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Red-Black Trees

• AVL trees and (2,4) trees have very nice 
properties, but:

– AVL trees might need many rotations after a 
removal

– (2,4) trees might require many split or fusion 
operations after an update (insertion or deletion).

• Red-black trees are a data structure which 
requires only 𝑶(𝟏) structural changes after an 
update in order to remain balanced.
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Definition

• A red-black tree is a binary search tree with 
nodes colored red and black in a way that 
satisfies the following properties:
– Root Property: The root is black.

– External Property: Every external node is black.

– Internal Property: The children of  a red node are 
black.

– Depth Property: All the external nodes have the same 
black depth, defined as the number of black ancestors 
minus one (recall that a node is an ancestor of itself).
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Definition (cont’d)

• Red-black trees will be used for implementing 
maps so they will not be allowed to have 
duplicate keys.

Data Structures and Programming 
Techniques

4



Example Red-Black Tree
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From (2,4) Trees to Red-Black Trees

• Given a (2,4) tree, we can transform it into a red-black 
tree by performing the following transformations for 
each internal node 𝑣:
– If 𝑣 is a 2-node, then keep the (black) children of 𝑣 as is.

– If 𝑣 is a 3-node, then create a new red node 𝑤, give 𝑣’s 
first two (black) children to 𝑤, and make 𝑤 and 𝑣’s third 
child be the two children of 𝑣 (the symmetric operation is 
also possible; see next slide).

– If 𝑣 is a 4-node, then create two new red nodes 𝑤 and 𝑧, 
give 𝑣’s first two (black) children to 𝑤, give 𝑣’s last two 
(black) children to 𝑧, and make 𝑤 and 𝑧 be the two 
children of 𝑣.
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From (2,4) Trees to Red-Black Trees 
(cont’d)
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Example (2,4) Tree
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Corresponding Red-Black Tree
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From Red-Black Trees to (2,4) Trees

• Given a red-black tree, we can construct a 
corresponding (2,4) tree by merging every red 
node 𝑣 into its parent and storing the entry 
from 𝑣 at its parent.

• The two children of 𝑣 become left and right 
child of 𝑣 in the new 3-node or 4-node.
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Example Red-Black Tree

Data Structures and Programming 
Techniques

11

12

5

3

4

1310

15

17

14

7 11

6 8



Corresponding (2,4) Tree
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Proposition

• The height of a red-black tree storing 𝑛 entries 
is 𝑂(log 𝑛).

• Proof?
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Proof

• Let 𝑇 be a red-black tree storing 𝑛 entries, and let ℎ be the 
height of 𝑇. We will prove the following:

log(𝑛 + 1) ≤ ℎ ≤ 2 log(𝑛 + 1)
• Let 𝑑 be the common black depth of all the external nodes 

of 𝑇. Let 𝑇′ be the (2,4) tree associated with 𝑇, and let ℎ′ be 
the height of 𝑇′.

• Because of the correspondence between red-black trees 
and (2,4) trees, we know that 𝒉′ = 𝒅.

• Hence, 𝑑 = ℎ′ ≤ log(𝑛 + 1) by the proposition for the 
height of (2,4) trees. By the internal node property of red-
black trees, we have 𝒉 ≤ 𝟐𝒅 (the upper bound for the 
height is reached when every black node has only red 
children). Therefore, ℎ ≤ 2 log(𝑛 + 1).
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Proof (cont’d)

• The other inequality, log(𝑛 + 1) ≤ ℎ follows 
from the properties of proper binary trees and 
the fact that 𝑇 has 𝑛 internal nodes.
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Search in a Red-Black Tree

• The algorithm for searching for the entry with 
key 𝑘 in a red-black tree is exactly the same as 
the algorithm we presented for searching in a 
binary search tree.

• The worst-case complexity of this algorithm is 
𝑶(𝐥𝐨𝐠𝒏) where 𝑛 is the number of entries in 
the tree.
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Updates

• Performing update operations (insertions or 
deletions) in a red-black tree is similar to the 
operations of binary search trees, but we 
must additionally take care not to destroy the 
color properties.

• For an update operation in a red-black tree 𝑇, 
it is important to keep in mind the 
correspondence with a (2,4) tree 𝑻′ and the 
relevant update algorithms for (2,4) trees.
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Insertion

• Let us consider the insertion of a new entry 
with key 𝑘 into a red-black tree 𝑇.

• We will start with a few examples of insertions 
into an initially empty tree.
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Initial Empty Tree
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Insert 4

• Easy.
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Insert 7

• Easy.
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Insert 12

• In this case, the resulting tree violates the internal property of red-
black trees. This problem needs to be fixed and we will see the 
details below.
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Insertion (cont’d)

• Let us present the details of the algorithm for inserting 
a new entry with key 𝑘 into a red-black tree 𝑇.

• We search for 𝑘 in 𝑇 until we reach an external node of 
𝑇, and we replace this node with an internal node 𝑧, 
storing (𝑘, 𝑖) and having two external-node children.

• If 𝑧 is the root of 𝑇, we color 𝑧 black, else we color 𝑧
red. We also color the children of 𝑧 black.

• This operation corresponds to inserting (𝑘, 𝑖) into a 
node of the (2,4) tree 𝑇′ with external-node children.

• This operation preserves the root, external, and depth 
properties of 𝑇, but it might violate the internal 
property.
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Insertion (cont’d)

• Indeed, if 𝑧 is not the root of 𝑇 and the parent 𝑣
of 𝑧 is red, then we have a parent and a child 
that are both red.

• In this case, by the root property, 𝑣 cannot be the 
root of 𝑇.

• By the internal property (which was previously 
satisfied), the parent 𝑢 of 𝑣 must be black.

• Since 𝑧 and its parent are red, but 𝑧’s 
grandparent 𝑢 is black, we call this violation of 
the internal property a double red at node 𝑧.
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Insertion (cont’d)

• To remedy a double red, we consider two cases.

• Case 1: the sibling 𝒘 of 𝒗 is black. In this case, the 
double red denotes the fact that we have created in 
our red-black tree 𝑇 a malformed replacement for a 
corresponding 4-node of the (2,4) tree 𝑇′, which has as 
its children the four black children of 𝑢, 𝑣 and 𝑧.

• Our malformed replacement has one red node (𝑣) that 
is the parent of another red node (𝑧) while we want it 
to have two red nodes as siblings instead.

• To fix this problem, we perform a trinode restructuring 
(αναδόμηση τριών κόμβων) of 𝑇 as follows.
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Trinode Restructuring

• Take node 𝑧, its parent 𝑣, and grandparent 𝑢, and 
temporarily relabel them as 𝑎, 𝑏 and 𝑐, in left-to-
right order, so that 𝑎, 𝑏 and 𝑐 will be visited in this 
order by an inorder tree traversal.

• Replace the grandparent 𝑢 with the node labeled 
𝑏, and make nodes 𝑎 and 𝑐 the children of 𝑏
keeping inorder relationships unchanged.

• After restructuring, we color 𝑏 black and we color 
𝑎 and 𝑐 red. Thus, the restructuring eliminates
the double red problem.
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Trinode Restructuring vs. Rotations

• The trinode restructuring operation we have 
just described corresponds exactly to the four 
kinds of rotations we discussed for AVL trees.

• Below we show graphically the four possible 
subcases of Case 1 for the nodes 𝑣, 𝑢, 𝑧 and 𝑤
and the rotations that will restore the internal 
property.
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Trinode Restructuring Graphically

• Right rotation at 𝑢
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Trinode Restructuring Graphically 
(cont’d)

• Double left-right rotation at 𝑣 and 𝑢 (first a 
left rotation at 𝑣 then a right rotation at 𝑢).
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Trinode Restructuring Graphically 
(cont’d)

• Left rotation at 𝑢
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Trinode Restructuring Graphically 
(cont’d)

• Double right-left rotation at 𝑣 and 𝑢 (first a 
right rotation at 𝑣 then a left rotation at 𝑢).
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Insertion (cont’d)

• Case 2: the sibling 𝒘 of 𝒗 is red. In this case, 
the double red denotes an overflow in the 
corresponding (2,4) tree 𝑇′. 

• To fix the problem, we perform the equivalent 
of a split operation. Namely, we do a 
recoloring (αναχρωματισμό): we color 𝑣 and 
𝑤 black and their parent 𝑢 red (unless 𝑢 is the 
root, in which case it is colored black).
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Overflow
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Recoloring
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Recoloring vs. Trinode Restructuring

• The trinode restructuring operation involves a 
local restructuring of the tree (implemented 
by pointer manipulation) and changes in color.

• Recoloring only needs changes in color and 
the structure of the tree does not change.

• The term “recoloring” should not be used in 
the case of trinode restructuring although 
colors change in that case too.
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Insertion (cont’d)

• It is possible that, after such a recoloring, the double red 
problem reappears at 𝑢 (if 𝑢 has a red parent). Then, we 
repeat the consideration of the two cases. 

• Thus, a recoloring either eliminates the double red problem 
at node 𝑧 or propagates it to the grandparent 𝑢 of 𝑧.

• We continue going up 𝑇 performing recoloring until we 
finally resolve the double red problem (either with a final 
recoloring or a trinode restructuring).

• Thus, the number of recolorings caused by insertion is no 
more than half the height of tree 𝑇 (why?), that is, no more 
than log(𝑛 + 1) by the proposition we have proved about 
the height of a red-black tree.

Data Structures and Programming 
Techniques

36



Example

• Let us now see some examples of insertions in 
an initially empty red-black tree.
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Initial Empty Tree
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Insert 4

• Easy.
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Insert 7

• Easy.
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Insert 12 – Double Red

• We are in Case 1. We will do a trinode restructuring (left 
rotation at 4).
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After Restructuring
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Insert 15 – Double Red

• We are in Case 2. We will do a recoloring.
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After Recoloring
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Insert 3

• Easy.
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Insert 5

• Easy.
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Insert 14 – Double Red

• We are in Case 1. We will do a trinode restructuring (double 
right-left rotation at 15 and 12).
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After Restructuring
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Insertion of 18 – Double Red

• We are in Case 2. We will do a recoloring.
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After Recoloring
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Insertion of 16 – Double Red

• We are in Case 1. We will do a trinode restructuring (double right-left rotation at 
18 and 15).
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After Restructuring
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Insertion of 17 – Double Red

• We are in Case 2. We will do a recoloring.

Data Structures and Programming 
Techniques

53

4

7

14

163 5 12

1815

17



After Recoloring – Double Red

• We are in Case 1. We will do a trinode restructuring (left rotation at 
7).
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After Restructuring
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Proposition

• The insertion of a key-value entry in a red-
black tree storing 𝑛 entries can be done in 
𝑶(𝐥𝐨𝐠𝒏) time and requires 𝑶(𝐥𝐨𝐠𝒏)
recolorings and one trinode restructuring.

Data Structures and Programming 
Techniques

56



Removal

• Let us now present how to remove an entry 
with key 𝑘 from a red-black tree 𝑇.

• Let us first see a few examples of removal 
from a given red-black tree.
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Initial Tree
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Remove 3

• Easy.
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After Removing 3
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Remove 14

• To remove 14, we find the key which follows 14 in the natural order of keys (15), 
move this key to the position of 14 and delete it from the tree.
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After Moving Key 15 and Deleting Its 
Node

• The resulting tree is no longer a red-black tree because the depth property has 
been violated for the external-node child of node with key 16.
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Removal (cont’d)

• Let us now discuss the details of the algorithm for 
removing an entry with key 𝑘 from a red-black tree 𝑇.

• We proceed like in a binary tree search searching for a 
node 𝑢 storing such an entry.

• If 𝒖 does not have an external-node child, we find the 
internal node 𝑣 following 𝑢 in the inorder traversal of 
𝑇. This node has an external-node child. We move the 
entry at 𝑣 to 𝑢, and perform the removal at 𝑣.

• Thus, we may consider only the removal of an entry 
with key 𝒌 stored at a node 𝒗 with an external-node 
child 𝒘.
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Removal (cont’d)

• To remove the entry with key 𝑘 from a node 𝑣 of 𝑇 with an 
external-node child 𝑤, we proceed as follows.

• Let 𝑟 be the sibling of 𝑤 and 𝑥 the parent of 𝑣. We remove 
nodes 𝑣 and 𝑤, and make 𝑟 a child of 𝑥.

• If 𝒗 was red (hence 𝒓 is black) then none of the properties 
of red-black trees is violated and we are done.

• If 𝒓 is red (hence 𝒗 was black) then the depth property is 
violated.  In this case we need to color 𝒓 black to restore 
the depth property.

• These two cases are shown graphically on the next slide. 
Note that there are also their symmetric cases when 𝑣 is 
the left child of 𝑥 (and similarly for 𝑟 and 𝑤).
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Graphically
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Removal (cont’d)

• Finally, if 𝒓 is black and 𝒗 is black then we have a violation 
of the depth property again.

• In this case, to preserve the depth property, we give 𝑟 a 
fictitious double black color.

• We now have a color violation, called the double black 
problem.

• A double black in 𝑇 denotes an underflow in the 
corresponding (2,4) tree 𝑇′.

• To remedy the double-black problem at 𝑟, we proceed as 
follows.

• We will have 3 cases depending on the color of sibling 𝑦 of 
𝑟 in the tree resulting from the deletion of 𝑣 and the color 
of 𝑦’s children.
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Removal (cont’d)

• Case 1: the sibling 𝒚 of 𝒓 is black and has a red child 𝒛. 
• Resolving this case corresponds to a transfer operation in 

the (2,4) tree 𝑇′.
• We perform a trinode restructuring: we take the node 𝑧, its 

parent 𝑦, and grandparent 𝑥, we label them temporarily 
left to right as 𝑎, 𝑏 and 𝑐, and we replace 𝑥 with the node 
labeled 𝑏, making it parent of the other two nodes.

• We color 𝑎 and 𝑐 black, give 𝑏 the former color of 𝑥, and 
color 𝑟 black.

• This trinode restructuring eliminates the double black 
problem because the path 𝑏 − 𝑐 − 𝑟 now contains two 
black nodes.
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Example of Case 1
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After the Restructuring (Right Rotation 
at 𝑥)
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Alternative Example of Case 1
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After the Restructuring (Double Left-Right 
Rotation at 𝑦 and 𝑥)
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Removal (cont’d)

• Case 2: the sibling 𝒚 of 𝒓 is black and both 
children of 𝒚 are black. 

• Resolving this case corresponds to a fusion
operation in the corresponding (2,4) tree 𝑇′.

• We do a recoloring: we color 𝑟 black, we color 𝑦
red, and, if 𝑥 is red, we color it black; otherwise, 
we color 𝑥 double black.

• Hence, after this recoloring, the double black 
problem might reappear at the parent 𝑥 of 𝑟. We 
then repeat consideration of these three cases at 
𝑥.
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Recoloring a Red-Black Tree that Fixes 
the Double Black Problem
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After the Recoloring
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Recoloring a Red-Black Tree that 
Propagates the Double Black Problem
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Removal (cont’d)

• Case 3: the sibling 𝒚 of 𝒓 is red.

• In this case, we perform an adjustment 
operation (πράξη προσαρμογής) as follows.

• If 𝑦 is the right child of 𝑥, let 𝑧 be the right 
child of 𝑦; otherwise, let 𝑧 be the left child of 
𝑦. 

• Execute the trinode restructuring operation 
which makes 𝑦 the parent of 𝑥.

• Color 𝑦 black and 𝑥 red.
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Removal (cont’d)

• An adjustment corresponds to choosing in the red-
black tree 𝑻 a different representation of a 3-node 
from the  corresponding (2,4) tree 𝑇′.

• After the adjustment operation, the sibling of 𝑟 is 
black, and either Case 1 or Case 2 applies, with a 
different meaning of 𝑥 and 𝑦.

• Note that if Case 2 applies, the double black problem 
cannot reappear because the parent of 𝑟 is red.

• Thus, to complete Case 3 we make one more 
application of either Case 1 or Case 2 and we are done. 

• Therefore, at most one adjustment is performed in a 
removal operation.
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Adjustment of a Red-Black Tree in the 
Presence of a Double Black Problem
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After the Adjustment (Right Rotation 
at 𝑥)
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Removal (cont’d)

• The algorithm for removing an entry from a 
red-black tree with 𝑛 entries takes 𝑶(𝐥𝐨𝐠𝒏)
time and performs 𝑶(𝐥𝐨𝐠𝒏) recolorings and 
at most one adjustment plus one additional 
trinode restructuring. 
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Example

• Let us now see a few removals from a given 
red-black tree.
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Initial Tree
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Remove 3

• Easy.
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After Removing 3
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Remove 12

• A black node is removed hence a double black will be created.
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After Removing 12 – Double Black
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Double Black

• We are in Case 1. We need to do trinode restructuring (double left-
right rotation at 4 and 7).
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After Restructuring
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Remove 17

• Easy.
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After Removing 17
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Remove 18

• A black node is removed hence a double black is created.
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After Removing 18 – Double Black

• We are in Case 2. We will do a recoloring.
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After Recoloring
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Remove 15

• Easy.
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After Removing 15
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Remove 16

• A black node is removed hence a double black will be created.
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After Removing 16 – Double Black

• We are in Case 3. We will do an adjustment (right rotation at 
14).
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After the Adjustment – Double Black

• We are in Case 2. Will do a recoloring.
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After the Recoloring
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Complexity of Operations in a Red-
Black Tree
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Summary

• The red-black tree data structure is slightly 
more complicated than its corresponding (2,4) 
tree.

• However, the red-black tree has the 
conceptual advantage that only a constant 
number of trinode restructurings are ever 
needed to restore the balance after an 
update.
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Readings

• M. T. Goodrich, R. Tamassia and Michael H. 
Goldwasser. Data Structures and Algorithms in 
Java. 6th edition. John Wiley and Sons, 2014.

– Section 11.6

• R. Sedgewick. Αλγόριθμοι σε C.

– Κεφ. 13.4
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