
Red-Black Trees

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Red-Black Trees

• AVL trees and (2,4) trees have very nice
properties, but:

– AVL trees might need many rotations after a
removal

– (2,4) trees might require many split or fusion
operations after an update (insertion or deletion).

• Red-black trees are a data structure which
requires only 𝑶(𝟏) structural changes after an
update in order to remain balanced.

Data Structures and Programming
Techniques

2

Definition

• A red-black tree is a binary search tree with
nodes colored red and black in a way that
satisfies the following properties:
– Root Property: The root is black.

– External Property: Every external node is black.

– Internal Property: The children of a red node are
black.

– Depth Property: All the external nodes have the same
black depth, defined as the number of black ancestors
minus one (recall that a node is an ancestor of itself).

Data Structures and Programming
Techniques

3

Example Red-Black Tree

Data Structures and Programming
Techniques

4

12

5

3

4

1310

15

17

14

7 11

6 8

In our figures, we use light blue color instead of black.

From (2,4) Trees to Red-Black Trees

• Given a (2,4) tree, we can transform it into a red-black
tree by performing the following transformations for
each internal node 𝑣:
– If 𝑣 is a 2-node, then keep the (black) children of 𝑣 as is.

– If 𝑣 is a 3-node, then create a new red node 𝑤, give 𝑣’s
first two (black) children to 𝑤, and make 𝑤 and 𝑣’s third
child be the two children of 𝑣 (the symmetric operation is
also possible; see next slide).

– If 𝑣 is a 4-node, then create two new red nodes 𝑤 and 𝑧,
give 𝑣’s first two (black) children to 𝑤, give 𝑣’s last two
(black) children to 𝑧, and make 𝑤 and 𝑧 be the two
children of 𝑣.

Data Structures and Programming
Techniques

5

From (2,4) Trees to Red-Black Trees
(cont’d)

Data Structures and Programming
Techniques

6

15 15

13 14

14

13 14

13

6 7 8
7

86

Example (2,4) Tree

Data Structures and Programming
Techniques

7

3 4 6 7 8 11
13 14 17

12

5 10 15

Corresponding Red-Black Tree

Data Structures and Programming
Techniques

8

12

5

3

4

1310

15

17

14

7 11

6 8

From Red-Black Trees to (2,4) Trees

• Given a red-black tree, we can construct a
corresponding (2,4) tree by merging every red
node 𝑣 into its parent and storing the entry
from 𝑣 at its parent.

• The two children of 𝑣 become left and right
child of 𝑣 in the new 3-node or 4-node.

Data Structures and Programming
Techniques

9

Example Red-Black Tree

Data Structures and Programming
Techniques

10

12

5

3

4

1310

15

17

14

7 11

6 8

Corresponding (2,4) Tree

Data Structures and Programming
Techniques

11

3 4 6 7 8 11
13 14 17

12

5 10 15

Proposition

• The height of a red-black tree storing 𝑛 entries
is 𝑂(log 𝑛).

• Proof?

Data Structures and Programming
Techniques

12

Proof

• Let 𝑇 be a red-black tree storing 𝑛 entries, and let ℎ be the
height of 𝑇. We will prove the following:

log(𝑛 + 1) ≤ ℎ ≤ 2 log(𝑛 + 1)
• Let 𝑑 be the common black depth of all the external nodes

of 𝑇. Let 𝑇′ be the (2,4) tree associated with 𝑇, and let ℎ′ be
the height of 𝑇′.

• Because of the correspondence between red-black trees
and (2,4) trees, we know that 𝒉′ = 𝒅.

• Hence, 𝑑 = ℎ′ ≤ log(𝑛 + 1) by the proposition for the
height of (2,4) trees. By the internal node property of red-
black trees, we have 𝒉 ≤ 𝟐𝒅 (the upper bound for the
height is reached when every black node has only red
children). Therefore, ℎ ≤ 2 log(𝑛 + 1).

Data Structures and Programming
Techniques

13

Proof (cont’d)

• The other inequality, log(𝑛 + 1) ≤ ℎ follows
from the properties of proper binary trees and
the fact that 𝑇 has 𝑛 internal nodes.

Data Structures and Programming
Techniques

14

Updates

• Performing update operations (insertions or
deletions) in a red-black tree is similar to the
operations of binary search trees, but we must
additionally take care not to destroy the color
properties.

• For an update operation in a red-black tree 𝑇,
it is important to keep in mind the
correspondence with a (2,4) tree 𝑇′ and the
relevant update algorithms for (2,4) trees.

Data Structures and Programming
Techniques

15

Insertion

• Let us consider the insertion of a new entry with key 𝑘
into a red-black tree 𝑇.

• We search for 𝑘 in 𝑇 until we reach an external node of
𝑇, and we replace this node with an internal node 𝑧,
storing (𝑘, 𝑖) and having two external-node children.

• If 𝑧 is the root of 𝑇, we color 𝑧 black, else we color 𝑧
red. We also color the children of 𝑧 black.

• This operation corresponds to inserting (𝑘, 𝑖) into a
node of the (2,4) tree 𝑇′ with external-node children.

• This operation preserves the root, external, and depth
properties of 𝑇, but it might violate the internal
property.

Data Structures and Programming
Techniques

16

Insertion (cont’d)

• Indeed, if 𝑧 is not the root of 𝑇 and the parent 𝑣
of 𝑧 is red, then we have a parent and a child
that are both red.

• In this case, by the root property, 𝑣 cannot be the
root of 𝑇.

• By the internal property (which was previously
satisfied), the parent 𝑢 of 𝑣 must be black.

• Since 𝑧 and its parent are red, but 𝑧’s
grandparent 𝑢 is black, we call this violation of
the internal property a double red at node 𝑧.

Data Structures and Programming
Techniques

17

Insertion (cont’d)

• To remedy a double red, we consider two cases.

• Case 1: the sibling 𝒘 of 𝒗 is black. In this case, the
double red denotes the fact that we have created in
our red-black tree 𝑇 a malformed replacement for a
corresponding 4-node of the (2,4) tree 𝑇′, which has as
its children the four black children of 𝑢, 𝑣 and 𝑧.

• Our malformed replacement has one red node (𝑣) that
is the parent of another red node (𝑧) while we want it
to have two red nodes as siblings instead.

• To fix this problem, we perform a trinode restructuring
of 𝑇 as follows.

Data Structures and Programming
Techniques

18

Trinode Restructuring

• Take node 𝑧, its parent 𝑣, and grandparent 𝑢, and
temporarily relabel them as 𝑎, 𝑏 and 𝑐, in left-to-
right order, so that 𝑎, 𝑏 and 𝑐 will be visited in this
order by an inorder tree traversal.

• Replace the grandparent 𝑢 with the node labeled
𝑏, and make nodes 𝑎 and 𝑐 the children of 𝑏
keeping inorder relationships unchanged.

• After restructuring, we color 𝑏 black and we color
𝑎 and 𝑐 red. Thus, the restructuring eliminates
the double red problem.

Data Structures and Programming
Techniques

19

Trinode Restructuring vs. Rotations

• The trinode restructuring operation we have
just described corresponds exactly to the four
kinds of rotations we discussed for AVL trees.

• Below we show graphically the four possible
subcases of Case 1 for the nodes 𝑣, 𝑢, 𝑧 and 𝑤
and the rotations that will restore the internal
property.

Data Structures and Programming
Techniques

20

Trinode Restructuring Graphically

• Right rotation at 𝑢

Data Structures and Programming
Techniques

21

30

20

10𝑧

𝑣

𝑢

𝑏

𝑎 𝑐30

20

10
𝑤

𝑤

Trinode Restructuring Graphically
(cont’d)

• Double left-right rotation at 𝑣 and 𝑢 (first a
left rotation at 𝑣 then a right rotation at 𝑢).

Data Structures and Programming
Techniques

22

30

20

10

𝑧

𝑣

𝑢

𝑏

𝑎 𝑐30

20

10
𝑤

𝑤

Trinode Restructuring Graphically
(cont’d)

• Left rotation at 𝑢

Data Structures and Programming
Techniques

23

10

30

20

𝑧

𝑣

𝑢
𝑏

𝑎 𝑐30

20

10

𝑤

𝑤

Trinode Restructuring Graphically
(cont’d)

• Double right-left rotation at 𝑣 and 𝑢 (first a
right rotation at 𝑣 then a left rotation at 𝑢).

Data Structures and Programming
Techniques

24

10

30

20𝑧

𝑣

𝑢
𝑏

𝑎 𝑐30

20

10

𝑤

𝑤

Insertion (cont’d)

• Case 2: the sibling 𝒘 of 𝒗 is red. In this case,
the double red denotes an overflow in the
corresponding (2,4) tree 𝑇′.

• To fix the problem, we perform the equivalent
of a split operation. Namely, we do a
recoloring: we color 𝑣 and 𝑤 black and their
parent 𝑢 red (unless 𝑢 is the root, in which
case it is colored black).

Data Structures and Programming
Techniques

25

Overflow

Data Structures and Programming
Techniques

26

10 20 30 40

𝑢

𝑣 𝑤40

30

10

20

𝑧

Recoloring

Data Structures and Programming
Techniques

27

𝑢

𝑣 𝑤40

30

10

20

𝑧

… 30 …

4010 20

……

Recoloring vs. Trinode Restructuring

• The trinode restructuring operation involves a
local restructuring of the tree (implemented
by pointer manipulation) and changes in color.

• Recoloring only needs changes in color and
the structure of the tree does not change.

• The term “recoloring” should be used in the
case of trinode restructuring although colors
change in that case too.

Data Structures and Programming
Techniques

28

Insertion (cont’d)

• It is possible that, after such a recoloring, the double red
problem reappears at 𝑢 (if 𝑢 has a red parent). Then, we
repeat the consideration of the two cases.

• Thus, a recoloring either eliminates the double red problem
at node 𝑧 or propagates it to the grandparent 𝑢 of 𝑧.

• We continue going up 𝑇 performing recoloring until we
finally resolve the double red problem (either with a final
recoloring or a trinode restructuring).

• Thus, the number of recolorings caused by insertion is no
more than half the height of tree 𝑇 (why?), that is, no more
than log(𝑛 + 1) by the proposition we have proved about
the height of a red-black tree.

Data Structures and Programming
Techniques

29

Example

• Let us now see some examples of insertions in
an initially empty red-black tree.

Data Structures and Programming
Techniques

30

Initial Empty Tree

Data Structures and Programming
Techniques

31

Insert 4

• Easy.

Data Structures and Programming
Techniques

32

4

Insert 7

• Easy.

Data Structures and Programming
Techniques

33

4

7

Insert 12 – Double Red

• We are in Case 1. We will do a trinode restructuring (left
rotation at 4).

Data Structures and Programming
Techniques

34

4

7

12

After Restructuring

Data Structures and Programming
Techniques

35

4

7

12

Insert 15 – Double Red

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

36

4

7

12

15

After Recoloring

Data Structures and Programming
Techniques

37

4

7

12

15

Insert 3

• Easy.

Data Structures and Programming
Techniques

38

4

7

12

153

Insert 5

• Easy.

Data Structures and Programming
Techniques

39

4

7

12

153 5

Insert 14 – Double Red

• We are in Case 1. We will do a trinode restructuring (double
right-left rotation at 15 and 12).

Data Structures and Programming
Techniques

40

4

7

12

153 5

14

After Restructuring

Data Structures and Programming
Techniques

41

4

7

14

153 5 12

Insertion of 18 – Double Red

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

42

4

7

14

153 5 12

18

After Recoloring

Data Structures and Programming
Techniques

43

4

7

14

153 5 12

18

Insertion of 16 – Double Red

• We are in Case 1. We will do a trinode restructuring (double right-left rotation at
18 and 15).

Data Structures and Programming
Techniques

44

4

7

14

153 5 12

18

16

After Restructuring

Data Structures and Programming
Techniques

45

4

7

14

163 5 12

1815

Insertion of 17 – Double Red

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

46

4

7

14

163 5 12

1815

17

After Recoloring – Double Red

• We are in Case 1. We will do a trinode restructuring (left rotation at
7).

Data Structures and Programming
Techniques

47

4

7

14

163 5 12

1815

17

After Restructuring

Data Structures and Programming
Techniques

48

4

14

16

18

3 5

15

17

7

12

Proposition

• The insertion of a key-value entry in a red-
black tree storing 𝑛 entries can be done in
𝑶(𝐥𝐨𝐠𝒏) time and requires 𝑶(𝐥𝐨𝐠𝒏)
recolorings and one trinode restructuring.

Data Structures and Programming
Techniques

49

Removal

• Let us now remove an entry with key 𝑘 from a red-
black tree 𝑇.

• We proceed like in a binary tree search searching for a
node 𝑢 storing such an entry.

• If 𝒖 does not have an external-node child, we find the
internal node 𝑣 following 𝑢 in the inorder traversal of
𝑇. This node has an external-node child. We move the
entry at 𝑣 to 𝑢, and perform the removal at 𝑣.

• Thus, we may consider only the removal of an entry
with key 𝒌 stored at a node 𝒗 with an external-node
child 𝒘.

Data Structures and Programming
Techniques

50

Removal (cont’d)

• To remove the entry with key 𝑘 from a node 𝑣
of 𝑇 with an external-node child 𝑤, we
proceed as follows.

• Let 𝑟 be the sibling of 𝑤 and 𝑥 the parent of 𝑣.
We remove nodes 𝑣 and 𝑤, and make 𝑟 a
child of 𝑥.

• If 𝑣 was red (hence 𝑟 is black) or 𝑟 is red
(hence 𝑣 was black), we color 𝑟 black and we
are done.

Data Structures and Programming
Techniques

51

Graphically

Data Structures and Programming
Techniques

52

𝑥

𝑤

𝑣

𝑟

𝑘

𝑥

𝑟

𝑥

𝑤

𝑣

𝑟

𝑘

𝑥

𝑟

Removal (cont’d)

• If, instead, 𝑟 is black and 𝑣 is black, then, to
preserve the black depth property, we give 𝑟 a
fictitious double black color.

• We now have a color violation, called the double
black problem.

• A double black in 𝑇 denotes an underflow in the
corresponding (2,4) tree 𝑇′.

• To remedy the double-black problem at 𝑟, we
proceed as follows.

• We will have 3 cases depending on the color of
sibling 𝑦 of 𝑟 and the color of its children.

Data Structures and Programming
Techniques

53

Removal (cont’d)

• Case 1: the sibling 𝒚 of 𝒓 is black and has a red child 𝒛.
• Resolving this case corresponds to a transfer operation in

the (2,4) tree 𝑇′.
• We perform a trinode restructuring: we take the node 𝑧, its

parent 𝑦, and grandparent 𝑥, we label them temporarily
left to right as 𝑎, 𝑏 and 𝑐, and we replace 𝑥 with the node
labeled 𝑏, making it parent of the other two nodes.

• We color 𝑎 and 𝑐 black, give 𝑏 the former color of 𝑥, and
color 𝑟 black.

• This trinode restructuring eliminates the double black
problem because the path 𝑏 − 𝑐 − 𝑟 now contains two
black nodes.

Data Structures and Programming
Techniques

54

Example of Case 1

Data Structures and Programming
Techniques

55

… 30 …
𝑥

𝑦 𝑟40

30

20

10𝑧

10 20

40

……

After the Restructuring (Right Rotation
at 𝑥)

Data Structures and Programming
Techniques

56

… 20 …
𝑏

𝑎

𝑟

30

20

10

40

𝑐
30

40

……

10

Alternative Example of Case 1

Data Structures and Programming
Techniques

57

… 30 …
𝑥

𝑦 𝑟40

30

10

20𝑧

10 20

40

……

After the Restructuring (Double Left-Right
Rotation at 𝑦 and 𝑥)

Data Structures and Programming
Techniques

58

… 20 …
𝑏

𝑎

𝑟

30

20

10

40

𝑐
30

40

……

10

Removal (cont’d)

• Case 2: the sibling 𝒚 of 𝒓 is black and both
children of 𝒚 are black.

• Resolving this case corresponds to a fusion
operation in the corresponding (2,4) tree 𝑇′.

• We do a recoloring: we color 𝑟 black, we color 𝑦
red, and, if 𝑥 is red, we color it black; otherwise,
we color 𝑥 double black.

• Hence, after this recoloring, the double black
problem might reappear at the parent 𝑥 of 𝑟. We
then repeat consideration of these three cases at
𝑥.

Data Structures and Programming
Techniques

59

Recoloring a Red-Black Tree that Fixes
the Double Black Problem

Data Structures and Programming
Techniques

60

10 30 …

𝑥

𝑦 𝑟4020

10

40

…

20
30

After the Recoloring

Data Structures and Programming
Techniques

61

10 …

𝑥

𝑦 𝑟4020

10

40

…

20 30
30

Recoloring a Red-Black Tree that
Propagates the Double Black Problem

Data Structures and Programming
Techniques

62

𝑥

𝑦 𝑟4020

40

20

3030

After the Recoloring

Data Structures and Programming
Techniques

63

𝑥

𝑦 𝑟4020

40

20 30

30

Removal (cont’d)

• Case 3: the sibling 𝒚 of 𝒓 is red.

• In this case, we perform an adjustment
operation as follows.

• If 𝑦 is the right child of 𝑥, let 𝑧 be the right
child of 𝑦; otherwise, let 𝑧 be the left child of
𝑦.

• Execute the trinode restructuring operation
which makes 𝑦 the parent of 𝑥.

• Color 𝑦 black and 𝑥 red.

Data Structures and Programming
Techniques

64

Removal (cont’d)

• An adjustment corresponds to choosing a different
representation of a 3-node in the (2,4) tree 𝑇′.

• After the adjustment operation, the sibling of 𝑟 is
black, and either Case 1 or Case 2 applies, with a
different meaning of 𝑥 and 𝑦.

• Note that if Case 2 applies, the double black problem
cannot reappear because the parent of 𝑟 is red.

• Thus, to complete Case 3 we make one more
application of either Case 1 or Case 2 and we are done.

• Therefore, at most one adjustment is performed in a
removal operation.

Data Structures and Programming
Techniques

65

Adjustment of a Red-Black Tree in the
Presence of a Double Black Problem

Data Structures and Programming
Techniques

66

20 30
𝑥

𝑦 𝑟40

30

20

10𝑧

… 10 …

40

… …

After the Adjustment (Right Rotation
at 𝑥)

Data Structures and Programming
Techniques

67

20 30

𝑥

𝑦

𝑟40

20

10 30𝑧
… 10 …

40

… …

Removal (cont’d)

• The algorithm for removing an entry from a
red-black tree with 𝑛 entries takes 𝑶(𝐥𝐨𝐠𝒏)
time and performs 𝑶(𝐥𝐨𝐠𝒏) recolorings and
at most one adjustment plus one additional
trinode restructuring.

Data Structures and Programming
Techniques

68

Example

• Let us now see a few removals from a given
red-black tree.

Data Structures and Programming
Techniques

69

Initial Tree

Data Structures and Programming
Techniques

70

4

14

16

18

3 5

15

17

7

12

Remove 3

• Easy.

Data Structures and Programming
Techniques

71

4

14

16

18

3 5

15

17

7

12

After Removing 3

Data Structures and Programming
Techniques

72

4

14

16

18

5

15

17

7

12

Remove 12

• A black node is removed hence a double black will be created.

Data Structures and Programming
Techniques

73

4

14

16

18

5

15

17

7

12

After Removing 12 – Double Black

Data Structures and Programming
Techniques

74

4

14

16

18

5

15

17

7

Double Black

• We are in Case 1. We need to do trinode restructuring (double left-
right rotation at 4 and 7).

Data Structures and Programming
Techniques

75

4

14

16

18

5

15

17

7

After Restructuring

Data Structures and Programming
Techniques

76

4

14

16

187 15

17

5

Remove 17

• Easy.

Data Structures and Programming
Techniques

77

4

14

16

187 15

17

5

After Removing 17

Data Structures and Programming
Techniques

78

4

14

16

187 15

5

Remove 18

• A black node is removed hence a double black is created.

Data Structures and Programming
Techniques

79

4

14

16

187 15

5

After Removing 18 – Double Black

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

80

4

14

16

7 15

5

After Recoloring

Data Structures and Programming
Techniques

81

4

14

16

7 15

5

Remove 15

• Easy.

Data Structures and Programming
Techniques

82

4

14

16

7 15

5

After Removing 15

Data Structures and Programming
Techniques

83

4

14

16

7

5

Remove 16

• A black node is removed hence a double black will be created.

Data Structures and Programming
Techniques

84

4

14

16

7

5

After Removing 16 – Double Black

• We are in Case 3. We will do an adjustment (right rotation at
14).

Data Structures and Programming
Techniques

85

4

14

7

5

After the Adjustment – Double Black

• We are in Case 2. Will do a recoloring.

Data Structures and Programming
Techniques

86

5

7

144

After the Recoloring

Data Structures and Programming
Techniques

87

5

7

144

Complexity of Operations in a Red-
Black Tree

Data Structures and Programming
Techniques

88

𝑂(log 𝑛)

𝑂(1)

𝑂(1)

𝑂(1)

Time per level
Height

Worst-case time: 𝑂(log 𝑛)

Down phase

Up phase

Summary

• The red-black tree data structure is slightly
more complicated than its corresponding (2,4)
tree.

• However, the red-black tree has the
conceptual advantage that only a constant
number of trinode restructurings are ever
needed to restore the balance after an
update.

Data Structures and Programming
Techniques

89

Readings

• M. T. Goodrich, R. Tamassia and D. Mount. Data
Structures and Algorithms in C++. 2nd edition.
John Wiley.
– Section 10.5

• M. T. Goodrich, R. Tamassia. Δομές Δεδομένων
και Αλγόριθμοι σε Java. 5η έκδοση. Εκδόσεις
Δίαυλος.
– Κεφ. 10.5

• R. Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 13.4

Data Structures and Programming
Techniques

90

