
© 2010 Goodrich, Tamassia Minimum Spanning Trees 1

Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

© 2010 Goodrich, Tamassia Minimum Spanning Trees 2

Minimum Spanning Trees
We will consider undirected

weighted graphs.

Spanning subgraph

◼ Subgraph of a graph G containing
all the vertices of G.

Spanning tree

◼ Spanning subgraph that is itself a
(free) tree.

Minimum spanning tree (ελάχιστο
επικαλύπτον δένδρο, MST)

◼ Spanning tree of a weighted graph
with minimum total edge weight.

❑ Applications

◼ Communications networks

◼ Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

© 2010 Goodrich, Tamassia Minimum Spanning Trees 3

Cycle Property
Cycle Property:

◼ Let T be a minimum

spanning tree of a
weighted graph G.

◼ Let e be an edge of G
that is not in T and let C

be the cycle formed by e
with T.

◼ For every edge f of C,

weight(f) weight(e) .

Proof:

◼ By contradiction.

◼ If weight(f) > weight(e) we

can get a spanning tree
of smaller weight by
replacing f with e.

8

4

2
3

6

7

7

9

8

e

C

f

8

4

2
3

6

7

7

9

8

C

e

f

Replacing f with e yields

a better spanning tree

© 2010 Goodrich, Tamassia Minimum Spanning Trees 4

U V

Partition Property
Partition Property:

◼ Consider a partition of the vertices of
G into subsets U and V.

◼ Let e be an edge of minimum weight
across the partition.

◼ There is a minimum spanning tree of
G containing edge e.

Proof:

◼ Let T be an MST of G.

◼ If T does not contain e, consider the
cycle C formed by e with T and let f
be an edge of C across the partition.

◼ By the cycle property,
weight(f) weight(e).

◼ Thus, weight(f) = weight(e).

◼ We obtain another MST by replacing
f with e.

7

4

2
8

5

7

3

9

8 e

f

7

4

2
8

5

7

3

9

8 e

f

Replacing f with e yields

another MST

U V

© 2010 Goodrich, Tamassia

Kruskal’s Algorithm
❑ Maintain a partition of the

vertices into clusters

◼ Initially, single-vertex
clusters.

◼ Keep an MST for each
cluster.

◼ Merge “closest” clusters
and their MSTs.

❑ A priority queue stores the
edges outside clusters

◼ Key: weight

◼ Value: edge

❑ At the end of the algorithm

◼ One cluster and one MST.

Minimum Spanning Trees 5

Algorithm KruskalMST(G)

for each vertex v in G do

Create a cluster consisting of v

let Q be a priority queue.

Insert all edges into Q

T

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e Q.removeMin().getValue()

[u, v] G.endVertices(e)

A getCluster(u)

B getCluster(v)

if A B then

Add edge e to T

mergeClusters(A, B)

return T

© 2010 Goodrich, Tamassia

Kruskal’s Algorithm (cont’d)

❑ The notation object.function1.function2 in the code comes from
object-oriented programming, and it means apply function2 to
the result of applying function1 to object object. In other words,
Q.removeMin().getValue() means get the value of the minimum

element in the priority queue. Similarly, for other statements.

❑ The edge e selected inside the while loop is the edge in the
priority queue Q with the minimum weight.

❑ u and v are the endpoints of this edge.

❑ The partition property guarantees that each time the body of
the while loop is executed, the edge added is part of an MST.

Minimum Spanning Trees 6

© 2010 Goodrich, Tamassia Campus Tour 7

Example

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

© 2010 Goodrich, Tamassia Campus Tour 8

Example (cont’d)

four steps

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

B
G

C

A

F

D

4

1
3

5

10

2

8

7

6
E

H

11

9

© 2010 Goodrich, Tamassia

Example (cont’d)
❑ Red edges are edges of the MST.

❑ Dashed blue edges are edges that were considered by
the algorithm but were discarded because their
endpoints were already in the same cluster.

Minimum Spanning Trees 9

© 2010 Goodrich, Tamassia

Data Structures for Kruskal’s Algorithm

❑ The graph will be implemented using adjacency lists.

❑ The algorithm maintains a forest of trees.

❑ A priority queue extracts the edges by increasing
weight. The priority queue is implemented as a min
heap.

❑ An edge is accepted if it connects distinct trees.

❑ We need a data structure that maintains a partition,
i.e., a collection of disjoint sets, with operations:

◼ makeSet(u): create a set consisting of u

◼ findSet(u): return the set storing u

◼ union(A, B): replace sets A and B with their union

Minimum Spanning Trees 10

© 2010 Goodrich, Tamassia

Data Structures for Kruskal’s Algorithm
(cont’d)

❑ For the disjoint sets data structure we will use the
implementation using disjoint forests and the
algorithm weighted quick-union with path compression
by halving.

Minimum Spanning Trees 11

© 2010 Goodrich, Tamassia

Partition-Based Implementation
❑ Partition-based

version of
Kruskal’s
Algorithm
◼ Cluster merges

as unions

◼ Cluster locations
as findSets

Minimum Spanning Trees 12

Algorithm KruskalMST(G)

Initialize a partition P

for each vertex v in G do

P.makeSet(v)

let Q be a priority queue.

Insert all edges into Q

T

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e Q.removeMin().getValue()

[u, v] G.endVertices(e)

A P.findSet(u)

B P.findSet(v)

if A B then

Add edge e to T

P.union(A, B)

return T

© 2010 Goodrich, Tamassia

Complexity Analysis

❑ Let n and m denote the number of vertices and edges of the

input graph respectively.

❑ The priority queue can be initialized in O(m log m) time with

repeated insertions or with the bottom up construction
algorithm we have presented in the lecture on priority queues in
O(m) time.

❑ The removal operations from the priority queue will take O(m

log m) time.

❑ Alternative: Sort the edges in increasing order of weight and
then scan them. This can also be done in O(m log m) time with

algorithms mergesort of heapsort we will study.

Minimum Spanning Trees 13

© 2010 Goodrich, Tamassia

Complexity Analysis (cont’d)

❑ We will also need n-1 calls to union and at most m
calls to findSet. These operations will take O(n log m)
time for the chosen disjoint-set data structure and
algorithms.

❑ Therefore, the running time of Kruskal’s algorithm is
O((n + m) log n)

Minimum Spanning Trees 14

© 2010 Goodrich, Tamassia Minimum Spanning Trees 15

Prim-Jarnik’s Algorithm

❑ Similar to Dijkstra’s algorithm.

❑ We pick an arbitrary vertex s and we grow the MST as

a cloud of vertices, starting from s.

❑ We store with each vertex v label D(v) representing

the smallest weight of an edge connecting v to a

vertex in the cloud.

❑ At each step:

◼ We add to the cloud the vertex u outside the cloud with

the smallest distance label D(u).

◼ We update the labels D(z) of the vertices z adjacent to u.

© 2010 Goodrich, Tamassia Minimum Spanning Trees 16

Prim-Jarnik’s Algorithm (cont’d)

❑ We will use adjacency lists for the representation of

the input graph.

❑ We will use a priority queue to store, for each vertex

v, the pair (v,e) with key D(v) where e is the edge with

the smallest weight connecting v to the cloud and

D(v) is that weight.

❑ The priority queue will be implemented as a min

heap.

© 2010 Goodrich, Tamassia Minimum Spanning Trees 17

Prim-Jarnik’s Algorithm (cont.)
Algorithm PrimJarnikMST(G)

Pick any vertex v of G
D[v] 0
for each vertex u v do

D[u] +
Initialize T .
Initialize a priority queue Q with an entry ((u,null),D[u]) for each vertex u,
where (u,null) is the value and D[u] is the key.
while Q is not empty do

(u,e) Q.removeMin()

Add vertex u and edge e to T.
for each vertex z adjacent to u such that z is in Q do

if weight((u,z)) < D[z] then
D[z] weight((u,z))
Change to (z,(u,z)) the value of vertex z in Q
Change to D[z] the key of vertex z in Q

return the tree T

© 2010 Goodrich, Tamassia Minimum Spanning Trees 18

Example

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0

This is the graph before the while loop is executed. The values of D[v] are
shown in red near the vertices. In the first iteration of the while loop, the

vertex A will be selected and then the algorithm will proceed as shown in the
following slide.

© 2010 Goodrich, Tamassia Minimum Spanning Trees 19

Example

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

8

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 4

7

© 2010 Goodrich, Tamassia Minimum Spanning Trees 20

Example (contd.)

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

© 2010 Goodrich, Tamassia Minimum Spanning Trees 21

Example (cont’d)
❑ In an implementation, we can use a very big positive

integer in the place of . All the weights are then
assumed to be smaller than this integer.

❑ In the previous figures, red edges denote MST edges
when they are inside the cloud.

❑ Red edges also denote edges of minimum weight
connecting vertices in the MST (cloud) to vertices in Q.

❑ Dashed blue edges denote edges that have been
discarded, inside the if statement of the algorithm, in

favour of (red) edges with minimum weight.

❑ Upon completion of the algorithms, red edges form the
MST.

© 2010 Goodrich, Tamassia Minimum Spanning Trees 22

Complexity Analysis
❑ Let n and m denote the number of vertices and edges

of the input graph respectively.

❑ The for loop takes O(n) time.

❑ Since the priority queue is implemented as a min heap,
we can initialize it in O(n log n) time with repeated
insertions or in O(n) using the bottom up construction

algorithm we have presented in the lectures for heaps.

❑ We can extract the vertex u from the priority queue in
O(log n) time. So the complexity for extracting all
vertices is O(n log n).

© 2010 Goodrich, Tamassia Minimum Spanning Trees 23

Complexity Analysis (cont’d)
❑ We can do the two change operations inside the if

statement in O(log n) time as well (how can we

augment the priority queue implementation to achieve
this bound?). This update is done at most once for each
edge (u,z) so the total updates can be done in O(m log

n).

❑ Hence, Prim-Jarnik’s algorithm runs in O((n + m) log n)

time.

© 2010 Goodrich, Tamassia

Readings

❑ M. T. Goodrich, R. Tamassia and D. Mount. Data Structures and
Algorithms in C++. 2nd edition. John Wiley. 2011.

◼ Chapter 13

❑ M. T. Goodrich and R. Tamassia. Δομές Δεδομένων και
Αλγόριθμοι σε Java. 5η έκδοση. Εκδόσεις Δίαυλος. 2013.

◼ Chapter 13

❑ R. Sedgewick. Algorithms in C. 3rd edition. Part 5. Graph
Algorithms.

◼ Chapter 20.

Minimum Spanning Trees 24

