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Graphs

• Graphs are collections of nodes in which various 
pairs are connected by line segments. The nodes 
are usually called vertices (κορυφές) and the line 
segments edges (ακμές).

• Graphs are more general than trees. Graphs are 
allowed to have cycles and can have more than 
one connected component.

• Some authors use the terms nodes (κόμβοι) and 
arcs (τόξα) instead of vertices and edges.

• Graphs can be undirected (μη κατευθυνόμενοι)
or directed (κατευθυνόμενοι).
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Examples of Graphs (Undirected)
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Examples of Graphs (Directed)
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Examples of Graphs

• Transportation networks

• Interesting problem: What is the path with 
one or more stops of shortest overall distance 
connecting a starting city and a destination 
city?
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Examples (cont’d)

• A network of oil pipelines

• Interesting problem: What is the maximum 
possible overall flow of oil from the source to 
the destination?
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Examples (cont’d)

• The Internet

• Interesting problem: Deliver an e-mail from 
user A to user B
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Examples (cont’d)

• The Web

• Interesting problem: What is the PageRank of 
a Web site?
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Examples (cont’d)

• The Facebook social network

• Interesting problem: Are John and Mary 
connected? What interesting clusters exist?
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Formal Definitions

• A graph 𝐺 = (𝑉, 𝐸) consists of a set of vertices V and a set of edges
E, where the edges in E are formed from pairs of distinct vertices in 
V.

• If the edges have directions then we have a directed graph 
(κατευθυνόμενο γράφο) or digraph. In this case edges are ordered 
pairs of vertices e.g., 𝑢, 𝑣 and are called directed. If 𝑢, 𝑣 is a 
directed edge then 𝑢 is called its origin and 𝑣 is called its 
destination.

• If the edges do not have directions then we have an undirected 
graph (μη-κατευθυνόμενος γράφο). In this case edges are 
unordered pairs of vertices e.g., 𝑣, 𝑢 and are called undirected. 

• For simplicity, we will use the directed pair notation noting that in 
the undirected case 𝑢, 𝑣 is the same as 𝑣, 𝑢 .
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Example of a Directed Graph
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𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}



One More Example of a Directed 
Graph
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𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 2,1 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}



Example of an Undirected Graph
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𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}



Note

• In the following slides, when we say simply 
graph in a definition, the definition will apply 
to both directed and undirected graphs.
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Definitions (cont’d)

• Two different vertices 𝑣𝑖 and 𝑣𝑗 in a graph 𝐺 = 𝑉, 𝐸
are said to be adjacent (γειτονικές) if there exists an 
edge 𝑒 𝜖 𝐸 such that 𝑒 = 𝑣𝑖 , 𝑣𝑗 .

• When the graph is undirected, the adjacency relation is 
symmetric.

• In an undirected graph, an edge is said to be incident 
(προσπίπτουσα) on a vertex if the vertex is one of the 
edge’s endpoints.

• If (𝑢, 𝑣) is an edge in a directed graph 𝐺 = (𝑉, 𝐸), we 
say that (𝑢, 𝑣) is incident from or leaves vertex 𝑢 and 
is incident to or enters vertex 𝑣.

Data Structures and Programming 
Techniques

15



Examples – Undirected Graph
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Vertices 1 and 2 are adjacent.   Edge (1,2) is incident on vertices 1 and 2.



Examples – Directed Graph
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Vertices 1 and 2 are adjacent.   Edge (1, 2) is incident from (or leaves) vertex 1 and 
is incident on (or enters) vertex 2.



Definitions (cont’d)

• A path (μονοπάτι) 𝑝 in a graph 𝐺 = 𝑉, 𝐸 is a sequence of 
vertices of 𝑉 of the form 𝑝 = 𝑣1𝑣2 … 𝑣𝑛, 𝑛 ≥ 2 in which 
each vertex 𝑣𝑖 is adjacent to the next one 𝑣𝑖+1 (for 1 ≤ 𝑖 ≤
𝑛 − 1). 

• In the above case, we say that p contains the vertices 
𝑣1, 𝑣2 , … , 𝑣𝑛 and the edges (𝑣𝑖 , 𝑣𝑖+1) for 1 ≤ 𝑖 ≤ 𝑛 − 1.

• The length of a path is the number of edges in it.
• A path is simple if each vertex in the path is distinct.
• A subpath of a path is a contiguous subsequence of its 

vertices.
• In a directed graph, we often use the term directed path 

for obvious reasons.
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Examples – Undirected Graph
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The sequence of vertices 1, 2, 5, 6 is a simple path of length 3. 
The path 1, 2, 5, 6, 5 is not simple.
The path 2, 5, 6 is a subpath of the path 1, 2, 5, 6, 7.



Definitions (cont’d)

• A cycle is a path 𝑝 = 𝑣1𝑣2 … 𝑣𝑛 of length greater 
than one that begins and ends at the same vertex 
(i.e., 𝑣1 = 𝑣𝑛).

• A simple cycle is a path that travels through three 
or more distinct vertices and connects them into 
a loop. 

• Formally, if 𝑝 is a path of the form 𝑝 = 𝑣1𝑣2 … 𝑣𝑛, 
then 𝑝 is a simple cycle if and only if 𝑛 > 3, 𝑣1 =
𝑣𝑛 and 𝑣𝑖 ≠ 𝑣𝑗 for distinct 𝑖 and 𝑗 in the range 
1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1.

• Simple cycles do not repeat edges.
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Examples – Undirected Graph
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Four simple cycles:  (1,2,3,1)   (4,5,6,7,4)   (4,5,6,4)   (4,6,7,4)



Example (cont’d)
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One non-simple cycle:  (4,5,6,4,7,6,4)



Examples – Directed Graph
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The sequence of vertices 1, 2, 5, 6 is a simple (directed) path of length 3. 
The sequence 2, 5, 4 is not a path because there is no directed edge (5, 4).
The path 5, 6, 7, 4, 5 is a simple cycle.



Reachability

• Let 𝐺 be a graph. If there is a path 𝑝 from 𝑣 to 
𝑢 in 𝐺 then we say that 𝑢 is reachable 
(προσβάσιμη) from 𝑣 via 𝑝.
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Examples - Undirected Graph
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Vertices 1 and 6 are reachable from each 
other.
Vertex 1 is not reachable from vertex 8 
(or 9, 10, 11).



Examples – Directed Graph
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Vertex 6 is reachable from vertex 1.
Vertex 1 is not reachable from vertex 6.
Vertex 1 is not reachable from vertex 8 
(or 9, 10, 11).



Connected Undirected Graphs

• An undirected graph 𝐺 is connected
(συνεκτικός) if every vertex is reachable from 
every other vertex in the graph (i.e., if there is 
a path from every vertex to every other 
vertex).
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Example of Connected Undirected Graph
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Connected Components of Undirected 
Graphs

• In the undirected graph 𝐺 = (𝑉, 𝐸), a connected component
(συνεκτική συνιστώσα) is a maximal subset 𝑆 of the vertices 𝑉 that 
are all reachable from each other.

• By maximal we mean that there is no bigger subset 𝑇 of vertices in 
𝑉 such that 𝑇 properly contains 𝑆 and such that 𝑇 has the same 
reachability property.

• An undirected graph 𝐺 can always be separated into connected 
components 𝑆1, 𝑆2, … , 𝑆𝑛 such that 𝑆𝑖 ∩ 𝑆𝑗 = ∅ whenever 𝑖 ≠ 𝑗.

• The connected components of an undirected graph are the 
equivalence classes of the vertices under the “is reachable from” 
relation.

• An undirected graph is connected if it has exactly one connected 
component.
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Example of Undirected Graph and its Separation 
into Two Connected Components
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Strongly Connected Directed Graphs

• A directed graph is strongly connected 
(ισχυρά συνεκτικός) if every two vertices are 
reachable from each other (i.e., there is a path 
from the first to the second and vice versa).
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Strongly Connected Components of a 
Directed Graph

• A strongly connected component (ισχυρά συνεκτική 
συνιστώσα) of a directed graph is a maximal set of vertices 
in which there is a path from any one vertex in the set to 
any other vertex.

• More formally, let 𝐺 = (𝑉, 𝐸) be a directed graph. We can 
partition 𝑉 into equivalence classes 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑟, such that 
vertices 𝑣 and 𝑤 are equivalent if and only if there is a path 
from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣. Let 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑟, be 
the set of edges with endpoints in 𝑉𝑖 . The graphs 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖) are called the strongly connected components or 
just strong components (ισχυρές συνιστώσες) of 𝐺.

• A directed graph with only one strong component is 
strongly connected.

Data Structures and Programming 
Techniques

32



Example Directed Graph
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The Strong Components of the Digraph
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Another Example Directed Digraph

• This graph consists of a single strong component.
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Degree in Undirected Graphs

• In an undirected graph 𝐺, the degree
(βαθμός) of vertex 𝑥 is the number of edges 𝑒
in which 𝑥 is one of the endpoints of 𝑒.

• The degree of a vertex 𝑥 is denoted by 
deg 𝑥 .
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Example
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The degree of vertex 1 is 2. The degree of vertex 4 is 4. The degree of vertex 8 is 
1.



Proposition

• If 𝐺 is an undirected graph with 𝑚 edges, then



𝑣 𝑖𝑛 𝐺

deg(𝑣) = 2𝑚.

• Proof?
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Proof

• An edge (𝑢, 𝑣) is counted twice in the 
summation above; once by its endpoint 𝑢 and 
one by its endpoint 𝑣. Thus, the total 
contribution of the edges to the degrees of 
the vertices is twice the number of edges.
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Predecessors and Successors in 
Directed Graphs

• If 𝑥 is a vertex in a directed graph 𝐺 = (𝑉, 𝐸)
then the set of predecessors (προηγούμενων)
of 𝑥 denoted by 𝑃𝑟𝑒𝑑(𝑥) is the set of all 
vertices 𝑦 ∈ 𝑉 such that 𝑦, 𝑥 ∈ 𝐸.

• Similarly the set of successors (επόμενων) of 
𝑥 denoted by 𝑆𝑢𝑐𝑐(𝑥) is the set of all vertices 
𝑦 ∈ 𝑉 such that 𝑥, 𝑦 ∈ 𝐸.
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In-Degree and Out-Degree in Directed 
Graphs

• The in-degree of a vertex 𝑥 is the number of 
predecessors of 𝑥.

• The out-degree of a vertex 𝑥 is the number of 
successors of 𝑥.

• We can also define the in-degree and the out-
degree by referring to the incoming and outgoing
edges of a vertex.

• The in-degree and out-degree of a vertex 𝑥 are 
denoted by 𝑖𝑛𝑑𝑒𝑔(𝑥) and 𝑜𝑢𝑡𝑑𝑒𝑔(𝑥)
respectively.
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Example
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The in-degree of vertex 4 is 2. The out-degree of vertex 4 is 1.



Proposition

• If 𝐺 is a directed graph with 𝑚 edges, then



𝑣 𝑖𝑛 𝐺

𝑖𝑛𝑑𝑒 𝑔 𝑣 = 

𝑣 𝑖𝑛 𝐺

𝑜𝑢𝑡𝑑𝑒𝑔(𝑣) = 𝑚.

• Proof?
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Proof

• In a directed graph, an edge (𝑢, 𝑣) contributes 
one unit to the out-degree of its origin vertex 
𝑢 and one unit to the in-degree of its 
destination 𝑣. Thus, the total contribution of 
the edges to the out-degrees of the vertices is 
equal to the number of edges, and similarly 
for the out-degrees.
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Proposition

• Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges. 

If 𝐺 is undirected, then 𝑚 ≤
𝑛 𝑛−1

2
, and if 𝐺 is 

directed, then 𝑚 ≤ 𝑛 𝑛 − 1 .

• Proof?
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Proof

• If 𝐺 is undirected then the maximum degree 
of a vertex is 𝑛 − 1. Therefore, from the 
previous proposition about the sum of the 
degrees, we have 2𝑚 ≤ 𝑛 𝑛 − 1 .

• If 𝐺 is directed then the maximum in-degree 
of a vertex is 𝑛 − 1. Therefore, from the 
previous proposition about the sum of the in-
degrees, we have 𝑚 ≤ 𝑛 𝑛 − 1 .
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More definitions

• A subgraph (υπογράφος) of a graph 𝐺 is a 
graph 𝐻 whose set of vertices and set of 
edges are subsets of the set of vertices and 
the set of edges of 𝐺 respectively.

• A spanning subgraph (υπογράφος
επικάλυψης) of 𝐺 is a subgraph of 𝐺 that 
contains all the vertices of 𝐺.
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Example Undirected Graph 𝐺
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Example (cont’d)
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The above are three subgraphs of the previous graph 𝐺.



Example (cont’d)
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The above graph is a spanning subgraph of the previous graph 𝐺.



More Definitions for Undirected 
Graphs

• A forest (δάσος) is an undirected graph without cycles.
• A free tree (ελεύθερο δένδρο) is a connected forest i.e., a 

connected, undirected graph without cycles.
• The trees that we studied in earlier lectures are rooted 

trees (δένδρα με ρίζα) and they are different than free 
trees.

• A spanning tree (δένδρο επικάλυψης ή επικαλύπτον 
δένδρο) of an undirected graph is a spanning subgraph that 
is a free tree.

• A spanning forest (δάσος επικάλυψης ή επικαλύπτον 
δάσος) is an undirected graph which is the union of 
spanning trees, one for each connected component of the 
graph.
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Example Forest

Data Structures and Programming 
Techniques

52

1

2

5

4 6

7
8

3



Example Free Tree
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Example
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The thick green lines define a spanning tree of the graph.



Example (cont’d)
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The thick green lines define another spanning tree of the graph.



Example
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The thick green lines define a 
spanning forest which consists of 
two spanning trees.



More definitions (cont’d)

• We can give similar definitions for forest and 
tree for the case of directed graphs but now 
our trees will be directed, rooted trees in 
which all edges point away from the root 
(technically such a tree is called an 
arborescence or directed rooted tree if you 
don’t like words that come from French).

• The terms spanning tree and spanning forest 
are used only for undirected graphs.
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Example

• A forest consisting of two directed rooted trees. 
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Graph Representations: Adjacency 
Matrices

• Let 𝐺 = (𝑉, 𝐸) be a graph. Suppose we 
number the vertices in 𝑉 as 𝑣1, 𝑣2, … , 𝑣𝑛.

• The adjacency matrix (πίνακας γειτνίασης) 𝑇
corresponding to 𝐺 is an 𝑛 × 𝑛 matrix such 

that 𝑇 𝑖, 𝑗 = 1 if there is an edge 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸, 

and 𝑇 𝑖, 𝑗 = 0 if there is no such edge in 𝐸.
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Example

0 1 0 0

0 0 1 1

1 0 0 1

1 0 0 0
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Adjacency Matrices

• The adjacency matrix of an undirected graph 
𝐺 is a symmetric matrix i.e., 𝑇 𝑖, 𝑗 = 𝑇[𝑗, 𝑖]
for all 𝑖 and 𝑗 in the range 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

• The adjacency matrix for a directed graph 
need not be symmetric.
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Example

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0
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Another Example

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0
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Adjacency Matrices (cont’d)

• The diagonal entries in an adjacency matrix 
(of a directed or undirected graph) are zero, 
since graphs, as we have defined them, are 
not permitted to have looping self-referential 
edges that connect a vertex to itself.

Data Structures and Programming 
Techniques

64



Adjacency Matrices in C

#define MAXVERTEX 10

typedef enum {FALSE, TRUE} Boolean

/* FALSE and TRUE will be 0 and 1 respectively */

typedef Boolean

AdjacencyMatrix[MAXVERTEX][MAXVERTEX]

typedef struct graph {

int n    /*number of vertices in graph */

AdjacencyMatrix A;

} Graph;
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Adjacency Sets

• Another way to define a graph 𝐺 = (𝑉, 𝐸) is to 
specify adjacency sets (σύνολα γειτνίασης) for 
each vertex in 𝑉.

• Let 𝑉𝑥 stand for the set of all vertices adjacent to 
𝑥 in an undirected graph 𝐺 or the set of all 
vertices that are successors of 𝑥 in a directed 
graph 𝐺.

• If we give both the vertex set  𝑉 and the 
collection 𝐴 = {𝑉𝑥|𝑥 ∈ 𝑉} of adjacency sets for 
each vertex in 𝑉 then we have given enough 
information to define the graph 𝐺.
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Graph Representations: Adjacency 
Lists

• When writing code in C or other languages, 
we use adjacency lists (λίστες γειτνίασης) to 
represent the adjacency set 𝑉𝑥 for each vertex 
𝑥 in the graph.

• Adjacency matrices and adjacency lists are the 
two standard representations of graphs.
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Example Directed Graph

1 2 2  3

2 3 3 4  5

3 1 4

4 0

5 1 1
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A directed graph G
The sequential adjacency lists for graph 
G. Notice that vertices are listed in their 
natural order.
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Number



Example Directed Graph
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A directed graph G

The linked adjacency lists for graph G. 
Notice that vertices in a list are organized 
according to their natural order.
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Example Undirected Graph

1 3 2  3  5

2 4 1  3 4  5

3 3 1  2  4

4 2 2  3

5 2 1  2
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An undirected graph G
The sequential adjacency lists for graph G
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Adjacency listDegree
Vertex 
Number



Example Undirected Graph

• The linked adjacency list representation for 
the graph of the previous slide is similar to the 
one for the directed case.
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Assumptions

• In the previous slides, the vertices of the graph 
appear in their natural order in the arrays and 
linked lists used in the adjacency matrix and the 
adjacency links representations.

• This will be our assumption in all examples from 
now on.

• In the adjacency lists representation, we also 
showed the degrees of vertices. This information 
is not necessary and can be omitted.
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Sequential Adjacency Lists in C

typedef int AdjacencyList[MAXVERTEX];

typedef struct graph{

int n; /*number of vertices in graph */

int degree[MAXVERTEX];

AdjacencyList A[MAXVERTEX];

} Graph;

In the above representation, each index i of array A is a vertex of the 
graph while each element A[i] is an array storing the adjacency list 
of vertex i.
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Linked Adjacency Lists in C

typedef int Vertex;

typedef struct edge {

Vertex endpoint;

struct edge *nextedge;

} Edge;

typedef struct graph{

int n; /*number of vertices in graph */

Edge *firstedge[MAXVERTEX];

} Graph;

In the above representation, each index i of array firstedge is a vertex and 
each element firstedge[i] is a pointer to a linked list that contains the 
adjacent vertices of vertex i. This implementation of adjacency lists is used in the 
code that we give below.
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Linked Adjacency Lists in C (cont’d)

• The previous representation used an array for 
the vertices and linked lists for the adjacency 
lists.

• We can use linked lists for the vertices as well 
as follows.
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Linked Adjacency Lists in C (cont’d)

typedef struct vertex Vertex;

typedef struct edge Edge;

struct vertex {

Edge *firstedge;

Vertex *nextvertex;

}

struct edge {

Vertex *endpoint;

Edge *nextedge;

};

typedef Vertex *Graph;

We do not use this implementation of adjacency lists in the code that we give below.
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Space Complexity

• The space complexity of the adjacency matrix 
representation of a graph with 𝑛 vertices is 
𝑶(𝒏𝟐).

• The space complexity of the adjacency list 
representation of a graph with 𝑛 vertices and 
𝑒 edges is 𝑶 𝒏 + 𝒆 .
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Questions

• Which graph representation would you use under 
the following circumstances?
– The graph is sparse (e.g., it contains 106 nodes but 

only 105 edges).

– The graph is dense (e.g., it contains 106 nodes and 
1010 edges).

• The answer will depend on what amount of space 
we have available and what operations we would 
like to perform on the graph.
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Graph Searching

• To search a graph G, we need to visit all 
vertices of G in some systematic order.

• Let us define an enumeration

typedef enum {FALSE, TRUE} Boolean;

• Each vertex v can be a structure with a 
Boolean valued member v.Visited
which is initially FALSE for all vertices of G. 
When we visit v, we will set it to TRUE.
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An Algorithm for Graph Searching

void GraphSearch(G,v)

{   

Let G=(V,E) be a graph.

Let C be an empty container.

for (each vertex x in V){

x.Visited=FALSE;

}

Put v into C;

while (C is non-empty){

Remove a vertex x from container C;

if (!(x.Visited)){

Visit(x);

x.Visited=TRUE;

for (each vertex w in Vx){

if (!(w.Visited)) Put w into C;

}

}

}

}
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Graph Searching (cont’d)

• Let us consider what happens when the 
container C is a stack.
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Example Undirected Graph
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Representation with Adjacency Lists
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Example (cont’d)
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What is the order in which vertices are visited if the start vertex is 1?



Example (cont’d)
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The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6 and 5.



Depth-First Search (DFS)

• When C is a stack, the tree in the previous 
example is searched in depth-first order.

• Depth-first search (αναζήτηση πρώτα κατά 
βάθος) at a vertex always goes down (by 
visiting unvisited children) before going across 
(by visiting unvisited brothers and sisters).

• Depth-first search of a graph is analogous to a 
pre-order traversal of an ordered tree.
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DFS (cont’d)

• The strategy followed by DFS, as its name implies, is to search 
“deeper” in the graph whenever possible.

• In DFS, edges are explored out of the most recently discovered 
vertex 𝑣 that still has unexplored edges leaving it.

• When all of 𝑣’s edges have been explored, the search “backtracks” 
to explore edges leaving the vertex from which 𝑣 was discovered.

• This process continues until we have discovered all the vertices that 
are reachable from the original source vertex. 

• If any undiscovered vertices remain, the one of them is selected as 
a new source and the search is repeated from that source.

• This entire process is repeated until all vertices are discovered.
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Graph Searching (cont’d)

• Let us consider what happens when the 
container C is a queue.
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Example Undirected Graph

Data Structures and Programming 
Techniques

89

1

2 3 4

5 6 7 8

What is the order in which vertices are visited if the start vertex is 1?



Example (cont’d)
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The vertices are visited in the order 1, 2, 3, 4, 5, 6, 7 and 8.



Breadth-First Search (BFS)

• When C is a queue, the tree in the previous example is 
searched in breadth-first order.

• Breadth-first search (αναζήτηση πρώτα κατά πλάτος)
at a vertex always goes broad before going deep.

• Breadth-first traversal of a graph is analogous to a 
traversal of an ordered tree that visits the nodes of the 
tree in level-order.

• BFS subdivides the vertices of a graph in levels. The 
starting vertex  is at level 0, then we have the vertices 
adjacent to the starting vertex at level 1, then the 
vertices adjacent to these vertices at level 2 etc.
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BFS (cont’d)

• BFS works as follows.

• We start from the start vertex (level 0) and visit 
all the vertices that we can reach by following 
one edge (these are the vertices at level 1).

• Then we visit all vertices that we can reach from 
the start vertex by following two edges (these are 
the vertices at level 2).

• We continue with the vertices at level 3 and so 
forth.
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Example Directed Graph
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What is the order of visiting vertices for DFS if the start vertex is 1?



Representation with Adjacency Lists
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Example (cont’d)

Data Structures and Programming 
Techniques

95

1

2

3

4

5

6

7

8

DFS visits the vertices in the order 1, 4, 8, 6, 5, 7, 3 and 2.



Example (cont’d)
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What is the order of visit for BFS if the start vertex is 1?



Example (cont’d)
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BFS visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.



Exhaustive Search

• Either the stack version or the queue version 
of the algorithm GraphSearch will visit 
every vertex in a graph G provided that G
consists of a single strongly connected 
component.

• If this is not the case, then we can enumerate 
all the vertices of G and run GraphSearch
starting from each one of them in order to 
visit all the vertices of G.
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Exhaustive Search (cont’d)

void ExhaustiveGraphSearch(G)

{

Let G=(V,E) be a graph.

for (each vertex v in G){

GraphSearch(G, v)

}

}
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Theseus in the Labyrinth 

• DFS can be simulated using a string and a can 
of paint for painting the vertices i.e., using a 
version of the algorithm that Theseus might 
have used in the labyrinth of the Minotaur!

• BFS is analogous to a group of people 
exploring the graph by fanning out in all 
directions.
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Implementing DFS in C

• We will now show how to implement depth-
first search in C.

• We will use the linked adjacency lists 
representation of a graph.

• We will write a function DepthFirst which 
calls the recursive function Traverse.
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Implementing DFS in C (cont’d)

/* global variable visited */

Boolean visited[MAXVERTEX];

/* DepthFirst: depth-first traversal of a graph

Pre: The graph G has been created.

Post: The function Visit has been performed at each vertex of G in 

depth-first order

Uses: Function Traverse produces the recursive depth-first order */

void DepthFirst(Graph G, void (*Visit)(Vertex x))

{

Vertex v;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

for (v=0; v < G.n; v++)

if (!visited[v]) Traverse(G, v, Visit);

}
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Implementing DFS in C (cont’d)

/* Traverse: recursive traversal of a graph

Pre: v is a vertex of graph G

Post: The depth first traversal, using function Visit, has been

completed for v and for all vertices adjacent to v.

Uses: Traverse recursively, Visit */

void Traverse(Graph G, Vertex v, void (*Visit)(Vertex x))

{

Vertex w;

Edge *curedge;

visited[v]=TRUE;

Visit(v);

curedge=G.firstedge[v];    /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint;      /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Traverse(G, w, Visit);

curedge=curedge->nextedge;  /*curedge is a pointer to the next edge (v,_) of V */

}

}
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Example Undirected Graph
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Representation with Adjacency Lists
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Example of Recursive DFS
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What is the order vertices are visited if the start vertex is 1?



Example (cont’d)
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The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is 
different than the order we got when using a stack!



Important

• There is more than one way to traverse a graph
in a DFS fashion (e.g., starting from a different 
node gives us different DFS traversals).

• The order the vertices of a graph are visited by 
DFS depends on:
– The representation of the graph (e.g., adjacency 

matrix vs. adjacency list, the order of vertices in the 
two representations).

– The implementation of the DFS algorithm (e.g., 
recursive DFS vs. using a stack).
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Important (cont’d)

• DFS traverses all edges and visits all the 
vertices reachable from the start vertex (i.e., 
all the vertices in the connected component 
containing the start vertex), regardless of in 
what order it examines edges incident on 
each vertex.
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Complexity of DFS

• DFS as implemented above (by the recursive function Traverse
and using adjacency lists) on a graph with 𝑒 edges and 𝑛 vertices 
has complexity 𝑶 𝒏 + 𝒆 .

• To see why, observe that on no vertex is Traverse called more 
than once, because as soon as we call Traverse with parameter 
𝑣, we mark 𝑣 visited and we never call Traverse on a vertex that 
has previously been marked as visited.

• Thus, the total time spent going down the adjacency lists is 
proportional to the lengths of those lists, that is 𝑂 𝑒 .

• We also need an initialization step which marks all vertices as 
unvisited before we run Traverse. This step has complexity 𝑂 𝑛 .

• Thus, the total complexity is 𝑂 𝑛 + 𝑒 .
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Complexity of DFS (cont’d)

• If DFS is implemented using an adjacency matrix, 
then its complexity will be 𝑂 𝑛2 .

• If the graph is dense (πυκνός), that is, it has close 
to 𝑂 𝑛2 edges the difference of the two 
implementations is minor as they would both run 
in 𝑂 𝑛2 time.

• If the graph is sparse (αραιός), that is, it has close 
to 𝑂 𝑛 edges, then the adjacency matrix 
approach would be much slower than the 
adjacency list approach.
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Complexity of DFS (cont’d)

• The complexity of function DepthFirst is 
𝑂 𝑛(𝑛 + 𝑒) because we also have the second 
for statement that makes sure that all 
connected components of the graph are 
explored.
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Implementing BFS in C

• Let us now show how to implement breadth-
first search in C.

• The algorithm BreadthFirst makes use of 
a queue which can be implemented using any 
of the implementations we presented in 
earlier lectures.
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Implementing BFS in C (cont’d)

/* BreadthFirst: breadth-first traversal of a graph

Pre: The graph G has been created

Post: The function visit has been performed at each vertex of G, where the vertices

are chosen in breadth-first order.

Uses: Queue functions */

void BreadthFirst(Graph G, void (*Visit)(Vertex))

{

Queue Q;

Boolean visited[MAXVERTEX];

Vertex v, u, w;

Edge *curedge;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

InitializeQueue(&Q);

for (u=0; u < G.n; u++)

if (!visited[u]){

Insert(u, &Q);

do {

Remove(&Q, &v);;

if (!visited[v]){

visited[v]=TRUE;

Visit(v);

}

curedge=G.firstedge[v];  /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint;  /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Insert(w, &Q);

curedge=curedge->nextedge;  /*curedge is a pointer to the next edge (v,_) of V */

}

} while (!Empty(&Q));

}

}
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Example

• If we search the above graph 𝐺 using the function BreadthFirst
starting from vertex A, what is the order the various vertices will be 
visited?
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Representation of 𝐺 with Adjacency 
Lists
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Example (cont’d)

• The vertices will be visited in the following order: A, B, C, D, E, F, G
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Example (cont’d)

• Let us study how the algorithm will run.

• At first, A will be inserted in the queue. Then, A will be 
removed from the queue and marked as visited. Then, 
its adjacency list will be explored, and vertices B, C, D 
and E will be found and added to the queue.

• Then, B will be removed from the queue and marked as 
visited. Then, its adjacency list will be explored, and 
vertices D and E will be added to the queue (A will not 
be added since it has been marked as visited).

• But wait! Why are D and E added to the queue 
although they are there already?
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Algorithm BreadthFirst Revisited

• What we have just demonstrated is an 
inefficiency of BreadthFirst.

• We can fix this inefficiency by checking 
whether a vertex is already in the queue, so 
that we do not add it for a second time.

• Another way to fix the problem is the 
following: instead of marking a vertex as being 
visited when we take it off the queue, we do 
so when we put it on the queue.
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Complexity of BFS

• Let us now consider the previous algorithm 
BreadthFirst but we remove the for
statement that makes sure that all connected 
components of the graph are explored (so we 
do a BFS from a given start vertex).

• BFS, implemented as above (with adjacency 
lists and not allowing a vertex appearing more 
than once in the queue), has the same 
complexity as DFS i.e., 𝑶(𝒏 + 𝒆).
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DFS of an Undirected Graph

• During a depth-first traversal of an undirected graph, certain edges, when 
traversed, lead to unvisited vertices. The edges leading to new vertices are called 
tree edges (ακμές δένδρου) or discovery edges (ακμές ανακάλυψης).

• Tree edges form a DFS spanning forest (δάσος επικάλυψης για την πρώτα κατά 
βάθος αναζήτηση) for the given graph. This forest has one tree for each 
connected component of the graph and one tree node for each graph vertex.

• There are also edges that do not belong to the spanning forest. These are called 
back edges (ακμές οπισθοχώρησης) and go from a vertex to another vertex we 
have already visited (i.e., one of its ancestors in the spanning forest).

• Tree edges are those edges (𝑣, 𝑤) such that Traverse with parameter 𝑣 directly 
calls Traverse with parameter 𝑤 or vice versa.

• Back edges are those edges (𝑣, 𝑤) such that Traverse with parameter 𝑣
inspects vertex 𝑤 but does not call Traverse because 𝑤 has already been 
visited.
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Example

• Let us search the above graph 𝐺 using the function DepthFirst
presented earlier starting from vertex A.
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Representation of 𝐺 with Adjacency 
Lists
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Example (cont’d)
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Example (cont’d)

• The above is the depth-first spanning forest for the graph 𝐺
we saw previously. The forest consists of one tree only.
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Important

• The edge types are properties of the dynamics 
of the search, rather than only the graph.

• Different depth-first spanning forests of the 
same graph can differ remarkably in character.

• Can you give examples for the above facts?
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Question

• How can we modify function Traverse so 
that it outputs the edges of the depth-first 
spanning tree (tree edges) and the back 
edges?
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Proposition

• Let 𝐺 be an undirected graph with 𝑛 vertices and 𝑒 edges 
which is represented with adjacency lists.  A DFS traversal 
of 𝐺 can be executed in 𝑂(𝑛 + 𝑒) time and can be used to 
solve the following problems in 𝑂(𝑛 + 𝑒) time:
1. Checking if 𝐺 is connected
2. Computing a spanning tree of 𝐺 is 𝐺 is connected.
3. Computing a path between two given vertices of 𝐺, if such a 

path exists.
4. Computing a cycle of 𝐺 or discovering that 𝐺 does not have 

cycles.

• The proof of the proposition is left as an exercise.
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DFS Traversal of a Directed Graph

• During a depth-first traversal of a directed graph, certain edges, when 
traversed, lead to unvisited vertices. The edges leading to new vertices are 
called tree edges (ακμές δένδρου) and they form a DFS forest (δάσος
πρώτα κατά βάθος αναζήτησης) for the given digraph.

• This forest has one DFS tree for each strong connected component of the 
graph and one tree node for each graph vertex.

• There are also edges that do not belong to the DFS forest and can be 
classified as follows:
– Back edges (ακμές οπισθοχώρησης) that go from a vertex to one of its 

ancestors in a DFS tree.
– Forward edges (ακμές προώθησης) that go from a vertex to one of its 

descendants in a DFS tree.
– Cross edges (εγκάρσιες ακμές). These are all the remaining edges. They can 

go between vertices in the same DFS tree, as long as one vertex is not an 
ancestor of the other, or they can go between vertices in different DFS trees.
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Example

• Let us search the above graph 𝐺 using the function DepthFirst presented 
earlier starting from vertex A. 
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Representation with Adjacency Lists
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Example (cont’d)

• The vertices will be visited in the order A, B, C, D, E, F, H, I, G.
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Example (cont’d)
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Example (cont’d)

• The above is the DFS forest of graph 𝐺 for the depth-first traversal we saw 
previously.
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Important

• As we also saw for undirected graphs, the 
edge types are properties of the dynamics of 
the search, rather than only the graph.

• Different DFS forests of the same graph can 
differ remarkably in character.

• Even the number of trees in the DFS forest 
depends upon the start vertex.

• Can you give examples for the above facts?
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Classification of Edges

• How do we distinguish among the four types 
of edges?

• Tree edges are easy to find since they lead to 
an unvisited vertex during DFS.

• The other three types of edges can be 
distinguished by keeping track of the preorder 
and postorder numbering of nodes and using 
an interesting proposition that we present 
below.
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Preorder Numbering of Vertices

• We can number the vertices of a digraph in the order 
in which we first mark them as visited during a DFS. 

• For this, we can use a counter count that is initially 
set to zero, a vertex-indexed array pre with all its 
elements set to -1 initially, and add the code

pre[v]=count++;

in the function Traverse, immediately after the 

statement marking a vertex as visited.

• We will call this the preorder numbering 
(προδιατεταγμένη αρίθμηση) of a digraph.
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Example Directed Graph

• Consider performing a DFS starting from vertex A.
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Preorder Numbering
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Postorder Numbering of Vertices

• We can also have a postorder numbering 
(μεταδιατεταγμένη αρίθμηση) of the vertices of 
a digraph.

• This is the order that we finish processing them 
(just before returning from the recursive function 
Traverse).

• Postorder numbering can be implemented in a 
similar way as the preorder one, using a vertex-
indexed array post, a counter and introducing 
appropriate code in the function Traverse.
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Example Directed Graph

• Consider performing a DFS starting from vertex A.
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Postorder Numbering
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Proposition

• In a DFS forest corresponding to a digraph, an 
edge to a visited vertex is a back edge if it 
leads to a vertex with a higher postorder
number; otherwise, it is a cross edge if it leads 
to a vertex with a lower preorder number and 
a forward edge if it leads to a vertex with a 
higher preorder number.

• Proof?
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Proof

• These facts follow from the definitions of arrays pre and 
post and how they are updated by function
Traverse.

• A vertex’s ancestors in a DFS tree have lower preorder 
numbers and higher postorder numbers.

• A vertex’s descendants in a DFS tree have higher preorder 
numbers and lower postorder numbers.

• Both numbers are lower in previously visited vertices in 
other DFS trees and both numbers are higher in yet-to-be-
visited vertices in other DFS trees.

• An edge (𝑣, 𝑢) so that 𝑣 is not an ancestor or a descendant 
of 𝑢 in the same DFS tree is such that pre[u]<pre[v].
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Proposition

• Let 𝐺 be a directed graph. A DFS traversal of 𝐺
starting from a vertex 𝑠 visits all vertices of 𝐺
that are reachable from 𝑠. In addition, the DFS 
tree contains directed paths from 𝑠 to each 
vertex that is reachable from 𝑠.

• The proof of the proposition is left as an 
exercise.
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Transitive Closure

• The transitive closure (μεταβατική 
κλειστότητα) of a directed graph 𝐺 is a 
directed graph 𝐺∗ such that the vertices of 
𝐺∗are the same as the vertices of 𝐺, and 𝐺∗

has an edge (𝑢, 𝑣) whenever 𝐺 has a directed 
path from 𝑢 to 𝑣.
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Example Directed Graph 𝐺

• What is the transitive closure of 𝐺?
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The Transitive Closure 𝐺∗
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Proposition

• Let 𝐺 be a directed graph with 𝑛 vertices and 𝑒 edges 
which is represented with adjacency lists.  The 
following problems can be solved by an algorithm 
which traverses 𝐺 𝑛 times using DFS, runs in time 
𝑂(𝑛(𝑛 + 𝑒)), and uses 𝑂(𝑛) additional storage.
1. For every vertex 𝑣 of 𝐺, computing the subgraph which is 

reachable from 𝑣.

2. Checking whether 𝐺 is strongly connected.

3. Computing the transitive closure 𝐺∗ of 𝐺.

• The proof of the proposition is left as an exercise.
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Checking for Strong Connectivity

• The following is a simple algorithm for checking whether a 
given directed graph 𝐺 is strongly connected.

• We start doing a DFS of the directed graph 𝐺 starting from 
an arbitrary vertex 𝑠. 

• If there is any vertex of 𝐺 which is not reachable from 𝑠, 
then 𝐺 is not strongly connected.

• If the DFS visits all vertices of 𝐺, we compute the reverse of 
𝐺, a new directed graph 𝐺𝑟 by reversing the direction of 
each edge in 𝐺.

• Then we do a second DFS in 𝐺𝑟 starting from 𝑠.
• If this second DFS visits all vertices of 𝐺, then the graph is 

strongly connected, because every vertex reachable from 𝑠
can also reach 𝑠 using DFS.
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BFS of an Undirected Graph

• We can build a spanning forest when we perform a 
breadth-first search as well. We call this the BFS spanning 
forest of the graph. 

• This forest has one BFS tree for each connected component 
of the graph and one tree node for each graph vertex.

• The breadth-first spanning forest is built by tree edges. An 
edge (𝑣, 𝑤) is a tree edge if vertex 𝑤 is first visited from 
vertex 𝑣 in the inner while loop of function 
BreadthFirst.

• Every edge that is not a tree edge is a cross edge, that is, it 
connects two vertices neither of which is an ancestor of the 
other in the BFS spanning forest.
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Example
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Let us execute the algorithm Breadth-First presented earlier on the above 
graph 𝐺 starting from vertex A.



Representation of 𝐺 with Adjacency 
Lists
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Example (cont’d)
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The vertices will be visited in the order A, B, C, D, E, F, G.



Example (cont’d)
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Example (cont’d)

• The above is the BFS spanning forest for the breadth-first 
traversal of the graph 𝐺 given previously.
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Important

• The edge types are properties of the dynamics 
of the BFS, rather than only the graph.

• Different BFS spanning forests of the same 
graph can differ remarkably in character.

• Can you give examples for the above facts?
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Proposition

• During BFS, vertices enter and leave the queue 
in order of their distance from the start vertex 
(where the distance of vertex 𝑣 to vertex 𝑢 is 
the length of a shortest path from 𝑣 to 𝑢).

• Proof?
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Proof

• A stronger property holds. The queue always 
consists of zero or more vertices of distance 𝑘
from the start, followed by zero or more 
vertices of distance 𝑘 + 1 from the start, for 
some integer 𝑘. This stronger property is easy 
to prove by induction.
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Proposition

• Let 𝐺 be an undirected graph with 𝑛 vertices and 𝑒
edges. A BFS traversal of 𝐺 requires 𝑂(𝑛 + 𝑒) time. 
There are also algorithms running in 𝑂(𝑛 + 𝑒) time 
that are based on BFS and solve the following 
problems:
1. Checking whether 𝐺 is connected.
2. Computing a spanning tree of 𝐺, if 𝐺 is connected.
3. Computing the connected components of 𝐺.
4. Given a start vertex 𝑠 of 𝐺, computing, for every other 

vertex 𝑣 of 𝐺, a path with minimum number of edges 
between 𝑠 and 𝑣, or reporting that there is no such path.

5. Computing a cycle of 𝐺 or reporting that 𝐺 has no cycles.
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BFS of Directed Graphs

• BFS can also work on directed graphs.
• The algorithm visits vertices level by level and 

partitions the edges into two sets: tree edges and non-
tree edges.

• Tree edges define a BFS forest.
• Non-tree edges are of two kinds: back edges and cross 

edges.
• Back edges connect a vertex to one of its ancestors in 

the BFS forest. Cross edges connect a vertex to another 
vertex that is neither its ancestor nor its descendant in 
the forest.

• There are no forward edges as in the DFS case.
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Example

• Let us search this graph 𝐺 using the function BreadthFirst presented earlier 
starting from vertex A. 
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Representation with Adjacency Lists
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E F G
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Example (cont’d)

• The vertices will be visited in the order A, B, C, D, E, F, G, H, I.
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Example (cont’d)
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Example (cont’d)

• The above is the BFS forest of graph 𝐺 for the BFS traversal we saw previously.
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Question

• How do we modify the code of algorithm 
Breadth-First so that we output the 
edges of various kinds for undirected or 
directed graphs?
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Directed Acyclic Graphs

• Let G be a directed graph with no cycles. Such 
a graph is called acyclic. We abbreviate the 
term directed acyclic graph to dag.

• Dags are more general than trees but less 
general than arbitrary directed graphs.
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Example Tree
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Example Dag
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Another Example Dag
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Applications of Dags

• Dags are useful in compilers for representing 
the syntactic structure of arithmetic 
expressions with common subexpressions.

• Example: Consider the following arithmetic 
expression

𝑎 + 𝑏 ∗ 𝑐 + 𝑎 + 𝑏 + 𝑒 ∗ 𝑒 + 𝑓

∗ ( 𝑎 + 𝑏 ∗ 𝑐)
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The Dag for the Example
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Prerequisites in a Program of Study
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Applications of Dags (cont’d)

• Dags are also useful for representing partial 
orders.

• A partial order 𝑅 on a set 𝑆 is a binary relation 
such that
– For all 𝑎 in 𝑆, 𝑎 𝑅 𝑎 is false (irreflexivity)

– For all 𝑎, 𝑏, 𝑐 in 𝑆, if 𝑎 𝑅 𝑏 and 𝑏 𝑅 𝑐 then 𝑎 𝑅 𝑐
(transitivity)

• Two natural examples of partial orders are the 
“less than” relation (<) on integers, and the 
relation of proper containment (⊂) on sets.
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Example

• Let 𝑆 = 1, 2, 3 and let 𝑃(𝑆) be the power set 
of 𝑆, that is, the set of all subsets of 𝑆. The 
relation ⊂ is a partial order on 𝑃(𝑆).

Data Structures and Programming 
Techniques

176



The Dag of the Example
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Class Hierarchies
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Test for Acyclicity

• Suppose we are given a digraph 𝐺 and we 
wish to determine whether 𝑮 is acyclic.

• DFS can be used to answer this question.

• If a back edge is encountered during a DFS 
then clearly the graph has a cycle.

• Conversely, if the graph has a cycle then a 
back edge will be encountered in any DFS of 
the graph. Proof?
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Proof

• Suppose 𝐺 is cyclic. If we do a DFS of 𝐺, there will 
be one vertex 𝑣 having the lowest preorder 
number of any vertex on a cycle. 

• Consider an edge (𝑢, 𝑣) on some cycle containing 
𝑣. Since 𝑢 is on the cycle, 𝑢 must be a descendant 
of 𝑣 in the depth-first spanning forest. Thus, 
(𝑢, 𝑣) cannot be a cross edge. 

• Since the preorder number of 𝑢 is greater than 
the preorder number of 𝑣, (𝑢, 𝑣) cannot be a tree 
edge or a forward edge. Hence, (𝑢, 𝑣) is a back 
edge.
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Important

• In undirected graphs, any edge to a previously 
visited vertex indicates a cycle.

• In directed graphs, this is true only for back 
edges.
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Topological Ordering of a DAG

• A topological ordering (τοπολογική
ταξινόμηση) of the vertices of a dag G is a 
sequential list L of the vertices of G (a linear 
ordering) such that if there is a directed path 
from vertex A to vertex B in G, then A comes 
before B in the list L.
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Example

• G might be a graph in which the vertices 
represent university courses to take and in 
which an edge is directed from the vertex for 
course A to the vertex for course B if course A
is a prerequisite of B.

• Then a topological ordering of the vertices of 
G gives us a possible way to organize one’s 
studies.
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Example
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A topological ordering is:
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Example (cont’d)
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Another Example
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Important

• In general, there can be more than one 
topological orderings for a given dag.

• Question: How many topological orderings do 
the previous two dags have?
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Computing a Topological Ordering

• We will compute a list of vertices L that contains the vertices 
of G in topological order.

• We will use an array D such that D[v] gives the number of 
predecessors p of vertex v in graph G such that p is not in L.

• We will use a queue Q of vertices from where we will take 
vertices to process (from the front of the queue).

• The vertices of G in Q will be processed in breadth-first order.
• Initially Q will contain all the vertices of G with no 

predecessors.
• When we find a vertex w of G such that D[w]==0, we see 

that w has all its predecessors in list L, so we add w to the 
rear of queue Q so that it can be processed.
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Algorithm for Topological Ordering

void BreadthTopSort(Graph G, List *L)

{

Let G=(V,E) be the input graph.

Let L be a list of vertices.

Let Q be a queue of vertices.

Let D[V] be an array of vertices indexed by vertices

in V.

/* Compute the in-degrees D[x] of the vertices x 

in G */

for (each vertex x in V) D[x]=0;

for (each vertex x in V){

for (each successor w in Succ(x)) D[w]++;

}
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Algorithm for Topological Ordering 
(cont’d)

/* Initialize the queue Q to contain all 

vertices having zero in-degrees */

Initialize(&Q);

for (each vertex x in V){

if (D[x]==0) Insert(x, &Q);

}

Data Structures and Programming 
Techniques

190



Algorithm for Topological Ordering 
(cont’d)

/* Initialize the list L to be the empty list */

InitializeList(&L);

/* Process vertices in the queue Q until the queue becomes

empty */

while (!Empty(&Q)){

Remove(&Q,x);

AddToList(x,&L);

for (each successor w in Succ(x)){

D[w]--;

if (D[w]==0) Insert(w, &Q);

}

}

/* The list L now contains the vertices of G in

topological order */

}
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Implementing Topological Sort in C

• We first need to define a new type for an array 
that will be used to store the vertices of a 
graph in topological order:

typedef Vertex Toporder[MAXVERTEX];

• We will also use the functions for the ADT 
queue that we have defined in a previous 
lecture.
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Topological Sort in C (cont’d)

/* BreadthTopSort: generates breadth-first topological ordering

Pre: G is a directed graph with no cycles implemented with a contiguous list of vertices 

and linked adjacency lists.

Post: The function makes a breadth-first traversal of G and generates the resulting 

topological order in T

Uses: Queue functions */

void BreadthTopSort(Graph G, Toporder T)

{

int predecessorcount[MAXVERTEX];    /* number of predecessors of each vertex */

/* (the array D of the previous algorithm) */

Queue Q;

Vertex v, succ;

Edge *curedge;

int place;

/* initialize all the predecessor counts to 0  */

for (v=0; v < G.n; v++)

predecessorcount[v]=0;

/* increase the predecessor count for each vertex that is a successor of another one */

for (v=0; v < G.n; v++)

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge)

predecessorcount[curedge->endpoint]++;
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Topological Sort in C (cont’d)

/* initialize a queue */

InitializeQueue(&Q);

/* place all vertices with no predecessors into the queue */

for (v=0; v < G.n; v++)

if (predecessorcount[v]==0)

Insert(v, &Q);

/* start the breadth-first traversal */

place=-1;

while (!Empty(&Q)) {

/* visit v by placing it into the topological order */

Remove(&Q, &v);

place++;

T[place]=v;

/* traverse the list of successors of v */

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge){

/* reduce the predecessor count for each successor */

succ=curedge->endpoint;

predecessorcount[succ]--;

if (predecessorcount[succ]==0)

/* succ has no further predecessors, so it is ready to process */

Insert(succ, &Q);

}

}

}
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Complexity of Topological Sort

• We can see that the complexity of topological 
sort is 𝑶(𝒏 + 𝒆).
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Strongly Connected Components of a 
Directed Graph (Reminder)

• A strongly connected component or strong component 
(ισχυρά συνεκτική συνιστώσα ή ισχυρή συνιστώσα) of a 
directed graph is a maximal set of vertices in which there is 
a path from any one vertex in the set to any other vertex.

• More formally, let 𝐺 = (𝑉, 𝐸) be a directed graph. We can 
partition 𝑉 into equivalence classes 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑟, such that 
vertices 𝑣 and 𝑤 are equivalent if and only if there is a path 
from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣. Let 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑟, be 
the set of edges with endpoints in 𝑉𝑖 . The graphs 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖) are called the strongly connected components or 
just strong components (ισχυρές συνιστώσες) of 𝐺.

• A directed graph with only one strong component is 
strongly connected (ισχυρά συνεκτικός).
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Example Directed Graph
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The Strong Components of the Digraph
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Strong Components (cont’d)

• Every vertex of a directed graph 𝐺 is in some strong component, 
but certain edges may not be in any component.

• Such edges, called cross-component edges, go from one vertex 
in one component to a vertex in another.

• We can represent the interconnections among components by 
constructing a reduced graph (ελαττωμένο γράφο) for 𝐺. 

• The vertices of the reduced graph correspond to the strong 
components of 𝐺.

• There is an edge from vertex 𝐶 to vertex 𝐶′ of the reduced graph 
if there is an edge in 𝐺 from some vertex in the component 𝐶 to 
some vertex in the component 𝐶′.

• The reduced graph is always a dag.
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Example Directed Graph 𝐺
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Example Reduced Graph for 𝐺
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Kosaraju’s Algorithm for Computing 
Strong Components

• We can use DFS to compute the strong components of 
a given directed graph 𝐺 as follows:
1. Perform a DFS of 𝐺 and number the vertices in order of 

completion of the recursive calls (postorder numbering).
2. Construct the reverse of 𝐺, a new directed graph 𝐺𝑟 by 

reversing the direction of each edge in 𝐺.
3. Perform a DFS of 𝐺𝑟, starting the search from the highest 

numbered vertex according to the postorder numbering 
assigned in Step 1. If the DFS does not reach all vertices, 
start the next DFS from the highest-numbered remaining 
vertex.

4. Each tree in the resulting DFS forest of 𝐺𝑟 gives us a 
strongly connected component of 𝐺.
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Example Directed Graph 𝐺

• We first perform a DFS starting from vertex A.
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After Step 1

• The numbers show the post-order numbering.
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The Reverse Directed Graph 𝐺𝑟

• Then we perform a DFS of 𝐺𝑟 starting from the highest-numbered 
vertex A. The search will visit the vertices in the order  A, C, B and D.
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Characterization of Edges of 𝐺𝑟
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DFS Forest for 𝐺𝑟
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The Strong Components of 𝐺

Data Structures and Programming 
Techniques

208

A B

D C



Complexity of Algorithm for 
Computing Strong Components

• The complexity of the algorithm we presented 
for computing strong components is again 
𝑶(𝒏 + 𝒆).

• This can be seen easily because the 
complexity for every step of the algorithm is 
𝑶(𝒏 + 𝒆).
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Readings

• The material in the present slides comes (often verbatim) from the 
following sources:
– T. A. Standish. Data Structures , Algorithms and Software Principles in C.

• Chapter 10

– A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data Structures and Algorithms. 
• Chapters 6 and 7

– M. T. Goodrich, R. Tamassia and M. H. Goldwasser. Data Structures and 
Algorithms in Java. 6th edition. John Wiley and Sons, 2014.
• Chapter 14

– M. T. Goodrich, R. Tamassia. Δομές Δεδομένων και Αλγόριθμοι σε Java. 5η

έκδοση. Εκδόσεις Δίαυλος.
• Chapter 13

– R. Sedgewick. Algorithms in C. 3rd edition. Part 5. Graph Algorithms.
• Chapters 18 and 19

– T. H Cormen, C. E. Leiserson and R.L. Rivest. Introduction to Algorithms.
• Chapters 5.4 and 23.
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