
Red-Black Trees

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Red-Black Trees

• AVL trees and (2,4) trees have very nice
properties, but:

– AVL trees might need many rotations after a
removal

– (2,4) trees might require many split or fusion
operations after an update (insertion or deletion).

• Red-black trees are a data structure which
requires only 𝑶(𝟏) structural changes after an
update in order to remain balanced.

Data Structures and Programming
Techniques

2

Definition

• A red-black tree is a binary search tree with
nodes colored red and black in a way that
satisfies the following properties:
– Root Property: The root is black.

– External Property: Every external node is black.

– Internal Property: The children of a red node are
black.

– Depth Property: All the external nodes have the same
black depth, defined as the number of black ancestors
minus one (recall that a node is an ancestor of itself).

Data Structures and Programming
Techniques

3

Definition (cont’d)

• Red-black trees will be used for implementing
maps so they will not be allowed to have
duplicate keys.

Data Structures and Programming
Techniques

4

Example Red-Black Tree

Data Structures and Programming
Techniques

5

12

5

3

4

1310

15

17

14

7 11

6 8

In our figures, we use light blue color instead of black.

From (2,4) Trees to Red-Black Trees

• Given a (2,4) tree, we can transform it into a red-black
tree by performing the following transformations for
each internal node 𝑣:
– If 𝑣 is a 2-node, then keep the (black) children of 𝑣 as is.

– If 𝑣 is a 3-node, then create a new red node 𝑤, give 𝑣’s
first two (black) children to 𝑤, and make 𝑤 and 𝑣’s third
child be the two children of 𝑣 (the symmetric operation is
also possible; see next slide).

– If 𝑣 is a 4-node, then create two new red nodes 𝑤 and 𝑧,
give 𝑣’s first two (black) children to 𝑤, give 𝑣’s last two
(black) children to 𝑧, and make 𝑤 and 𝑧 be the two
children of 𝑣.

Data Structures and Programming
Techniques

6

From (2,4) Trees to Red-Black Trees
(cont’d)

Data Structures and Programming
Techniques

7

15 15

13 14

14

13 14

13

6 7 8
7

86

Example (2,4) Tree

Data Structures and Programming
Techniques

8

3 4 6 7 8 11
13 14 17

12

5 10 15

Corresponding Red-Black Tree

Data Structures and Programming
Techniques

9

12

5

3

4

1310

15

17

14

7 11

6 8

From Red-Black Trees to (2,4) Trees

• Given a red-black tree, we can construct a
corresponding (2,4) tree by merging every red
node 𝑣 into its parent and storing the entry
from 𝑣 at its parent.

• The two children of 𝑣 become left and right
child of 𝑣 in the new 3-node or 4-node.

Data Structures and Programming
Techniques

10

Example Red-Black Tree

Data Structures and Programming
Techniques

11

12

5

3

4

1310

15

17

14

7 11

6 8

Corresponding (2,4) Tree

Data Structures and Programming
Techniques

12

3 4 6 7 8 11
13 14 17

12

5 10 15

Proposition

• The height of a red-black tree storing 𝑛 entries
is 𝑂(log 𝑛).

• Proof?

Data Structures and Programming
Techniques

13

Proof

• Let 𝑇 be a red-black tree storing 𝑛 entries, and let ℎ be the
height of 𝑇. We will prove the following:

log(𝑛 + 1) ≤ ℎ ≤ 2 log(𝑛 + 1)
• Let 𝑑 be the common black depth of all the external nodes

of 𝑇. Let 𝑇′ be the (2,4) tree associated with 𝑇, and let ℎ′ be
the height of 𝑇′.

• Because of the correspondence between red-black trees
and (2,4) trees, we know that 𝒉′ = 𝒅.

• Hence, 𝑑 = ℎ′ ≤ log(𝑛 + 1) by the proposition for the
height of (2,4) trees. By the internal node property of red-
black trees, we have 𝒉 ≤ 𝟐𝒅 (the upper bound for the
height is reached when every black node has only red
children). Therefore, ℎ ≤ 2 log(𝑛 + 1).

Data Structures and Programming
Techniques

14

Proof (cont’d)

• The other inequality, log(𝑛 + 1) ≤ ℎ follows
from the properties of proper binary trees and
the fact that 𝑇 has 𝑛 internal nodes.

Data Structures and Programming
Techniques

15

Search in a Red-Black Tree

• The algorithm for searching for the entry with
key 𝑘 in a red-black tree is exactly the same as
the algorithm we presented for searching in a
binary search tree.

• The worst-case complexity of this algorithm is
𝑶(𝐥𝐨𝐠𝒏) where 𝑛 is the number of entries in
the tree.

Data Structures and Programming
Techniques

16

Updates

• Performing update operations (insertions or
deletions) in a red-black tree is similar to the
operations of binary search trees, but we
must additionally take care not to destroy the
color properties.

• For an update operation in a red-black tree 𝑇,
it is important to keep in mind the
correspondence with a (2,4) tree 𝑻′ and the
relevant update algorithms for (2,4) trees.

Data Structures and Programming
Techniques

17

Insertion

• Let us consider the insertion of a new entry
with key 𝑘 into a red-black tree 𝑇.

• We will start with a few examples of insertions
into an initially empty tree.

Data Structures and Programming
Techniques

18

Initial Empty Tree

Data Structures and Programming
Techniques

19

Insert 4

• Easy.

Data Structures and Programming
Techniques

20

4

Insert 7

• Easy.

Data Structures and Programming
Techniques

21

4

7

Insert 12

• In this case, the resulting tree violates the internal property of red-
black trees. This problem needs to be fixed and we will see the
details below.

Data Structures and Programming
Techniques

22

4

7

12

Insertion (cont’d)

• Let us present the details of the algorithm for inserting
a new entry with key 𝑘 into a red-black tree 𝑇.

• We search for 𝑘 in 𝑇 until we reach an external node of
𝑇, and we replace this node with an internal node 𝑧,
storing (𝑘, 𝑖) and having two external-node children.

• If 𝑧 is the root of 𝑇, we color 𝑧 black, else we color 𝑧
red. We also color the children of 𝑧 black.

• This operation corresponds to inserting (𝑘, 𝑖) into a
node of the (2,4) tree 𝑇′ with external-node children.

• This operation preserves the root, external, and depth
properties of 𝑇, but it might violate the internal
property.

Data Structures and Programming
Techniques

23

Insertion (cont’d)

• Indeed, if 𝑧 is not the root of 𝑇 and the parent 𝑣
of 𝑧 is red, then we have a parent and a child
that are both red.

• In this case, by the root property, 𝑣 cannot be the
root of 𝑇.

• By the internal property (which was previously
satisfied), the parent 𝑢 of 𝑣 must be black.

• Since 𝑧 and its parent are red, but 𝑧’s
grandparent 𝑢 is black, we call this violation of
the internal property a double red at node 𝑧.

Data Structures and Programming
Techniques

24

Insertion (cont’d)

• To remedy a double red, we consider two cases.

• Case 1: the sibling 𝒘 of 𝒗 is black. In this case, the
double red denotes the fact that we have created in
our red-black tree 𝑇 a malformed replacement for a
corresponding 4-node of the (2,4) tree 𝑇′, which has as
its children the four black children of 𝑢, 𝑣 and 𝑧.

• Our malformed replacement has one red node (𝑣) that
is the parent of another red node (𝑧) while we want it
to have two red nodes as siblings instead.

• To fix this problem, we perform a trinode restructuring
(αναδόμηση τριών κόμβων) of 𝑇 as follows.

Data Structures and Programming
Techniques

25

Trinode Restructuring

• Take node 𝑧, its parent 𝑣, and grandparent 𝑢, and
temporarily relabel them as 𝑎, 𝑏 and 𝑐, in left-to-
right order, so that 𝑎, 𝑏 and 𝑐 will be visited in this
order by an inorder tree traversal.

• Replace the grandparent 𝑢 with the node labeled
𝑏, and make nodes 𝑎 and 𝑐 the children of 𝑏
keeping inorder relationships unchanged.

• After restructuring, we color 𝑏 black and we color
𝑎 and 𝑐 red. Thus, the restructuring eliminates
the double red problem.

Data Structures and Programming
Techniques

26

Trinode Restructuring vs. Rotations

• The trinode restructuring operation we have
just described corresponds exactly to the four
kinds of rotations we discussed for AVL trees.

• Below we show graphically the four possible
subcases of Case 1 for the nodes 𝑣, 𝑢, 𝑧 and 𝑤
and the rotations that will restore the internal
property.

Data Structures and Programming
Techniques

27

Trinode Restructuring Graphically

• Right rotation at 𝑢

Data Structures and Programming
Techniques

28

30

20

10𝑧

𝑣

𝑢

𝑏

𝑎 𝑐30

20

10
𝑤

𝑤

Trinode Restructuring Graphically
(cont’d)

• Double left-right rotation at 𝑣 and 𝑢 (first a
left rotation at 𝑣 then a right rotation at 𝑢).

Data Structures and Programming
Techniques

29

30

20

10

𝑧

𝑣

𝑢

𝑏

𝑎 𝑐30

20

10
𝑤

𝑤

Trinode Restructuring Graphically
(cont’d)

• Left rotation at 𝑢

Data Structures and Programming
Techniques

30

10

30

20

𝑧

𝑣

𝑢
𝑏

𝑎 𝑐30

20

10

𝑤

𝑤

Trinode Restructuring Graphically
(cont’d)

• Double right-left rotation at 𝑣 and 𝑢 (first a
right rotation at 𝑣 then a left rotation at 𝑢).

Data Structures and Programming
Techniques

31

10

30

20𝑧

𝑣

𝑢
𝑏

𝑎 𝑐30

20

10

𝑤

𝑤

Insertion (cont’d)

• Case 2: the sibling 𝒘 of 𝒗 is red. In this case,
the double red denotes an overflow in the
corresponding (2,4) tree 𝑇′.

• To fix the problem, we perform the equivalent
of a split operation. Namely, we do a
recoloring (αναχρωματισμό): we color 𝑣 and
𝑤 black and their parent 𝑢 red (unless 𝑢 is the
root, in which case it is colored black).

Data Structures and Programming
Techniques

32

Overflow

Data Structures and Programming
Techniques

33

10 20 30 40

𝑢

𝑣 𝑤40

30

10

20

𝑧

Recoloring

Data Structures and Programming
Techniques

34

𝑢

𝑣 𝑤40

30

10

20

𝑧

… 30 …

4010 20

……

Recoloring vs. Trinode Restructuring

• The trinode restructuring operation involves a
local restructuring of the tree (implemented
by pointer manipulation) and changes in color.

• Recoloring only needs changes in color and
the structure of the tree does not change.

• The term “recoloring” should not be used in
the case of trinode restructuring although
colors change in that case too.

Data Structures and Programming
Techniques

35

Insertion (cont’d)

• It is possible that, after such a recoloring, the double red
problem reappears at 𝑢 (if 𝑢 has a red parent). Then, we
repeat the consideration of the two cases.

• Thus, a recoloring either eliminates the double red problem
at node 𝑧 or propagates it to the grandparent 𝑢 of 𝑧.

• We continue going up 𝑇 performing recoloring until we
finally resolve the double red problem (either with a final
recoloring or a trinode restructuring).

• Thus, the number of recolorings caused by insertion is no
more than half the height of tree 𝑇 (why?), that is, no more
than log(𝑛 + 1) by the proposition we have proved about
the height of a red-black tree.

Data Structures and Programming
Techniques

36

Example

• Let us now see some examples of insertions in
an initially empty red-black tree.

Data Structures and Programming
Techniques

37

Initial Empty Tree

Data Structures and Programming
Techniques

38

Insert 4

• Easy.

Data Structures and Programming
Techniques

39

4

Insert 7

• Easy.

Data Structures and Programming
Techniques

40

4

7

Insert 12 – Double Red

• We are in Case 1. We will do a trinode restructuring (left
rotation at 4).

Data Structures and Programming
Techniques

41

4

7

12

After Restructuring

Data Structures and Programming
Techniques

42

4

7

12

Insert 15 – Double Red

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

43

4

7

12

15

After Recoloring

Data Structures and Programming
Techniques

44

4

7

12

15

Insert 3

• Easy.

Data Structures and Programming
Techniques

45

4

7

12

153

Insert 5

• Easy.

Data Structures and Programming
Techniques

46

4

7

12

153 5

Insert 14 – Double Red

• We are in Case 1. We will do a trinode restructuring (double
right-left rotation at 15 and 12).

Data Structures and Programming
Techniques

47

4

7

12

153 5

14

After Restructuring

Data Structures and Programming
Techniques

48

4

7

14

153 5 12

Insertion of 18 – Double Red

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

49

4

7

14

153 5 12

18

After Recoloring

Data Structures and Programming
Techniques

50

4

7

14

153 5 12

18

Insertion of 16 – Double Red

• We are in Case 1. We will do a trinode restructuring (double right-left rotation at
18 and 15).

Data Structures and Programming
Techniques

51

4

7

14

153 5 12

18

16

After Restructuring

Data Structures and Programming
Techniques

52

4

7

14

163 5 12

1815

Insertion of 17 – Double Red

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

53

4

7

14

163 5 12

1815

17

After Recoloring – Double Red

• We are in Case 1. We will do a trinode restructuring (left rotation at
7).

Data Structures and Programming
Techniques

54

4

7

14

163 5 12

1815

17

After Restructuring

Data Structures and Programming
Techniques

55

4

14

16

18

3 5

15

17

7

12

Proposition

• The insertion of a key-value entry in a red-
black tree storing 𝑛 entries can be done in
𝑶(𝐥𝐨𝐠𝒏) time and requires 𝑶(𝐥𝐨𝐠𝒏)
recolorings and one trinode restructuring.

Data Structures and Programming
Techniques

56

Removal

• Let us now present how to remove an entry
with key 𝑘 from a red-black tree 𝑇.

• Let us first see a few examples of removal
from a given red-black tree.

Data Structures and Programming
Techniques

57

Initial Tree

Data Structures and Programming
Techniques

58

4

14

16

18

3 5

15

17

7

12

Remove 3

• Easy.

Data Structures and Programming
Techniques

59

4

14

16

18

3 5

15

17

7

12

After Removing 3

Data Structures and Programming
Techniques

60

4

14

16

18

5

15

17

7

12

Remove 14

• To remove 14, we find the key which follows 14 in the natural order of keys (15),
move this key to the position of 14 and delete it from the tree.

Data Structures and Programming
Techniques

61

4

14

16

18

5

15

17

7

12

After Moving Key 15 and Deleting Its
Node

• The resulting tree is no longer a red-black tree because the depth property has
been violated for the external-node child of node with key 16.

Data Structures and Programming
Techniques

62

4

15

16

18

5 17

7

12

Removal (cont’d)

• Let us now discuss the details of the algorithm for
removing an entry with key 𝑘 from a red-black tree 𝑇.

• We proceed like in a binary tree search searching for a
node 𝑢 storing such an entry.

• If 𝒖 does not have an external-node child, we find the
internal node 𝑣 following 𝑢 in the inorder traversal of
𝑇. This node has an external-node child. We move the
entry at 𝑣 to 𝑢, and perform the removal at 𝑣.

• Thus, we may consider only the removal of an entry
with key 𝒌 stored at a node 𝒗 with an external-node
child 𝒘.

Data Structures and Programming
Techniques

63

Removal (cont’d)

• To remove the entry with key 𝑘 from a node 𝑣 of 𝑇 with an
external-node child 𝑤, we proceed as follows.

• Let 𝑟 be the sibling of 𝑤 and 𝑥 the parent of 𝑣. We remove
nodes 𝑣 and 𝑤, and make 𝑟 a child of 𝑥.

• If 𝒗 was red (hence 𝒓 is black) then none of the properties
of red-black trees is violated and we are done.

• If 𝒓 is red (hence 𝒗 was black) then the depth property is
violated. In this case we need to color 𝒓 black to restore
the depth property.

• These two cases are shown graphically on the next slide.
Note that there are also their symmetric cases when 𝑣 is
the left child of 𝑥 (and similarly for 𝑟 and 𝑤).

Data Structures and Programming
Techniques

64

Graphically

Data Structures and Programming
Techniques

65

𝑥

𝑤

𝑣

𝑟

𝑘

𝑥

𝑟

𝑥

𝑤

𝑣

𝑟

𝑘

𝑥

𝑟

Removal (cont’d)

• Finally, if 𝒓 is black and 𝒗 is black then we have a violation
of the depth property again.

• In this case, to preserve the depth property, we give 𝑟 a
fictitious double black color.

• We now have a color violation, called the double black
problem.

• A double black in 𝑇 denotes an underflow in the
corresponding (2,4) tree 𝑇′.

• To remedy the double-black problem at 𝑟, we proceed as
follows.

• We will have 3 cases depending on the color of sibling 𝑦 of
𝑟 in the tree resulting from the deletion of 𝑣 and the color
of 𝑦’s children.

Data Structures and Programming
Techniques

66

Removal (cont’d)

• Case 1: the sibling 𝒚 of 𝒓 is black and has a red child 𝒛.
• Resolving this case corresponds to a transfer operation in

the (2,4) tree 𝑇′.
• We perform a trinode restructuring: we take the node 𝑧, its

parent 𝑦, and grandparent 𝑥, we label them temporarily
left to right as 𝑎, 𝑏 and 𝑐, and we replace 𝑥 with the node
labeled 𝑏, making it parent of the other two nodes.

• We color 𝑎 and 𝑐 black, give 𝑏 the former color of 𝑥, and
color 𝑟 black.

• This trinode restructuring eliminates the double black
problem because the path 𝑏 − 𝑐 − 𝑟 now contains two
black nodes.

Data Structures and Programming
Techniques

67

Example of Case 1

Data Structures and Programming
Techniques

68

… 30 …
𝑥

𝑦 𝑟40

30

20

10𝑧

10 20

40

……

After the Restructuring (Right Rotation
at 𝑥)

Data Structures and Programming
Techniques

69

… 20 …
𝑏

𝑎

𝑟

30

20

10

40

𝑐
30

40

……

10

Alternative Example of Case 1

Data Structures and Programming
Techniques

70

… 30 …
𝑥

𝑦 𝑟40

30

10

20𝑧

10 20

40

……

After the Restructuring (Double Left-Right
Rotation at 𝑦 and 𝑥)

Data Structures and Programming
Techniques

71

… 20 …
𝑏

𝑎

𝑟

30

20

10

40

𝑐
30

40

……

10

Removal (cont’d)

• Case 2: the sibling 𝒚 of 𝒓 is black and both
children of 𝒚 are black.

• Resolving this case corresponds to a fusion
operation in the corresponding (2,4) tree 𝑇′.

• We do a recoloring: we color 𝑟 black, we color 𝑦
red, and, if 𝑥 is red, we color it black; otherwise,
we color 𝑥 double black.

• Hence, after this recoloring, the double black
problem might reappear at the parent 𝑥 of 𝑟. We
then repeat consideration of these three cases at
𝑥.

Data Structures and Programming
Techniques

72

Recoloring a Red-Black Tree that Fixes
the Double Black Problem

Data Structures and Programming
Techniques

73

10 30 …

𝑥

𝑦 𝑟4020

10

40

…

20
30

After the Recoloring

Data Structures and Programming
Techniques

74

10 …

𝑥

𝑦 𝑟4020

10

40

…

20 30
30

Recoloring a Red-Black Tree that
Propagates the Double Black Problem

Data Structures and Programming
Techniques

75

𝑥

𝑦 𝑟4020

40

20

3030

After the Recoloring

Data Structures and Programming
Techniques

76

𝑥

𝑦 𝑟4020

40

20 30

30

Removal (cont’d)

• Case 3: the sibling 𝒚 of 𝒓 is red.

• In this case, we perform an adjustment
operation (πράξη προσαρμογής) as follows.

• If 𝑦 is the right child of 𝑥, let 𝑧 be the right
child of 𝑦; otherwise, let 𝑧 be the left child of
𝑦.

• Execute the trinode restructuring operation
which makes 𝑦 the parent of 𝑥.

• Color 𝑦 black and 𝑥 red.

Data Structures and Programming
Techniques

77

Removal (cont’d)

• An adjustment corresponds to choosing in the red-
black tree 𝑻 a different representation of a 3-node
from the corresponding (2,4) tree 𝑇′.

• After the adjustment operation, the sibling of 𝑟 is
black, and either Case 1 or Case 2 applies, with a
different meaning of 𝑥 and 𝑦.

• Note that if Case 2 applies, the double black problem
cannot reappear because the parent of 𝑟 is red.

• Thus, to complete Case 3 we make one more
application of either Case 1 or Case 2 and we are done.

• Therefore, at most one adjustment is performed in a
removal operation.

Data Structures and Programming
Techniques

78

Adjustment of a Red-Black Tree in the
Presence of a Double Black Problem

Data Structures and Programming
Techniques

79

20 30
𝑥

𝑦 𝑟40

30

20

10𝑧

… 10 …

40

… …

After the Adjustment (Right Rotation
at 𝑥)

Data Structures and Programming
Techniques

80

20 30

𝑥

𝑦

𝑟40

20

10 30𝑧
… 10 …

40

… …

Removal (cont’d)

• The algorithm for removing an entry from a
red-black tree with 𝑛 entries takes 𝑶(𝐥𝐨𝐠𝒏)
time and performs 𝑶(𝐥𝐨𝐠𝒏) recolorings and
at most one adjustment plus one additional
trinode restructuring.

Data Structures and Programming
Techniques

81

Example

• Let us now see a few removals from a given
red-black tree.

Data Structures and Programming
Techniques

82

Initial Tree

Data Structures and Programming
Techniques

83

4

14

16

18

3 5

15

17

7

12

Remove 3

• Easy.

Data Structures and Programming
Techniques

84

4

14

16

18

3 5

15

17

7

12

After Removing 3

Data Structures and Programming
Techniques

85

4

14

16

18

5

15

17

7

12

Remove 12

• A black node is removed hence a double black will be created.

Data Structures and Programming
Techniques

86

4

14

16

18

5

15

17

7

12

After Removing 12 – Double Black

Data Structures and Programming
Techniques

87

4

14

16

18

5

15

17

7

Double Black

• We are in Case 1. We need to do trinode restructuring (double left-
right rotation at 4 and 7).

Data Structures and Programming
Techniques

88

4

14

16

18

5

15

17

7

After Restructuring

Data Structures and Programming
Techniques

89

4

14

16

187 15

17

5

Remove 17

• Easy.

Data Structures and Programming
Techniques

90

4

14

16

187 15

17

5

After Removing 17

Data Structures and Programming
Techniques

91

4

14

16

187 15

5

Remove 18

• A black node is removed hence a double black is created.

Data Structures and Programming
Techniques

92

4

14

16

187 15

5

After Removing 18 – Double Black

• We are in Case 2. We will do a recoloring.

Data Structures and Programming
Techniques

93

4

14

16

7 15

5

After Recoloring

Data Structures and Programming
Techniques

94

4

14

16

7 15

5

Remove 15

• Easy.

Data Structures and Programming
Techniques

95

4

14

16

7 15

5

After Removing 15

Data Structures and Programming
Techniques

96

4

14

16

7

5

Remove 16

• A black node is removed hence a double black will be created.

Data Structures and Programming
Techniques

97

4

14

16

7

5

After Removing 16 – Double Black

• We are in Case 3. We will do an adjustment (right rotation at
14).

Data Structures and Programming
Techniques

98

4

14

7

5

After the Adjustment – Double Black

• We are in Case 2. Will do a recoloring.

Data Structures and Programming
Techniques

99

5

7

144

After the Recoloring

Data Structures and Programming
Techniques

100

5

7

144

Complexity of Operations in a Red-
Black Tree

Data Structures and Programming
Techniques

101

𝑂(log 𝑛)

𝑂(1)

𝑂(1)

𝑂(1)

Time per level
Height

Worst-case time: 𝑂(log 𝑛)

Down phase

Up phase

Summary

• The red-black tree data structure is slightly
more complicated than its corresponding (2,4)
tree.

• However, the red-black tree has the
conceptual advantage that only a constant
number of trinode restructurings are ever
needed to restore the balance after an
update.

Data Structures and Programming
Techniques

102

Readings

• M. T. Goodrich, R. Tamassia and Michael H.
Goldwasser. Data Structures and Algorithms in
Java. 6th edition. John Wiley and Sons, 2014.

– Section 11.6

• R. Sedgewick. Αλγόριθμοι σε C.

– Κεφ. 13.4

Data Structures and Programming
Techniques

103

