
© 2010 Goodrich, Tamassia Minimum Spanning Trees 1

Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337



© 2010 Goodrich, Tamassia Minimum Spanning Trees 2

Minimum Spanning Trees
We will consider undirected

weighted graphs.

Spanning subgraph

◼ Subgraph of a graph G containing 
all the vertices of G.

Spanning tree

◼ Spanning subgraph that is itself a 
(free) tree.

Minimum spanning tree (ελάχιστο 
επικαλύπτον δένδρο, MST)

◼ Spanning tree of a weighted graph 
with minimum total edge weight.

❑ Applications

◼ Communications networks

◼ Transportation networks
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Cycle Property
Cycle Property:

◼ Let T be a minimum 

spanning tree of a 
weighted graph G.

◼ Let e be an edge of G
that is not in T and let C 

be the cycle formed by e
with T.

◼ For every edge f of C,

weight(f)  weight(e) .

Proof:

◼ By contradiction.

◼ If weight(f) > weight(e) we 

can get a spanning tree 
of smaller weight by 
replacing f with e.
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U V

Partition Property
Partition Property:

◼ Consider a partition of the vertices of 
G into subsets U and V.

◼ Let e be an edge of minimum weight 
across the partition.

◼ There is a minimum spanning tree of 
G containing edge e.

Proof:

◼ Let T be an MST of G.

◼ If T does not contain e, consider the 
cycle C formed by e with T and let  f
be an edge of C across the partition.

◼ By the cycle property,
weight(f)  weight(e).

◼ Thus, weight(f) = weight(e).

◼ We obtain another MST by replacing 
f  with e.
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Kruskal’s Algorithm
❑ Maintain a partition of the 

vertices into clusters

◼ Initially, single-vertex 
clusters.

◼ Keep an MST for each 
cluster.

◼ Merge “closest” clusters 
and their MSTs.

❑ A priority queue stores the 
edges outside clusters

◼ Key: weight

◼ Value: edge

❑ At the end of the algorithm

◼ One cluster and one MST.

Minimum Spanning Trees 5

Algorithm KruskalMST(G)

for each vertex v in G do

Create a cluster consisting of v

let Q be a priority queue.

Insert all edges into Q

T  

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e  Q.removeMin().getValue()

[u, v]  G.endVertices(e)

A  getCluster(u)

B  getCluster(v) 

if A  B then

Add edge e to T

mergeClusters(A, B)

return T
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Kruskal’s Algorithm (cont’d)

❑ The notation object.function1.function2 in the code comes from 
object-oriented programming, and it means apply function2 to 
the result of applying function1 to object object. In other words, 
Q.removeMin().getValue() means get the value of the minimum 

element in the priority queue. Similarly, for other statements.

❑ The edge e selected inside the while loop is the edge in the 
priority queue Q with the minimum weight.

❑ u and v are the endpoints of this edge.

❑ The partition property guarantees that each time the body of 
the while loop is executed, the edge added is part of an MST.

Minimum Spanning Trees 6
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Example
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Example (cont’d)

four steps
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Example (cont’d)
❑ Red edges are edges of the MST.

❑ Dashed blue edges are edges that were considered by 
the algorithm but were discarded because their 
endpoints were already in the same cluster.

Minimum Spanning Trees 9
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Data Structures for Kruskal’s Algorithm

❑ The graph will be implemented using adjacency lists.

❑ The algorithm maintains a forest of trees.

❑ A priority queue extracts the edges by increasing 
weight. The priority queue is implemented as a min
heap.

❑ An edge is accepted if it connects distinct trees.

❑ We need a data structure that maintains a partition, 
i.e., a collection of disjoint sets, with operations:

◼ makeSet(u): create a set consisting of u

◼ findSet(u): return the set storing u

◼ union(A, B): replace sets A and B with their union

Minimum Spanning Trees 10
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Data Structures for Kruskal’s Algorithm 
(cont’d)

❑ For the disjoint sets data structure we will use the 
implementation using disjoint forests and the 
algorithm weighted quick-union with path compression 
by halving.

Minimum Spanning Trees 11
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Partition-Based Implementation
❑ Partition-based 

version of 
Kruskal’s 
Algorithm 
◼ Cluster merges 

as unions 

◼ Cluster locations 
as findSets

Minimum Spanning Trees 12

Algorithm KruskalMST(G)

Initialize a partition P

for each vertex v in G do

P.makeSet(v)

let Q be a priority queue.

Insert all edges into Q

T  

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e  Q.removeMin().getValue()

[u, v]  G.endVertices(e)

A  P.findSet(u)

B  P.findSet(v) 

if A  B then

Add edge e to T

P.union(A, B)

return T
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Complexity Analysis

❑ Let n and m denote the number of vertices and edges of the 

input graph respectively.

❑ The priority queue can be initialized in O(m log m) time with 

repeated insertions or with the bottom up construction 
algorithm we have presented in the lecture on priority queues in 
O(m) time.

❑ The removal operations from the priority queue will take O(m

log m) time.

❑ Alternative: Sort the edges in increasing order of weight and 
then scan them. This can also be done in O(m log m) time with 

algorithms mergesort of heapsort we will study. 

Minimum Spanning Trees 13
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Complexity Analysis (cont’d)

❑ We will also need n-1 calls to union and at most m
calls to findSet. These operations will take O(n log m) 
time for the chosen disjoint-set data structure and 
algorithms.

❑ Therefore, the running time of Kruskal’s algorithm is 
O((n + m) log n)

Minimum Spanning Trees 14
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Prim-Jarnik’s Algorithm

❑ Similar to Dijkstra’s algorithm.

❑ We pick an arbitrary vertex s and we grow the MST as 

a cloud of vertices, starting from s.

❑ We store with each vertex v label D(v) representing 

the smallest weight of an edge connecting v to a 

vertex in the cloud.

❑ At each step:

◼ We add to the cloud the vertex u outside the cloud with 

the smallest distance label D(u).

◼ We update the labels D(z) of the vertices z adjacent to u.
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Prim-Jarnik’s Algorithm (cont’d)

❑ We will use adjacency lists for the representation of 

the input graph.

❑ We will use a priority queue to store, for each vertex 

v, the pair (v,e) with key D(v) where e is the edge with 

the smallest weight connecting v to the cloud and 

D(v) is that weight.

❑ The priority queue will be implemented as a min 

heap.



© 2010 Goodrich, Tamassia Minimum Spanning Trees 17

Prim-Jarnik’s Algorithm (cont.)
Algorithm PrimJarnikMST(G)

Pick any vertex v of G
D[v]  0
for each vertex u  v  do

D[u]  +
Initialize T  .
Initialize a priority queue Q with an entry ((u,null),D[u]) for each vertex u,
where (u,null) is the value and D[u] is the key. 
while Q is not empty do

(u,e)  Q.removeMin()

Add vertex u and edge e to T.
for each vertex z adjacent  to u such that z is in Q do

if weight((u,z)) < D[z] then
D[z]  weight((u,z))
Change to (z,(u,z)) the value of vertex z in Q
Change to D[z] the key of vertex z in Q

return the tree T
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This is the graph before the while loop is executed. The values of D[v] are 
shown in red near the vertices. In the first iteration of the while loop, the 

vertex A will be selected and then the algorithm will proceed as shown in the 
following slide.
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Example
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Example (contd.)
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Example (cont’d)
❑ In an implementation, we can use a very big positive 

integer in the place of . All the weights are then 
assumed to be smaller than this integer.

❑ In the previous figures, red edges denote MST edges 
when they are inside the cloud.

❑ Red edges also denote edges of minimum weight 
connecting vertices in the MST (cloud) to vertices in Q.

❑ Dashed blue edges denote edges that have been 
discarded, inside the if statement of the algorithm, in 

favour of (red) edges with minimum weight.

❑ Upon completion of the algorithms, red edges form the 
MST.
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Complexity Analysis
❑ Let n and m denote the number of vertices and edges 

of the input graph respectively.

❑ The for loop takes O(n) time.

❑ Since the priority queue is implemented as a min heap, 
we can initialize it in O(n log n) time with repeated 
insertions or in O(n) using the bottom up construction 

algorithm we have presented in the lectures for heaps.

❑ We can extract the vertex u from the priority queue in 
O(log n) time. So the complexity for extracting all 
vertices is O(n log n). 
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Complexity Analysis (cont’d)
❑ We can do the two change operations inside the if

statement in O(log n) time as well (how can we 

augment the priority queue implementation to achieve 
this bound?). This update is done at most once for each 
edge (u,z) so the total updates can be done in O(m log 

n). 

❑ Hence, Prim-Jarnik’s algorithm runs in O((n + m) log n)

time.
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Readings

❑ M. T. Goodrich, R. Tamassia and D. Mount. Data Structures and 
Algorithms in C++. 2nd edition. John Wiley. 2011.

◼ Chapter 13

❑ M. T. Goodrich and R. Tamassia. Δομές Δεδομένων και 
Αλγόριθμοι σε Java. 5η έκδοση. Εκδόσεις Δίαυλος. 2013.

◼ Chapter 13

❑ R. Sedgewick. Algorithms in C. 3rd edition. Part 5. Graph 
Algorithms.

◼ Chapter 20.
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