canine” in C, we allocate a block of
memory B at least seven bytes long and place
the characters “canine” in bytes B[0:5].
Then, in byte B[6], we place the character
“\0”.

Data Structures and Programming
Techniques

26

A String ADT

• In C’s standard library you can access a
collection of useful string operations by
including the header file <string.h> in
your program.

• These functions define a predefined string
ADT.

Data Structures and Programming
Techniques

27

Examples of String Operations

• Let us assume that S and T are string variables (i.e., of
type char *). Then:
– strlen(S): returns the number of characters in string S

(not including the terminating character ‘\0’).
– strstr(S,T): returns a pointer to the first occurrence

of string S in string T (or NULL if there is no occurrence of
string S in string T).

– strcat(S,T): concatenate a copy of string T to the
end of string S and return a pointer to the beginning of the
enlarged string S.

– strcpy(S,T): make a copy of the string T including a
terminating last character ‘\0’, and store it starting at
the location pointed to by the character pointer S.

Data Structures and Programming
Techniques

28

Concatenating Two Strings

char *Concat(char *S, char *T)

{

char *P;

char *temp;

P=(char *)malloc(1+strlen(S)+strlen(T));

temp=P;

while ((*P++=*S++)!=‘\0’)

;

P--;

while ((*P++=*T++)!=‘\0’)

;

return(temp);

}

Data Structures and Programming
Techniques

29

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

Chapter 8, Sections 8.1-8.5.

• Robert Sedgewick. Αλγόριθμοι σε C.

Κεφ. 3.

Data Structures and Programming
Techniques

30

