Recursion

Manolis Koubarakis

Recursion

- Recursion is a fundamental concept of Computer Science.
- It usually help us to write simple and elegant solutions to programming problems.
- You will learn to program recursively by working with many examples to develop your skills.

Recursive Programs

- A recursive program is one that calls itself in order to obtain a solution to a problem.
- The reason that it calls itself is to compute a solution to a subproblem that has the following properties:
 - The subproblem is smaller than the problem to be solved.
 - The subproblem can be solved directly (as a base case) or recursively by making a recursive call.
 - The subproblem's solution can be combined with solutions to other subproblems to obtain a solution to the overall problem.

Example

- Let us consider a simple program to add up all the squares of integers from m to n.
- An **iterative function** to do this is the following:

```
int SumSquares(int m, int n)
{
   int i, sum;

   sum=0;
   for (i=m; i<=n; ++i) sum +=i*i;
   return sum;
}</pre>
```

Recursive Sum of Squares

```
int SumSquares(int m, int n)
{
    if (m<n) {
        return m*m + SumSquares(m+1, n);
    } else {
        return m*m;
    }
}</pre>
Base case
```

Comments

- In the case that the range m:n contains more than one number, the solution to the problem can be found by adding (a) the solution to the smaller subproblem of summing the squares in the range m+1:n and (b) the solution to the subproblem of finding the square of m. (a) is then solved in the same way (recursion).
- We stop when we reach the base case that occurs when the range m:n contains just one number, in which case m==n.
- This recursive solution can be called "going-up" recursion since the successive ranges are m+1:n, m+2:n etc.

Going-Down Recursion

```
int SumSquares(int m, int n)
{
    if (m<n) {
        return SumSquares(m, n-1) + n*n;
    } else {
        return n*n;
    }
}</pre>
Base case
```

Recursion Combining Two Half-Solutions

```
int SumSquares(int m, int n)
   int middle;
   if (m==n) {
      return m*m;
                                 Base case
    } else {
      middle=(m+n)/2;
      return
          SumSquares (m, middle) +SumSquares (middle+1, n);
             Recursive call
                                                     Recursive call
                         Data Structures and Programming
                               Techniques
```

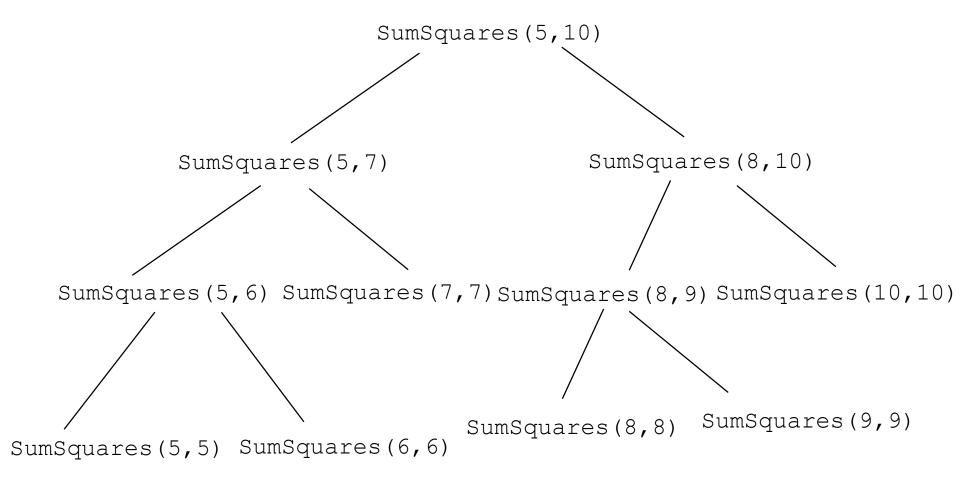
Comments

- The **recursion** here says that the sum of the squares of the integers in the range m:n can be obtained by adding the sum of the squares of the left half range, m:middle, to the sum of the squares of the right half range, middle+1:n.
- We stop when we reach the **base case** that occurs when the range contains just one number, in which case m==n.
- The middle is computed by using integer division (operator /) which keeps the quotient and throws away the remainder.

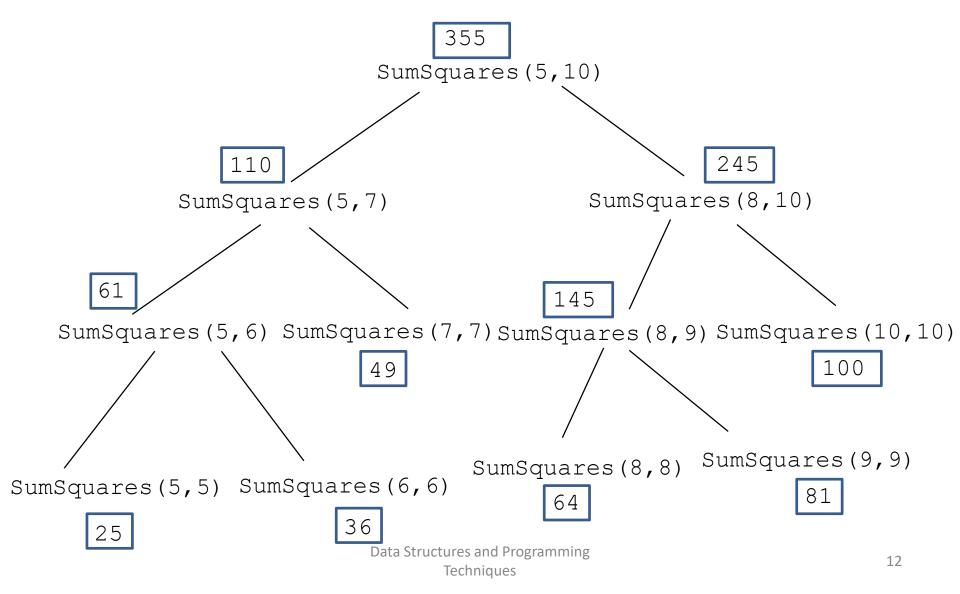
Call Trees and Traces

 We can depict graphically the behaviour of recursive programs by drawing call trees or traces.

Call Trees



Annotated Call Trees



Traces

```
SumSquares(5,10) = SumSquares(5,7) + SumSquares(8,10) =
                 =SumSquares (5, 6) +SumSquares (7, 7)
                     +SumSquares (8,9) +SumSquares (10,10)
                 =SumSquares (5,5) +SumSquares (6,6)
                         +SumSquares (7,7)
                     +SumSquares (8,8)+SumSquares (9,9)
                         +SumSquares (10,10)
                 =((25+36)+49)+((64+81)+100)
                 = (61+49) + (145+100)
                 =(110+245)
                 =355
```

Computing the Factorial

- Let us consider a simple program to compute the factorial n! of n.
- An iterative function to do this is the following:

```
int Factorial(int n)
{
   int i, f;

   f=1;
   for (i=2; i<=n; ++i) f*=i;
   return f;
}</pre>
```

Recursive Factorial

```
int Factorial(int n)
{
    if (n==1) {
        return 1;
    } else {
        return n*Factorial(n-1);
    }
}
Recursive call
```

Computing the Factorial (cont'd)

- The previous program is a "going-down" recursion.
- Can you write a "going-up" recursion for factorial?
- Can you write a recursion combining two halfsolutions?
- The above tasks do not appear to be easy.

Computing the Factorial (cont'd)

- It is easier to first write a function Product (m,n) which multiplies together the numbers in the range m:n.
- Then Factorial (n) = Product (1, n).

Multiplying m:n Together Using Half-Ranges

```
int Product(int m, int n)
   int middle;
   if
       (m==n)
      return m;
                               Base case
    } else {
      middle=(m+n)/2;
      return Product (m, middle) *Product (middle+1, n);
            Recursive call
                                                  Recursive call
                         Data Structures and Programming
```

Techniques

Reversing Linked Lists

- Let us now consider the problem of reversing a linked list \bot .
- The type NodeType has been defined in the previous lecture as follows:

Reversing a List Iteratively

• An iterative function for reversing a list is the following:

```
void Reverse(NodeType **L)
{
    NodeType *R, *N, *L1;

    L1=*L;
    R=NULL;
    while (L1 != NULL) {
        N=L1;
        L1=L1->Link;
        N->Link=R;
        R=N;
    }
    *L=R;
}
```

Question

 If in our main program we have a list with a pointer A to its first node, how do we call the previous function?

Answer

We should make the following call:

Reverse (&A)

 A recursive solution to the problem of reversing a list L is found by partitioning the list into its head Head (L) and tail Tail (L) and then concatenating the reverse of Tail (L) with Head (L).

Head and Tail of a List

- Let L be a list. Head (L) is a list
 containing the first node of L. Tail (L) is a
 list consisting of L's second and succeeding
 nodes.
- If L==NULL then Head(L) and Tail(L) are not defined.
- If L consists of a single node then Head (L) is the list that contains that node and Tail (L) is NULL.

Example

Let L=(SAN, ORD, BRU, DUS). Then
 Head(L)=(SAN) and
 Tail(L)=(ORD, BRU, DUS).

```
NodeType *Reverse(NodeType *L)
     NodeType *Head, *Tail;
     if (L==NULL) {
         return NULL;
     } else {
         Partition(L, &Head, &Tail);
         return Concat (Reverse (Tail), Head);
```

```
void Partition(NodeType *L, NodeType **Head,
NodeType **Tail)
{
    if (L != NULL) {
        *Tail=L->Link;
        *Head=L;
        (*Head)->Link=NULL;
}
```

```
NodeType *Concat(NodeType *L1, NodeType *L2)
   NodeType *N;
   if (L1 == NULL) {
      return L2;
   } else {
      N=L1;
      while (N->Link != NULL) N=N->Link;
      N->Link=L2;
      return L1;
```

Infinite Regress

Let us consider again the recursive factorial function:

```
int Factorial(int n);
{
   if (n==1) {
     return 1;
   } else {
     return n*Factorial(n-1);
   }
}
```

• What happens if we call Factorial (0)?

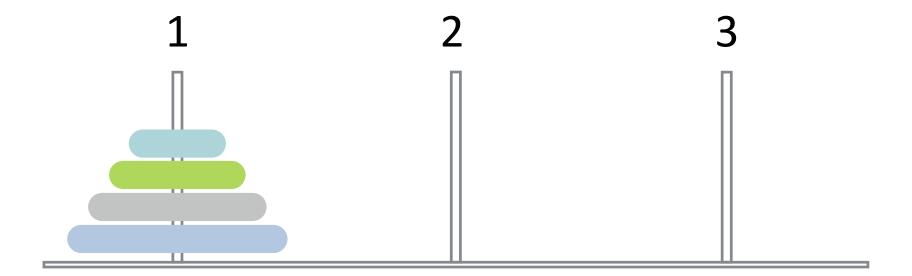
Infinite Regress (cont'd)

```
Factorial(0) = 0 * Factorial(-1)
= 0 * (-1) * Factorial(-2)
= 0 * (-1) * Factorial(-3)
```

and so on, in an infinite regress.

When we execute this function call, we get "Segmentation fault (core dumped)".

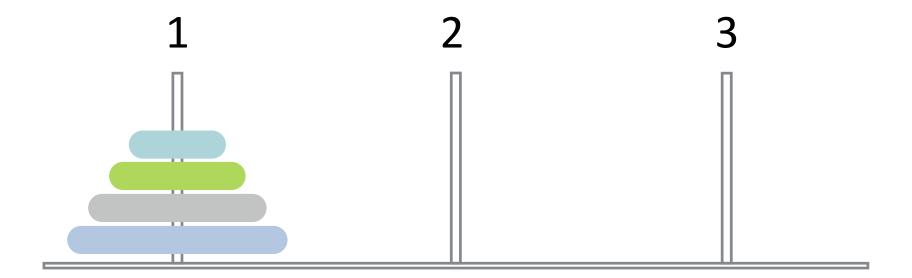
The Towers of Hanoi



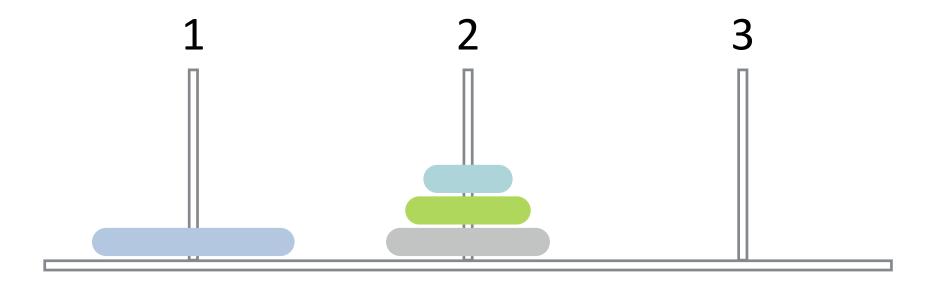
The Towers of Hanoi (cont'd)

- To Move 4 disks from Peg 1 to Peg 3:
 - Move 3 disks from Peg 1 to Peg 2
 - Move 1 disk from Peg 1 to Peg 3
 - Move 3 disks from Peg 2 to Peg 3

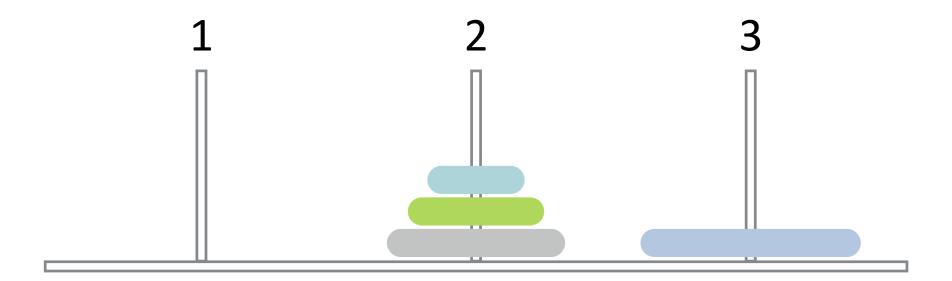
Move 3 Disks from Peg 1 to Peg 2



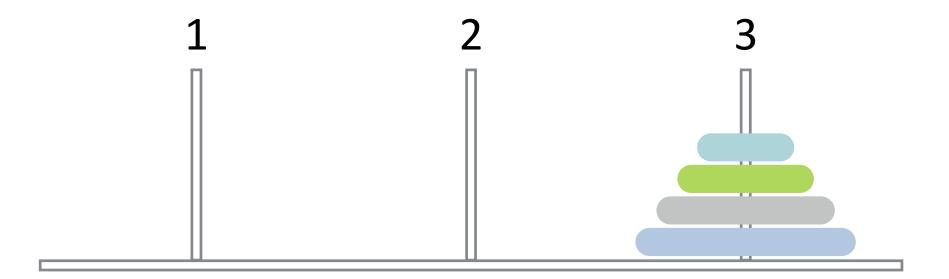
Move 1 Disk from Peg 1 to Peg 3



Move 3 Disks from Peg 2 to Peg 3



Done!



A Recursive Solution

```
void MoveTowers(int n, int start, int finish, int spare)
{
   if (n==1) {
      printf("Move a disk from peg %1d to peg %1d\n", start, finish);
   } else {
      MoveTowers(n-1, start, spare, finish);
      printf("Move a disk from peg %1d to peg %1d\n", start, finish);
      MoveTowers(n-1, spare, finish, start);
   }
}
```

Analysis

Let us now compute the number of moves
 L(n) that we need as a function of the number of disks n:

$$L(1)=1$$

 $L(n)=L(n-1)+1+L(n-1)=2*L(n-1)+1$, $n>1$

The above are called **recurrence relations**. They can be solved to give:

$$L(n) = 2^{n} - 1$$

Analysis (cont'd)

 Techniques for solving recurrence relations are taught in the Algorithms and Complexity course.

• The running time of algorithm MoveTowers is **exponential** in the size of the input.

Readings

- T. A. Standish. Data structures, algorithms and software principles in C.
 Chapter 3.
- (προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C.
 Κεφ. 5.1 και 5.2.