
Recursion

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Recursion

• Recursion is a fundamental concept of
Computer Science.

• It usually help us to write simple and elegant
solutions to programming problems.

• You will learn to program recursively by
working with many examples to develop your
skills.

Data Structures and Programming
Techniques

2

Recursive Programs

• A recursive program is one that calls itself in
order to obtain a solution to a problem.

• The reason that it calls itself is to compute a
solution to a subproblem that has the following
properties:
– The subproblem is smaller than the problem to be

solved.
– The subproblem can be solved directly (as a base

case) or recursively by making a recursive call.
– The subproblem’s solution can be combined with

solutions to other subproblems to obtain a solution
to the overall problem.

Data Structures and Programming
Techniques

3

Example

• Let us consider a simple program to add up all the
squares of integers from m to n.

• An iterative function to do this is the following:

int SumSquares(int m, int n)

{

int i, sum;

sum=0;

for (i=m; i<=n; ++i) sum +=i*i;

return sum;

}

Data Structures and Programming
Techniques

4

Recursive Sum of Squares

int SumSquares(int m, int n)

{

if (m<n) {

return m*m + SumSquares(m+1, n);

} else {

return m*m;

}

}

Recursive call

Base case

Data Structures and Programming
Techniques

5

Comments

• In the case that the range m:n contains more than one
number, the solution to the problem can be found by
adding (a) the solution to the smaller subproblem of
summing the squares in the range m+1:n and (b) the
solution to the subproblem of finding the square of m. (a) is
then solved in the same way (recursion).

• We stop when we reach the base case that occurs when
the range m:n contains just one number, in which case
m==n.

• This recursive solution can be called “going-up” recursion
since the successive ranges are m+1:n, m+2:n etc.

Data Structures and Programming
Techniques

6

Going-Down Recursion

int SumSquares(int m, int n)

{

if (m<n) {

return SumSquares(m, n-1) + n*n;

} else {

return n*n;

}

}

Recursive call

Base case

Data Structures and Programming
Techniques

7

int SumSquares(int m, int n)

{

int middle;

if (m==n) {

return m*m;

} else {

middle=(m+n)/2;

return

SumSquares(m,middle)+SumSquares(middle+1,n);

}

}

Recursion Combining Two Half-
Solutions

Recursive call

Base case

Recursive call
Data Structures and Programming

Techniques
8

Comments

• The recursion here says that the sum of the squares of the
integers in the range m:n can be obtained by adding the
sum of the squares of the left half range, m:middle, to
the sum of the squares of the right half range,
middle+1:n.

• We stop when we reach the base case that occurs when
the range contains just one number, in which case m==n.

• The middle is computed by using integer division (operator
/) which keeps the quotient and throws away the
remainder.

Data Structures and Programming
Techniques

9

Call Trees and Traces

• We can depict graphically the behaviour of
recursive programs by drawing call trees or
traces.

Data Structures and Programming
Techniques

10

Call Trees

SumSquares(5,10)

SumSquares(5,7) SumSquares(8,10)

SumSquares(5,6) SumSquares(7,7)

SumSquares(5,5) SumSquares(6,6)

SumSquares(8,9)SumSquares(10,10)

SumSquares(8,8) SumSquares(9,9)

Data Structures and Programming
Techniques

11

Annotated Call Trees

SumSquares(5,10)

SumSquares(5,7) SumSquares(8,10)

SumSquares(5,6) SumSquares(7,7)

SumSquares(5,5) SumSquares(6,6)

SumSquares(8,9)SumSquares(10,10)

SumSquares(8,8) SumSquares(9,9)

355

245110

61

25 36

64 81

100

145

49

Data Structures and Programming
Techniques

12

Traces

SumSquares(5,10)=SumSquares(5,7)+SumSquares(8,10)=

=SumSquares(5,6)+SumSquares(7,7)

+SumSquares(8,9)+SumSquares(10,10)

=SumSquares(5,5)+SumSquares(6,6)

+SumSquares(7,7)

+SumSquares(8,8)+SumSquares(9,9)

+SumSquares(10,10)

=((25+36)+49)+((64+81)+100)

=(61+49)+(145+100)

=(110+245)

=355

Data Structures and Programming
Techniques

13

Computing the Factorial

• Let us consider a simple program to compute the
factorial n! of n.

• An iterative function to do this is the following:

int Factorial(int n)

{

int i, f;

f=1;

for (i=2; i<=n; ++i) f*=i;

return f;

}

Data Structures and Programming
Techniques

14

Recursive Factorial

int Factorial(int n)

{

if (n==1) {

return 1;

} else {

return n*Factorial(n-1);

}

}
Recursive call

Base case

Data Structures and Programming
Techniques

15

Computing the Factorial (cont’d)

• The previous program is a “going-down”
recursion.

• Can you write a “going-up” recursion for
factorial?

• Can you write a recursion combining two half-
solutions?

• The above tasks do not appear to be easy.

Data Structures and Programming
Techniques

16

Computing the Factorial (cont’d)

• It is easier to first write a function
Product(m,n) which multiplies together
the numbers in the range m:n.

• Then Factorial(n)=Product(1,n).

Data Structures and Programming
Techniques

17

int Product(int m, int n)

{

int middle;

if (m==n) {

return m;

} else {

middle=(m+n)/2;

return Product(m,middle)*Product(middle+1,n);

}

}

Multiplying m:n Together Using Half-
Ranges

Recursive call

Base case

Recursive call
Data Structures and Programming

Techniques
18

Reversing Linked Lists

• Let us now consider the problem of reversing
a linked list L.

• The type NodeType has been defined in the
previous lecture as follows:

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

Data Structures and Programming
Techniques

19

Reversing a List Iteratively

• An iterative function for reversing a list is the following:

void Reverse(NodeType **L)

{

NodeType *R, *N, *L1;

L1=*L;

R=NULL;

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}

*L=R;

}

Data Structures and Programming
Techniques

20

Question

• If in our main program we have a list with a
pointer A to its first node, how do we call the
previous function?

Data Structures and Programming
Techniques

21

Answer

• We should make the following call:
Reverse(&A)

Data Structures and Programming
Techniques

22

Reversing Linked Lists (cont’d)

• A recursive solution to the problem of
reversing a list L is found by partitioning the
list into its head Head(L) and tail Tail(L)
and then concatenating the reverse of
Tail(L) with Head(L).

Data Structures and Programming
Techniques

23

Head and Tail of a List

• Let L be a list. Head(L) is a list
containing the first node of L. Tail(L) is a
list consisting of L’s second and succeeding
nodes.

• If L==NULL then Head(L) and Tail(L)
are not defined.

• If L consists of a single node then Head(L) is
the list that contains that node and Tail(L)
is NULL.

Data Structures and Programming
Techniques

24

Example

• Let L=(SAN, ORD, BRU, DUS). Then

Head(L)=(SAN) and

Tail(L)=(ORD, BRU, DUS).

Data Structures and Programming
Techniques

25

Reversing Linked Lists (cont’d)

NodeType *Reverse(NodeType *L)

{

NodeType *Head, *Tail;

if (L==NULL) {

return NULL;

} else {

Partition(L, &Head, &Tail);

return Concat(Reverse(Tail), Head);

}

}

Data Structures and Programming
Techniques

26

Reversing Linked Lists (cont’d)

void Partition(NodeType *L, NodeType **Head,

NodeType **Tail)

{

if (L != NULL) {

*Tail=L->Link;

*Head=L;

(*Head)->Link=NULL;

}

}

Data Structures and Programming
Techniques

27

Reversing Linked Lists (cont’d)

NodeType *Concat(NodeType *L1, NodeType *L2)

{

NodeType *N;

if (L1 == NULL) {

return L2;

} else {

N=L1;

while (N->Link != NULL) N=N->Link;

N->Link=L2;

return L1;

}

}

Data Structures and Programming
Techniques

28

Infinite Regress

• Let us consider again the recursive factorial function:
int Factorial(int n);

{

if (n==1) {

return 1;

} else {

return n*Factorial(n-1);

}

}

• What happens if we call Factorial(0)?

Data Structures and Programming
Techniques

29

Infinite Regress (cont’d)

Factorial(0)= 0 * Factorial(-1)

= 0 * (-1) * Factorial(-2)

= 0 * (-1) * Factorial(-3)

and so on, in an infinite regress.

When we execute this function call, we get
“Segmentation fault (core dumped)”.

Data Structures and Programming
Techniques

30

The Towers of Hanoi

1 2 3

Data Structures and Programming
Techniques

31

The Towers of Hanoi (cont’d)

• To Move 4 disks from Peg 1 to Peg 3:

– Move 3 disks from Peg 1 to Peg 2

– Move 1 disk from Peg 1 to Peg 3

– Move 3 disks from Peg 2 to Peg 3

Data Structures and Programming
Techniques

32

Move 3 Disks from Peg 1 to Peg 2

1 2 3

Data Structures and Programming
Techniques

33

Move 1 Disk from Peg 1 to Peg 3

1 2 3

Data Structures and Programming
Techniques

34

Move 3 Disks from Peg 2 to Peg 3

1 2 3

Data Structures and Programming
Techniques

35

Done!

1 2 3

Data Structures and Programming
Techniques

36

A Recursive Solution

void MoveTowers(int n, int start, int finish, int spare)

{

if (n==1){

printf(“Move a disk from peg %1d to peg %1d\n”, start,

finish);

} else {

MoveTowers(n-1, start, spare, finish);

printf(“Move a disk from peg %1d to peg %1d\n”, start,

finish);

MoveTowers(n-1, spare, finish, start);

}

}

Data Structures and Programming
Techniques

37

Analysis

• Let us now compute the number of moves
L(n) that we need as a function of the
number of disks n:

L(1)=1

L(n)=L(n-1)+1+L(n-1)=2*L(n-1)+1, n>1

The above are called recurrence relations. They can
be solved to give:

L(n)=2n-1

Data Structures and Programming
Techniques

38

Analysis (cont’d)

• Techniques for solving recurrence relations are
taught in the Algorithms and Complexity
course.

• The running time of algorithm MoveTowers
is exponential in the size of the input.

Data Structures and Programming
Techniques

39

Readings

• T. A. Standish. Data structures, algorithms and
software principles in C.

Chapter 3.

• (προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C.
Κεφ. 5.1 και 5.2.

Data Structures and Programming
Techniques

40

