
Graphs (Γράφοι)

Data Structures and Programming
Techniques

1

Graphs

• Graphs are collections of nodes in which various
pairs are connected by line segments. The nodes
are usually called vertices (κορυφές) and the line
segments edges (ακμές).

• Graphs are more general than trees. Graphs are
allowed to have cycles and can have more than
one connected component.

• Some authors use the terms nodes (κόμβοι) and
arcs (τόξα) instead of vertices and edges.

• Graphs can be undirected (μη κατευθυνόμενοι)
or directed (κατευθυνόμενοι).

Data Structures and Programming
Techniques

2

Examples of Graphs (Undirected)

Data Structures and Programming
Techniques

3

Examples of Graphs (Directed)

Data Structures and Programming
Techniques

4

Examples of Graphs

• Transportation networks

• Interesting problem: What is the path with
one or more stops of shortest overall distance
connecting a starting city and a destination
city?

Data Structures and Programming
Techniques

5

Examples (cont’d)

• A network of oil pipelines

• Interesting problem: What is the maximum
possible overall flow of oil from the source to
the destination?

Data Structures and Programming
Techniques

6

Examples (cont’d)

• The Internet

• Interesting problem: Deliver an e-mail from
user A to user B

Data Structures and Programming
Techniques

7

Examples (cont’d)

• The Web

• Interesting problem: What is the PageRank of
a Web site?

Data Structures and Programming
Techniques

8

Examples (cont’d)

• The Facebook social network

• Interesting problem: Are John and Mary
connected? What interesting clusters exist?

Data Structures and Programming
Techniques

9

Formal Definitions

• A graph 𝐺 = (𝑉, 𝐸) consists of a set of vertices V and a set of edges
E, where the edges in E are formed from pairs of distinct vertices in
V.

• If the edges have directions then we have a directed graph
(κατευθυνόμενο γράφο) or digraph. In this case edges are ordered
pairs of vertices e.g., 𝑢, 𝑣 and are called directed. If 𝑢, 𝑣 is a
directed edge then 𝑢 is called its origin and 𝑣 is called its
destination.

• If the edges do not have directions then we have an undirected
graph (μη-κατευθυνόμενος γράφο). In this case edges are
unordered pairs of vertices e.g., 𝑣, 𝑢 and are called undirected.

• For simplicity, we will use the directed pair notation noting that in
the undirected case 𝑢, 𝑣 is the same as 𝑣, 𝑢 .

Data Structures and Programming
Techniques

10

Example of a Directed Graph

Data Structures and Programming
Techniques

11

1

2

3 4

5
6

7

8

9

10
11

𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}

One More Example of a Directed
Graph

Data Structures and Programming
Techniques

12

1

2

3 4

5
6

7

8

9

10
11

𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 2,1 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}

Example of an Undirected Graph

Data Structures and Programming
Techniques

13

1

2

3 4

5
6

7

8

9

10
11

𝐺 = 𝑉, 𝐸
𝑉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

𝐸 = { 1,2 , 1,3 , 2,5 , 3,4 ,
5,4 , 5,6 , 6,7 , 8,9 , 8,10 , (10,11)}

Note

• In the following slides, when we say simply
graph in a definition, the definition will apply
to both directed and undirected graphs.

Data Structures and Programming
Techniques

14

Definitions (cont’d)

• Two different vertices 𝑣𝑖 and 𝑣𝑗 in a graph 𝐺 = 𝑉, 𝐸
are said to be adjacent (γειτονικές) if there exists an
edge 𝑒 𝜖 𝐸 such that 𝑒 = 𝑣𝑖 , 𝑣𝑗 .

• When the graph is undirected, the adjacency relation is
symmetric.

• In an undirected graph, an edge is said to be incident
(προσπίπτουσα) on a vertex if the vertex is one of the
edge’s endpoints.

• If (𝑢, 𝑣) is an edge in a directed graph 𝐺 = (𝑉, 𝐸), we
say that (𝑢, 𝑣) is incident from or leaves vertex 𝑢 and
is incident to or enters vertex 𝑣.

Data Structures and Programming
Techniques

15

Examples – Undirected Graph

Data Structures and Programming
Techniques

16

1

2

3 4

5
6

7

Vertices 1 and 2 are adjacent. Edge (1,2) is incident on vertices 1 and 2.

Examples – Directed Graph

Data Structures and Programming
Techniques

17

1

2

3 4

5
6

7

Vertices 1 and 2 are adjacent. Edge (1, 2) is incident from (or leaves) vertex 1 and
is incident on (or enters) vertex 2.

Definitions (cont’d)

• A path (μονοπάτι) 𝑝 in a graph 𝐺 = 𝑉, 𝐸 is a sequence of
vertices of 𝑉 of the form 𝑝 = 𝑣1𝑣2 … 𝑣𝑛, 𝑛 ≥ 2 in which
each vertex 𝑣𝑖 is adjacent to the next one 𝑣𝑖+1 (for 1 ≤ 𝑖 ≤
𝑛 − 1).

• In the above case, we say that p contains the vertices
𝑣1, 𝑣2 , … , 𝑣𝑛 and the edges (𝑣𝑖 , 𝑣𝑖+1) for 1 ≤ 𝑖 ≤ 𝑛 − 1.

• The length of a path is the number of edges in it.
• A path is simple if each vertex in the path is distinct.
• A subpath of a path is a contiguous subsequence of its

vertices.
• In a directed graph, we often use the term directed path

for obvious reasons.

Data Structures and Programming
Techniques

18

Examples – Undirected Graph

Data Structures and Programming
Techniques

19

1

2

3 4

5
6

7

The sequence of vertices 1, 2, 5, 6 is a simple path of length 3.
The path 1, 2, 5, 6, 5 is not simple.
The path 2, 5, 6 is a subpath of the path 1, 2, 5, 6, 7.

Definitions (cont’d)

• A cycle is a path 𝑝 = 𝑣1𝑣2 … 𝑣𝑛 of length greater
than one that begins and ends at the same vertex
(i.e., 𝑣1 = 𝑣𝑛).

• A simple cycle is a path that travels through three
or more distinct vertices and connects them into
a loop.

• Formally, if 𝑝 is a path of the form 𝑝 = 𝑣1𝑣2 … 𝑣𝑛,
then 𝑝 is a simple cycle if and only if 𝑛 > 3, 𝑣1 =
𝑣𝑛 and 𝑣𝑖 ≠ 𝑣𝑗 for distinct 𝑖 and 𝑗 in the range
1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1.

• Simple cycles do not repeat edges.

Data Structures and Programming
Techniques

20

Examples – Undirected Graph

Data Structures and Programming
Techniques

21

1

2

5

4 6

7
8

3

Four simple cycles: (1,2,3,1) (4,5,6,7,4) (4,5,6,4) (4,6,7,4)

Example (cont’d)

Data Structures and Programming
Techniques

22

1

2

5

4 6

7
8

3

One non-simple cycle: (4,5,6,4,7,6,4)

Examples – Directed Graph

Data Structures and Programming
Techniques

23

1

2

3 4

5
6

7

The sequence of vertices 1, 2, 5, 6 is a simple (directed) path of length 3.
The sequence 2, 5, 4 is not a path because there is no directed edge (5, 4).
The path 5, 6, 7, 4, 5 is a simple cycle.

Reachability

• Let 𝐺 be a graph. If there is a path 𝑝 from 𝑣 to
𝑢 in 𝐺 then we say that 𝑢 is reachable
(προσβάσιμη) from 𝑣 via 𝑝.

Data Structures and Programming
Techniques

24

Examples - Undirected Graph

Data Structures and Programming
Techniques

25

1

2

3 4

5
6

7

8

9

10
11

Vertices 1 and 6 are reachable from each
other.
Vertex 1 is not reachable from vertex 8
(or 9, 10, 11).

Examples – Directed Graph

Data Structures and Programming
Techniques

26

1

2

3 4

5
6

7

8

9

10
11

Vertex 6 is reachable from vertex 1.
Vertex 1 is not reachable from vertex 6.
Vertex 1 is not reachable from vertex 8
(or 9, 10, 11).

Connected Undirected Graphs

• An undirected graph 𝐺 is connected
(συνεκτικός) if every vertex is reachable from
every other vertex in the graph (i.e., if there is
a path from every vertex to every other
vertex).

Data Structures and Programming
Techniques

27

Example of Connected Undirected Graph

Data Structures and Programming
Techniques

28

Connected Components of Undirected
Graphs

• In the undirected graph 𝐺 = (𝑉, 𝐸), a connected component
(συνεκτική συνιστώσα) is a maximal subset 𝑆 of the vertices 𝑉 that
are all reachable from each other.

• By maximal we mean that there is no bigger subset 𝑇 of vertices in
𝑉 such that 𝑇 properly contains 𝑆 and such that 𝑇 has the same
reachability property.

• An undirected graph 𝐺 can always be separated into connected
components 𝑆1, 𝑆2, … , 𝑆𝑛 such that 𝑆𝑖 ∩ 𝑆𝑗 = ∅ whenever 𝑖 ≠ 𝑗.

• The connected components of an undirected graph are the
equivalence classes of the vertices under the “is reachable from”
relation.

• An undirected graph is connected if it has exactly one connected
component.

Data Structures and Programming
Techniques

29

Example of Undirected Graph and its Separation
into Two Connected Components

Data Structures and Programming
Techniques

30

Strongly Connected Directed Graphs

• A directed graph is strongly connected
(ισχυρά συνεκτικός) if every two vertices are
reachable from each other (i.e., there is a path
from the first to the second and vice versa).

Data Structures and Programming
Techniques

31

Strongly Connected Components of a
Directed Graph

• A strongly connected component (ισχυρά συνεκτική
συνιστώσα) of a directed graph is a maximal set of vertices
in which there is a path from any one vertex in the set to
any other vertex.

• More formally, let 𝐺 = (𝑉, 𝐸) be a directed graph. We can
partition 𝑉 into equivalence classes 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑟, such that
vertices 𝑣 and 𝑤 are equivalent if and only if there is a path
from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣. Let 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑟, be
the set of edges with endpoints in 𝑉𝑖 . The graphs 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖) are called the strongly connected components or
just strong components (ισχυρές συνιστώσες) of 𝐺.

• A directed graph with only one strong component is
strongly connected.

Data Structures and Programming
Techniques

32

Example Directed Graph

Data Structures and Programming
Techniques

33

A B

D C

The Strong Components of the Digraph

Data Structures and Programming
Techniques

34

A B

D C

Another Example Directed Digraph

• This graph consists of a single strong component.

Data Structures and Programming
Techniques

35

Degree in Undirected Graphs

• In an undirected graph 𝐺, the degree
(βαθμός) of vertex 𝑥 is the number of edges 𝑒
in which 𝑥 is one of the endpoints of 𝑒.

• The degree of a vertex 𝑥 is denoted by
deg 𝑥 .

Data Structures and Programming
Techniques

36

Example

Data Structures and Programming
Techniques

37

1

2

5

4 6

7
8

3

The degree of vertex 1 is 2. The degree of vertex 4 is 4. The degree of vertex 8 is
1.

Proposition

• If 𝐺 is an undirected graph with 𝑚 edges, then

𝑣 𝑖𝑛 𝐺

deg(𝑣) = 2𝑚.

• Proof?

Data Structures and Programming
Techniques

38

Proof

• An edge (𝑢, 𝑣) is counted twice in the
summation above; once by its endpoint 𝑢 and
one by its endpoint 𝑣. Thus, the total
contribution of the edges to the degrees of
the vertices is twice the number of edges.

Data Structures and Programming
Techniques

39

Predecessors and Successors in
Directed Graphs

• If 𝑥 is a vertex in a directed graph 𝐺 = (𝑉, 𝐸)
then the set of predecessors (προηγούμενων)
of 𝑥 denoted by 𝑃𝑟𝑒𝑑(𝑥) is the set of all
vertices 𝑦 ∈ 𝑉 such that 𝑦, 𝑥 ∈ 𝐸.

• Similarly the set of successors (επόμενων) of
𝑥 denoted by 𝑆𝑢𝑐𝑐(𝑥) is the set of all vertices
𝑦 ∈ 𝑉 such that 𝑥, 𝑦 ∈ 𝐸.

Data Structures and Programming
Techniques

40

In-Degree and Out-Degree in Directed
Graphs

• The in-degree of a vertex 𝑥 is the number of
predecessors of 𝑥.

• The out-degree of a vertex 𝑥 is the number of
successors of 𝑥.

• We can also define the in-degree and the out-
degree by referring to the incoming and outgoing
edges of a vertex.

• The in-degree and out-degree of a vertex 𝑥 are
denoted by 𝑖𝑛𝑑𝑒𝑔(𝑥) and 𝑜𝑢𝑡𝑑𝑒𝑔(𝑥)
respectively.

Data Structures and Programming
Techniques

41

Example

Data Structures and Programming
Techniques

42

1

2 3

4 5

The in-degree of vertex 4 is 2. The out-degree of vertex 4 is 1.

Proposition

• If 𝐺 is a directed graph with 𝑚 edges, then

𝑣 𝑖𝑛 𝐺

𝑖𝑛𝑑𝑒 𝑔 𝑣 =

𝑣 𝑖𝑛 𝐺

𝑜𝑢𝑡𝑑𝑒𝑔(𝑣) = 𝑚.

• Proof?

Data Structures and Programming
Techniques

43

Proof

• In a directed graph, an edge (𝑢, 𝑣) contributes
one unit to the out-degree of its origin vertex
𝑢 and one unit to the in-degree of its
destination 𝑣. Thus, the total contribution of
the edges to the out-degrees of the vertices is
equal to the number of edges, and similarly
for the out-degrees.

Data Structures and Programming
Techniques

44

Proposition

• Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges.

If 𝐺 is undirected, then 𝑚 ≤
𝑛 𝑛−1

2
, and if 𝐺 is

directed, then 𝑚 ≤ 𝑛 𝑛 − 1 .

• Proof?

Data Structures and Programming
Techniques

45

Proof

• If 𝐺 is undirected then the maximum degree
of a vertex is 𝑛 − 1. Therefore, from the
previous proposition about the sum of the
degrees, we have 2𝑚 ≤ 𝑛 𝑛 − 1 .

• If 𝐺 is directed then the maximum in-degree
of a vertex is 𝑛 − 1. Therefore, from the
previous proposition about the sum of the in-
degrees, we have 𝑚 ≤ 𝑛 𝑛 − 1 .

Data Structures and Programming
Techniques

46

More definitions

• A subgraph (υπογράφος) of a graph 𝐺 is a
graph 𝐻 whose set of vertices and set of
edges are subsets of the set of vertices and
the set of edges of 𝐺 respectively.

• A spanning subgraph (υπογράφος
επικάλυψης) of 𝐺 is a subgraph of 𝐺 that
contains all the vertices of 𝐺.

Data Structures and Programming
Techniques

47

Example Undirected Graph 𝐺

Data Structures and Programming
Techniques

48

1

2

5

4 6

7
8

3

Example (cont’d)

Data Structures and Programming
Techniques

49

1

2

5

4 6

7
8

3

The above are three subgraphs of the previous graph 𝐺.

Example (cont’d)

Data Structures and Programming
Techniques

50

1

2

5

4 6

7
8

3

The above graph is a spanning subgraph of the previous graph 𝐺.

More Definitions for Undirected
Graphs

• A forest (δάσος) is an undirected graph without cycles.
• A free tree (ελεύθερο δένδρο) is a connected forest i.e., a

connected, undirected graph without cycles.
• The trees that we studied in earlier lectures are rooted

trees (δένδρα με ρίζα) and they are different than free
trees.

• A spanning tree (δένδρο επικάλυψης ή επικαλύπτον
δένδρο) of an undirected graph is a spanning subgraph that
is a free tree.

• A spanning forest (δάσος επικάλυψης ή επικαλύπτον
δάσος) is an undirected graph which is the union of
spanning trees, one for each connected component of the
graph.

Data Structures and Programming
Techniques

51

Example Forest

Data Structures and Programming
Techniques

52

1

2

5

4 6

7
8

3

Example Free Tree

Data Structures and Programming
Techniques

53

1

2

5

4 6

7
8

3

Example

Data Structures and Programming
Techniques

54

1

2

5

4 6

7
8

3

The thick green lines define a spanning tree of the graph.

Example (cont’d)

Data Structures and Programming
Techniques

55

1

2

5

4 6

7
8

3

The thick green lines define another spanning tree of the graph.

Example

Data Structures and Programming
Techniques

56

The thick green lines define a
spanning forest which consists of
two spanning trees.

More definitions (cont’d)

• We can give similar definitions for forest and
tree for the case of directed graphs but now
our trees will be directed, rooted trees in
which all edges point away from the root
(technically such a tree is called an
arborescence or directed rooted tree if you
don’t like words that come from French).

• The terms spanning tree and spanning forest
are used only for undirected graphs.

Data Structures and Programming
Techniques

57

Example

• A forest consisting of two directed rooted trees.

Data Structures and Programming
Techniques

58

E

I

G

A

B

C D

H

F

Graph Representations: Adjacency
Matrices

• Let 𝐺 = (𝑉, 𝐸) be a graph. Suppose we
number the vertices in 𝑉 as 𝑣1, 𝑣2, … , 𝑣𝑛.

• The adjacency matrix (πίνακας γειτνίασης) 𝑇
corresponding to 𝐺 is an 𝑛 × 𝑛 matrix such

that 𝑇 𝑖, 𝑗 = 1 if there is an edge 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸,

and 𝑇 𝑖, 𝑗 = 0 if there is no such edge in 𝐸.

Data Structures and Programming
Techniques

59

Example

0 1 0 0

0 0 1 1

1 0 0 1

1 0 0 0

Data Structures and Programming
Techniques

60

1 2

3 4

A directed graph G The adjacency matrix for graph G

1 2 3 4

1

2

3

4

Adjacency Matrices

• The adjacency matrix of an undirected graph
𝐺 is a symmetric matrix i.e., 𝑇 𝑖, 𝑗 = 𝑇[𝑗, 𝑖]
for all 𝑖 and 𝑗 in the range 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

• The adjacency matrix for a directed graph
need not be symmetric.

Data Structures and Programming
Techniques

61

Example

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

Data Structures and Programming
Techniques

62

1 2

3 4

An undirected graph G The adjacency matrix for graph G

1 2 3 4

1

2

3

4

Another Example

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

Data Structures and Programming
Techniques

63

1 2

3 4

An undirected graph G The adjacency matrix for graph G

1 2 3 4

1

2

3

4

Adjacency Matrices (cont’d)

• The diagonal entries in an adjacency matrix
(of a directed or undirected graph) are zero,
since graphs, as we have defined them, are
not permitted to have looping self-referential
edges that connect a vertex to itself.

Data Structures and Programming
Techniques

64

Adjacency Matrices in C

#define MAXVERTEX 10

typedef enum {FALSE, TRUE} Boolean

/* FALSE and TRUE will be 0 and 1 respectively */

typedef Boolean

AdjacencyMatrix[MAXVERTEX][MAXVERTEX]

typedef struct graph {

int n /*number of vertices in graph */

AdjacencyMatrix A;

} Graph;

Data Structures and Programming
Techniques

65

Adjacency Sets

• Another way to define a graph 𝐺 = (𝑉, 𝐸) is to
specify adjacency sets (σύνολα γειτνίασης) for
each vertex in 𝑉.

• Let 𝑉𝑥 stand for the set of all vertices adjacent to
𝑥 in an undirected graph 𝐺 or the set of all
vertices that are successors of 𝑥 in a directed
graph 𝐺.

• If we give both the vertex set 𝑉 and the
collection 𝐴 = {𝑉𝑥|𝑥 ∈ 𝑉} of adjacency sets for
each vertex in 𝑉 then we have given enough
information to define the graph 𝐺.

Data Structures and Programming
Techniques

66

Graph Representations: Adjacency
Lists

• When writing code in C or other languages,
we use adjacency lists (λίστες γειτνίασης) to
represent the adjacency set 𝑉𝑥 for each vertex
𝑥 in the graph.

• Adjacency matrices and adjacency lists are the
two standard representations of graphs.

Data Structures and Programming
Techniques

67

Example Directed Graph

1 2 2 3

2 3 3 4 5

3 1 4

4 0

5 1 1

Data Structures and Programming
Techniques

68

1 3

5 4

A directed graph G
The sequential adjacency lists for graph
G. Notice that vertices are listed in their
natural order.

2

Adjacency listOut Degree
Vertex
Number

Example Directed Graph

Data Structures and Programming
Techniques

69

1 3

5 4

A directed graph G

The linked adjacency lists for graph G.
Notice that vertices in a list are organized
according to their natural order.

2
2 3 .
3 4 5 .

4

1 .

.
.

1:

2:

3:

4:

5:

Example Undirected Graph

1 3 2 3 5

2 4 1 3 4 5

3 3 1 2 4

4 2 2 3

5 2 1 2

Data Structures and Programming
Techniques

70

1 3

5 4

An undirected graph G
The sequential adjacency lists for graph G

2

Adjacency listDegree
Vertex
Number

Example Undirected Graph

• The linked adjacency list representation for
the graph of the previous slide is similar to the
one for the directed case.

Data Structures and Programming
Techniques

71

Assumptions

• In the previous slides, the vertices of the graph
appear in their natural order in the arrays and
linked lists used in the adjacency matrix and the
adjacency links representations.

• This will be our assumption in all examples from
now on.

• In the adjacency lists representation, we also
showed the degrees of vertices. This information
is not necessary and can be omitted.

Data Structures and Programming
Techniques

72

Sequential Adjacency Lists in C

typedef int AdjacencyList[MAXVERTEX];

typedef struct graph{

int n; /*number of vertices in graph */

int degree[MAXVERTEX];

AdjacencyList A[MAXVERTEX];

} Graph;

In the above representation, each index i of array A is a vertex of the
graph while each element A[i] is an array storing the adjacency list
of vertex i.

Data Structures and Programming
Techniques

73

Linked Adjacency Lists in C

typedef int Vertex;

typedef struct edge {

Vertex endpoint;

struct edge *nextedge;

} Edge;

typedef struct graph{

int n; /*number of vertices in graph */

Edge *firstedge[MAXVERTEX];

} Graph;

In the above representation, each index i of array firstedge is a vertex and
each element firstedge[i] is a pointer to a linked list that contains the
adjacent vertices of vertex i. This implementation of adjacency lists is used in the
code that we give below.

Data Structures and Programming
Techniques

74

Linked Adjacency Lists in C (cont’d)

• The previous representation used an array for
the vertices and linked lists for the adjacency
lists.

• We can use linked lists for the vertices as well
as follows.

Data Structures and Programming
Techniques

75

Linked Adjacency Lists in C (cont’d)

typedef struct vertex Vertex;

typedef struct edge Edge;

struct vertex {

Edge *firstedge;

Vertex *nextvertex;

}

struct edge {

Vertex *endpoint;

Edge *nextedge;

};

typedef Vertex *Graph;

We do not use this implementation of adjacency lists in the code that we give below.

Data Structures and Programming
Techniques

76

Space Complexity

• The space complexity of the adjacency matrix
representation of a graph with 𝑛 vertices is
𝑶(𝒏𝟐).

• The space complexity of the adjacency list
representation of a graph with 𝑛 vertices and
𝑒 edges is 𝑶 𝒏 + 𝒆 .

Data Structures and Programming
Techniques

77

Questions

• Which graph representation would you use under
the following circumstances?
– The graph is sparse (e.g., it contains 106 nodes but

only 105 edges).

– The graph is dense (e.g., it contains 106 nodes and
1010 edges).

• The answer will depend on what amount of space
we have available and what operations we would
like to perform on the graph.

Data Structures and Programming
Techniques

78

Graph Searching

• To search a graph G, we need to visit all
vertices of G in some systematic order.

• Let us define an enumeration

typedef enum {FALSE, TRUE} Boolean;

• Each vertex v can be a structure with a
Boolean valued member v.Visited
which is initially FALSE for all vertices of G.
When we visit v, we will set it to TRUE.

Data Structures and Programming
Techniques

79

An Algorithm for Graph Searching

void GraphSearch(G,v)

{

Let G=(V,E) be a graph.

Let C be an empty container.

for (each vertex x in V){

x.Visited=FALSE;

}

Put v into C;

while (C is non-empty){

Remove a vertex x from container C;

if (!(x.Visited)){

Visit(x);

x.Visited=TRUE;

for (each vertex w in Vx){

if (!(w.Visited)) Put w into C;

}

}

}

}

Data Structures and Programming
Techniques

80

Graph Searching (cont’d)

• Let us consider what happens when the
container C is a stack.

Data Structures and Programming
Techniques

81

Example Undirected Graph

Data Structures and Programming
Techniques

82

1

2 3 4

5 6 7 8

Representation with Adjacency Lists

Data Structures and Programming
Techniques

83

1 2 3 4

2 1 5 6

3 1

4 1 7 8

5 2

6 2

7 4

8 4

Adjacency list
Vertex
Number

Example (cont’d)

Data Structures and Programming
Techniques

84

1

2 3 4

5 6 7 8

What is the order in which vertices are visited if the start vertex is 1?

Example (cont’d)

Data Structures and Programming
Techniques

85

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6 and 5.

Depth-First Search (DFS)

• When C is a stack, the tree in the previous
example is searched in depth-first order.

• Depth-first search (αναζήτηση πρώτα κατά
βάθος) at a vertex always goes down (by
visiting unvisited children) before going across
(by visiting unvisited brothers and sisters).

• Depth-first search of a graph is analogous to a
pre-order traversal of an ordered tree.

Data Structures and Programming
Techniques

86

DFS (cont’d)

• The strategy followed by DFS, as its name implies, is to search
“deeper” in the graph whenever possible.

• In DFS, edges are explored out of the most recently discovered
vertex 𝑣 that still has unexplored edges leaving it.

• When all of 𝑣’s edges have been explored, the search “backtracks”
to explore edges leaving the vertex from which 𝑣 was discovered.

• This process continues until we have discovered all the vertices that
are reachable from the original source vertex.

• If any undiscovered vertices remain, the one of them is selected as
a new source and the search is repeated from that source.

• This entire process is repeated until all vertices are discovered.

Data Structures and Programming
Techniques

87

Graph Searching (cont’d)

• Let us consider what happens when the
container C is a queue.

Data Structures and Programming
Techniques

88

Example Undirected Graph

Data Structures and Programming
Techniques

89

1

2 3 4

5 6 7 8

What is the order in which vertices are visited if the start vertex is 1?

Example (cont’d)

Data Structures and Programming
Techniques

90

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 2, 3, 4, 5, 6, 7 and 8.

Breadth-First Search (BFS)

• When C is a queue, the tree in the previous example is
searched in breadth-first order.

• Breadth-first search (αναζήτηση πρώτα κατά πλάτος)
at a vertex always goes broad before going deep.

• Breadth-first traversal of a graph is analogous to a
traversal of an ordered tree that visits the nodes of the
tree in level-order.

• BFS subdivides the vertices of a graph in levels. The
starting vertex is at level 0, then we have the vertices
adjacent to the starting vertex at level 1, then the
vertices adjacent to these vertices at level 2 etc.

Data Structures and Programming
Techniques

91

BFS (cont’d)

• BFS works as follows.

• We start from the start vertex (level 0) and visit
all the vertices that we can reach by following
one edge (these are the vertices at level 1).

• Then we visit all vertices that we can reach from
the start vertex by following two edges (these are
the vertices at level 2).

• We continue with the vertices at level 3 and so
forth.

Data Structures and Programming
Techniques

92

Example Directed Graph

Data Structures and Programming
Techniques

93

1

2

3

4

5

6

7

8

What is the order of visiting vertices for DFS if the start vertex is 1?

Representation with Adjacency Lists

Data Structures and Programming
Techniques

94

1 2 3 4

2 5 6

3

4 7 8

5

6 5

7 1 3 6

8 6

Adjacency list
Vertex
Number

Example (cont’d)

Data Structures and Programming
Techniques

95

1

2

3

4

5

6

7

8

DFS visits the vertices in the order 1, 4, 8, 6, 5, 7, 3 and 2.

Example (cont’d)

Data Structures and Programming
Techniques

96

1

2

3

4

5

6

7

8

What is the order of visit for BFS if the start vertex is 1?

Example (cont’d)

Data Structures and Programming
Techniques

97

1

2

3

4

5

6

7

8

BFS visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.

Exhaustive Search

• Either the stack version or the queue version
of the algorithm GraphSearch will visit
every vertex in a graph G provided that G
consists of a single strongly connected
component.

• If this is not the case, then we can enumerate
all the vertices of G and run GraphSearch
starting from each one of them in order to
visit all the vertices of G.

Data Structures and Programming
Techniques

98

Exhaustive Search (cont’d)

void ExhaustiveGraphSearch(G)

{

Let G=(V,E) be a graph.

for (each vertex v in G){

GraphSearch(G, v)

}

}

Data Structures and Programming
Techniques

99

Theseus in the Labyrinth

• DFS can be simulated using a string and a can
of paint for painting the vertices i.e., using a
version of the algorithm that Theseus might
have used in the labyrinth of the Minotaur!

• BFS is analogous to a group of people
exploring the graph by fanning out in all
directions.

Data Structures and Programming
Techniques

100

Implementing DFS in C

• We will now show how to implement depth-
first search in C.

• We will use the linked adjacency lists
representation of a graph.

• We will write a function DepthFirst which
calls the recursive function Traverse.

Data Structures and Programming
Techniques

101

Implementing DFS in C (cont’d)

/* global variable visited */

Boolean visited[MAXVERTEX];

/* DepthFirst: depth-first traversal of a graph

Pre: The graph G has been created.

Post: The function Visit has been performed at each vertex of G in

depth-first order

Uses: Function Traverse produces the recursive depth-first order */

void DepthFirst(Graph G, void (*Visit)(Vertex x))

{

Vertex v;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

for (v=0; v < G.n; v++)

if (!visited[v]) Traverse(G, v, Visit);

}

Data Structures and Programming
Techniques

102

Implementing DFS in C (cont’d)

/* Traverse: recursive traversal of a graph

Pre: v is a vertex of graph G

Post: The depth first traversal, using function Visit, has been

completed for v and for all vertices adjacent to v.

Uses: Traverse recursively, Visit */

void Traverse(Graph G, Vertex v, void (*Visit)(Vertex x))

{

Vertex w;

Edge *curedge;

visited[v]=TRUE;

Visit(v);

curedge=G.firstedge[v]; /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint; /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Traverse(G, w, Visit);

curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,_) of V */

}

}

Data Structures and Programming
Techniques

103

Example Undirected Graph

Data Structures and Programming
Techniques

104

1

2 3 4

5 6 7 8

Representation with Adjacency Lists

Data Structures and Programming
Techniques

105

1 2 3 4

2 1 5 6

3 1

4 1 7 8

5 2

6 2

7 4

8 4

Adjacency list
Vertex
Number

Example of Recursive DFS

Data Structures and Programming
Techniques

106

1

2 3 4

5 6 7 8

What is the order vertices are visited if the start vertex is 1?

Example (cont’d)

Data Structures and Programming
Techniques

107

1

2 3 4

5 6 7 8

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is
different than the order we got when using a stack!

Important

• There is more than one way to traverse a graph
in a DFS fashion (e.g., starting from a different
node gives us different DFS traversals).

• The order the vertices of a graph are visited by
DFS depends on:
– The representation of the graph (e.g., adjacency

matrix vs. adjacency list, the order of vertices in the
two representations).

– The implementation of the DFS algorithm (e.g.,
recursive DFS vs. using a stack).

Data Structures and Programming
Techniques

108

Important (cont’d)

• DFS traverses all edges and visits all the
vertices reachable from the start vertex (i.e.,
all the vertices in the connected component
containing the start vertex), regardless of in
what order it examines edges incident on
each vertex.

Data Structures and Programming
Techniques

109

Complexity of DFS

• DFS as implemented above (by the recursive function Traverse
and using adjacency lists) on a graph with 𝑒 edges and 𝑛 vertices
has complexity 𝑶 𝒏 + 𝒆 .

• To see why, observe that on no vertex is Traverse called more
than once, because as soon as we call Traverse with parameter
𝑣, we mark 𝑣 visited and we never call Traverse on a vertex that
has previously been marked as visited.

• Thus, the total time spent going down the adjacency lists is
proportional to the lengths of those lists, that is 𝑂 𝑒 .

• We also need an initialization step which marks all vertices as
unvisited before we run Traverse. This step has complexity 𝑂 𝑛 .

• Thus, the total complexity is 𝑂 𝑛 + 𝑒 .

Data Structures and Programming
Techniques

110

Complexity of DFS (cont’d)

• If DFS is implemented using an adjacency matrix,
then its complexity will be 𝑂 𝑛2 .

• If the graph is dense (πυκνός), that is, it has close
to 𝑂 𝑛2 edges the difference of the two
implementations is minor as they would both run
in 𝑂 𝑛2 time.

• If the graph is sparse (αραιός), that is, it has close
to 𝑂 𝑛 edges, then the adjacency matrix
approach would be much slower than the
adjacency list approach.

Data Structures and Programming
Techniques

111

Complexity of DFS (cont’d)

• The complexity of function DepthFirst is
𝑂 𝑛(𝑛 + 𝑒) because we also have the second
for statement that makes sure that all
connected components of the graph are
explored.

Data Structures and Programming
Techniques

112

Implementing BFS in C

• Let us now show how to implement breadth-
first search in C.

• The algorithm BreadthFirst makes use of
a queue which can be implemented using any
of the implementations we presented in
earlier lectures.

Data Structures and Programming
Techniques

113

Implementing BFS in C (cont’d)

/* BreadthFirst: breadth-first traversal of a graph

Pre: The graph G has been created

Post: The function visit has been performed at each vertex of G, where the vertices

are chosen in breadth-first order.

Uses: Queue functions */

void BreadthFirst(Graph G, void (*Visit)(Vertex))

{

Queue Q;

Boolean visited[MAXVERTEX];

Vertex v, u, w;

Edge *curedge;

for (v=0; v < G.n; v++)

visited[v]=FALSE;

InitializeQueue(&Q);

for (u=0; u < G.n; u++)

if (!visited[u]){

Insert(u, &Q);

do {

Remove(&Q, &v);;

if (!visited[v]){

visited[v]=TRUE;

Visit(v);

}

curedge=G.firstedge[v]; /* curedge is a pointer to the first edge (v,_) of V */

while (curedge){

w=curedge->endpoint; /* w is a successor of v and (v,w) is the current edge */

if (!visited[w]) Insert(w, &Q);

curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,_) of V */

}

} while (!Empty(&Q));

}

}

Data Structures and Programming
Techniques

114

Example

• If we search the above graph 𝐺 using the function BreadthFirst
starting from vertex A, what is the order the various vertices will be
visited?

Data Structures and Programming
Techniques

115

A

B

D E

C

F G

Representation of 𝐺 with Adjacency
Lists

Data Structures and Programming
Techniques

116

A B C D E

B A D E

C A F G

D A B E

E A B D

F C G

G F C

Adjacency list
Vertex
ID

Example (cont’d)

• The vertices will be visited in the following order: A, B, C, D, E, F, G

Data Structures and Programming
Techniques

117

A

B

D E

C

F G

Example (cont’d)

• Let us study how the algorithm will run.

• At first, A will be inserted in the queue. Then, A will be
removed from the queue and marked as visited. Then,
its adjacency list will be explored, and vertices B, C, D
and E will be found and added to the queue.

• Then, B will be removed from the queue and marked as
visited. Then, its adjacency list will be explored, and
vertices D and E will be added to the queue (A will not
be added since it has been marked as visited).

• But wait! Why are D and E added to the queue
although they are there already?

Data Structures and Programming
Techniques

118

Algorithm BreadthFirst Revisited

• What we have just demonstrated is an
inefficiency of BreadthFirst.

• We can fix this inefficiency by checking
whether a vertex is already in the queue, so
that we do not add it for a second time.

• Another way to fix the problem is the
following: instead of marking a vertex as being
visited when we take it off the queue, we do
so when we put it on the queue.

Data Structures and Programming
Techniques

119

Complexity of BFS

• Let us now consider the previous algorithm
BreadthFirst but we remove the for
statement that makes sure that all connected
components of the graph are explored (so we
do a BFS from a given start vertex).

• BFS, implemented as above (with adjacency
lists and not allowing a vertex appearing more
than once in the queue), has the same
complexity as DFS i.e., 𝑶(𝒏 + 𝒆).

Data Structures and Programming
Techniques

120

DFS of an Undirected Graph

• During a depth-first traversal of an undirected graph, certain edges, when
traversed, lead to unvisited vertices. The edges leading to new vertices are called
tree edges (ακμές δένδρου) or discovery edges (ακμές ανακάλυψης).

• Tree edges form a DFS spanning forest (δάσος επικάλυψης για την πρώτα κατά
βάθος αναζήτηση) for the given graph. This forest has one tree for each
connected component of the graph and one tree node for each graph vertex.

• There are also edges that do not belong to the spanning forest. These are called
back edges (ακμές οπισθοχώρησης) and go from a vertex to another vertex we
have already visited (i.e., one of its ancestors in the spanning forest).

• Tree edges are those edges (𝑣, 𝑤) such that Traverse with parameter 𝑣 directly
calls Traverse with parameter 𝑤 or vice versa.

• Back edges are those edges (𝑣, 𝑤) such that Traverse with parameter 𝑣
inspects vertex 𝑤 but does not call Traverse because 𝑤 has already been
visited.

Data Structures and Programming
Techniques

121

Example

• Let us search the above graph 𝐺 using the function DepthFirst
presented earlier starting from vertex A.

Data Structures and Programming
Techniques

122

A

B

D E

C

F G

Representation of 𝐺 with Adjacency
Lists

Data Structures and Programming
Techniques

123

A B C D E

B A D E

C A F G

D A B E

E A B D

F C G

G F C

Adjacency list
Vertex
ID

Example (cont’d)

Data Structures and Programming
Techniques

124

A

B

D E

C

F G

Tree edges

Back edges

Example (cont’d)

• The above is the depth-first spanning forest for the graph 𝐺
we saw previously. The forest consists of one tree only.

Data Structures and Programming
Techniques

125

A

B

D E

C

F G

Important

• The edge types are properties of the dynamics
of the search, rather than only the graph.

• Different depth-first spanning forests of the
same graph can differ remarkably in character.

• Can you give examples for the above facts?

Data Structures and Programming
Techniques

126

Question

• How can we modify function Traverse so
that it outputs the edges of the depth-first
spanning tree (tree edges) and the back
edges?

Data Structures and Programming
Techniques

127

Proposition

• Let 𝐺 be an undirected graph with 𝑛 vertices and 𝑒 edges
which is represented with adjacency lists. A DFS traversal
of 𝐺 can be executed in 𝑂(𝑛 + 𝑒) time and can be used to
solve the following problems in 𝑂(𝑛 + 𝑒) time:
1. Checking if 𝐺 is connected
2. Computing a spanning tree of 𝐺 is 𝐺 is connected.
3. Computing a path between two given vertices of 𝐺, if such a

path exists.
4. Computing a cycle of 𝐺 or discovering that 𝐺 does not have

cycles.

• The proof of the proposition is left as an exercise.

Data Structures and Programming
Techniques

128

DFS Traversal of a Directed Graph

• During a depth-first traversal of a directed graph, certain edges, when
traversed, lead to unvisited vertices. The edges leading to new vertices are
called tree edges (ακμές δένδρου) and they form a DFS forest (δάσος
πρώτα κατά βάθος αναζήτησης) for the given digraph.

• This forest has one DFS tree for each strong connected component of the
graph and one tree node for each graph vertex.

• There are also edges that do not belong to the DFS forest and can be
classified as follows:
– Back edges (ακμές οπισθοχώρησης) that go from a vertex to one of its

ancestors in a DFS tree.
– Forward edges (ακμές προώθησης) that go from a vertex to one of its

descendants in a DFS tree.
– Cross edges (εγκάρσιες ακμές). These are all the remaining edges. They can

go between vertices in the same DFS tree, as long as one vertex is not an
ancestor of the other, or they can go between vertices in different DFS trees.

Data Structures and Programming
Techniques

129

Example

• Let us search the above graph 𝐺 using the function DepthFirst presented
earlier starting from vertex A.

Data Structures and Programming
Techniques

130

E

I

G

B

D

A

C

H

F

Representation with Adjacency Lists

Data Structures and Programming
Techniques

131

A B C

B C D

C A

D A C

E F G

F H I

G F

H I

I

Adjacency list
Vertex
ID

Example (cont’d)

• The vertices will be visited in the order A, B, C, D, E, F, H, I, G.

Data Structures and Programming
Techniques

132

E

I

G

B

D

A

C

H

F

Example (cont’d)

Data Structures and Programming
Techniques

133

Tree edges

Cross edges

Back edges

E

I

G

A

B

C D

Forward edges

H

F

Example (cont’d)

• The above is the DFS forest of graph 𝐺 for the depth-first traversal we saw
previously.

Data Structures and Programming
Techniques

134

E

I

G

A

B

C D

H

F

Important

• As we also saw for undirected graphs, the
edge types are properties of the dynamics of
the search, rather than only the graph.

• Different DFS forests of the same graph can
differ remarkably in character.

• Even the number of trees in the DFS forest
depends upon the start vertex.

• Can you give examples for the above facts?

Data Structures and Programming
Techniques

135

Classification of Edges

• How do we distinguish among the four types
of edges?

• Tree edges are easy to find since they lead to
an unvisited vertex during DFS.

• The other three types of edges can be
distinguished by keeping track of the preorder
and postorder numbering of nodes and using
an interesting proposition that we present
below.

Data Structures and Programming
Techniques

136

Preorder Numbering of Vertices

• We can number the vertices of a digraph in the order
in which we first mark them as visited during a DFS.

• For this, we can use a counter count that is initially
set to zero, a vertex-indexed array pre with all its
elements set to -1 initially, and add the code

pre[v]=count++;

in the function Traverse, immediately after the

statement marking a vertex as visited.

• We will call this the preorder numbering
(προδιατεταγμένη αρίθμηση) of a digraph.

Data Structures and Programming
Techniques

137

Example Directed Graph

• Consider performing a DFS starting from vertex A.

Data Structures and Programming
Techniques

138

A

E

D C

B

Preorder Numbering

Data Structures and Programming
Techniques

139

A B

D

E

Tree edges

Back edges

1
2

34

Forward edges

C

5

Cross edges

Postorder Numbering of Vertices

• We can also have a postorder numbering
(μεταδιατεταγμένη αρίθμηση) of the vertices of
a digraph.

• This is the order that we finish processing them
(just before returning from the recursive function
Traverse).

• Postorder numbering can be implemented in a
similar way as the preorder one, using a vertex-
indexed array post, a counter and introducing
appropriate code in the function Traverse.

Data Structures and Programming
Techniques

140

Example Directed Graph

• Consider performing a DFS starting from vertex A.

Data Structures and Programming
Techniques

141

A

E

D C

B

Postorder Numbering

Data Structures and Programming
Techniques

142

A B

D

E

Tree edges

Back edges

4
3

21

Forward edges

C

5

Cross edges

Proposition

• In a DFS forest corresponding to a digraph, an
edge to a visited vertex is a back edge if it
leads to a vertex with a higher postorder
number; otherwise, it is a cross edge if it leads
to a vertex with a lower preorder number and
a forward edge if it leads to a vertex with a
higher preorder number.

• Proof?

Data Structures and Programming
Techniques

143

Proof

• These facts follow from the definitions of arrays pre and
post and how they are updated by function
Traverse.

• A vertex’s ancestors in a DFS tree have lower preorder
numbers and higher postorder numbers.

• A vertex’s descendants in a DFS tree have higher preorder
numbers and lower postorder numbers.

• Both numbers are lower in previously visited vertices in
other DFS trees and both numbers are higher in yet-to-be-
visited vertices in other DFS trees.

• An edge (𝑣, 𝑢) so that 𝑣 is not an ancestor or a descendant
of 𝑢 in the same DFS tree is such that pre[u]<pre[v].

Data Structures and Programming
Techniques

144

Proposition

• Let 𝐺 be a directed graph. A DFS traversal of 𝐺
starting from a vertex 𝑠 visits all vertices of 𝐺
that are reachable from 𝑠. In addition, the DFS
tree contains directed paths from 𝑠 to each
vertex that is reachable from 𝑠.

• The proof of the proposition is left as an
exercise.

Data Structures and Programming
Techniques

145

Transitive Closure

• The transitive closure (μεταβατική
κλειστότητα) of a directed graph 𝐺 is a
directed graph 𝐺∗ such that the vertices of
𝐺∗are the same as the vertices of 𝐺, and 𝐺∗

has an edge (𝑢, 𝑣) whenever 𝐺 has a directed
path from 𝑢 to 𝑣.

Data Structures and Programming
Techniques

146

Example Directed Graph 𝐺

• What is the transitive closure of 𝐺?

Data Structures and Programming
Techniques

147

A B

D C

The Transitive Closure 𝐺∗

Data Structures and Programming
Techniques

148

A B

D C

Proposition

• Let 𝐺 be a directed graph with 𝑛 vertices and 𝑒 edges
which is represented with adjacency lists. The
following problems can be solved by an algorithm
which traverses 𝐺 𝑛 times using DFS, runs in time
𝑂(𝑛(𝑛 + 𝑒)), and uses 𝑂(𝑛) additional storage.
1. For every vertex 𝑣 of 𝐺, computing the subgraph which is

reachable from 𝑣.

2. Checking whether 𝐺 is strongly connected.

3. Computing the transitive closure 𝐺∗ of 𝐺.

• The proof of the proposition is left as an exercise.

Data Structures and Programming
Techniques

149

Checking for Strong Connectivity

• The following is a simple algorithm for checking whether a
given directed graph 𝐺 is strongly connected.

• We start doing a DFS of the directed graph 𝐺 starting from
an arbitrary vertex 𝑠.

• If there is any vertex of 𝐺 which is not reachable from 𝑠,
then 𝐺 is not strongly connected.

• If the DFS visits all vertices of 𝐺, we compute the reverse of
𝐺, a new directed graph 𝐺𝑟 by reversing the direction of
each edge in 𝐺.

• Then we do a second DFS in 𝐺𝑟 starting from 𝑠.
• If this second DFS visits all vertices of 𝐺, then the graph is

strongly connected, because every vertex reachable from 𝑠
can also reach 𝑠 using DFS.

Data Structures and Programming
Techniques

150

BFS of an Undirected Graph

• We can build a spanning forest when we perform a
breadth-first search as well. We call this the BFS spanning
forest of the graph.

• This forest has one BFS tree for each connected component
of the graph and one tree node for each graph vertex.

• The breadth-first spanning forest is built by tree edges. An
edge (𝑣, 𝑤) is a tree edge if vertex 𝑤 is first visited from
vertex 𝑣 in the inner while loop of function
BreadthFirst.

• Every edge that is not a tree edge is a cross edge, that is, it
connects two vertices neither of which is an ancestor of the
other in the BFS spanning forest.

Data Structures and Programming
Techniques

151

Example

Data Structures and Programming
Techniques

152

A

B

D E

C

F G

Let us execute the algorithm Breadth-First presented earlier on the above
graph 𝐺 starting from vertex A.

Representation of 𝐺 with Adjacency
Lists

Data Structures and Programming
Techniques

153

A B C D E

B A D E

C A F G

D A B E

E A B D

F C G

G F C

Adjacency list
Vertex
ID

Example (cont’d)

Data Structures and Programming
Techniques

154

A

B

D E

C

F G

The vertices will be visited in the order A, B, C, D, E, F, G.

Example (cont’d)

Data Structures and Programming
Techniques

155

A

B

D E

C

F G

Tree edges

Cross edges

Example (cont’d)

• The above is the BFS spanning forest for the breadth-first
traversal of the graph 𝐺 given previously.

Data Structures and Programming
Techniques

156

A

B

D E

C

F G

Important

• The edge types are properties of the dynamics
of the BFS, rather than only the graph.

• Different BFS spanning forests of the same
graph can differ remarkably in character.

• Can you give examples for the above facts?

Data Structures and Programming
Techniques

157

Proposition

• During BFS, vertices enter and leave the queue
in order of their distance from the start vertex
(where the distance of vertex 𝑣 to vertex 𝑢 is
the length of a shortest path from 𝑣 to 𝑢).

• Proof?

Data Structures and Programming
Techniques

158

Proof

• A stronger property holds. The queue always
consists of zero or more vertices of distance 𝑘
from the start, followed by zero or more
vertices of distance 𝑘 + 1 from the start, for
some integer 𝑘. This stronger property is easy
to prove by induction.

Data Structures and Programming
Techniques

159

Proposition

• Let 𝐺 be an undirected graph with 𝑛 vertices and 𝑒
edges. A BFS traversal of 𝐺 requires 𝑂(𝑛 + 𝑒) time.
There are also algorithms running in 𝑂(𝑛 + 𝑒) time
that are based on BFS and solve the following
problems:
1. Checking whether 𝐺 is connected.
2. Computing a spanning tree of 𝐺, if 𝐺 is connected.
3. Computing the connected components of 𝐺.
4. Given a start vertex 𝑠 of 𝐺, computing, for every other

vertex 𝑣 of 𝐺, a path with minimum number of edges
between 𝑠 and 𝑣, or reporting that there is no such path.

5. Computing a cycle of 𝐺 or reporting that 𝐺 has no cycles.

Data Structures and Programming
Techniques

160

BFS of Directed Graphs

• BFS can also work on directed graphs.
• The algorithm visits vertices level by level and

partitions the edges into two sets: tree edges and non-
tree edges.

• Tree edges define a BFS forest.
• Non-tree edges are of two kinds: back edges and cross

edges.
• Back edges connect a vertex to one of its ancestors in

the BFS forest. Cross edges connect a vertex to another
vertex that is neither its ancestor nor its descendant in
the forest.

• There are no forward edges as in the DFS case.

Data Structures and Programming
Techniques

161

Example

• Let us search this graph 𝐺 using the function BreadthFirst presented earlier
starting from vertex A.

Data Structures and Programming
Techniques

162

E

I

G

B

D

A

C

H

F

Representation with Adjacency Lists

Data Structures and Programming
Techniques

163

A B C

B C D

C A

D A C

E F G

F H I

G F

H I

I

Adjacency list
Vertex
ID

Example (cont’d)

• The vertices will be visited in the order A, B, C, D, E, F, G, H, I.

Data Structures and Programming
Techniques

164

E

I

G

B

D

A

C

H

F

Example (cont’d)

Data Structures and Programming
Techniques

165

Tree edges

Cross edges

Back edges

E

I

G

A

B

C D

H

F

Example (cont’d)

• The above is the BFS forest of graph 𝐺 for the BFS traversal we saw previously.

Data Structures and Programming
Techniques

166

E

I

G

A

B

C D

H

F

Question

• How do we modify the code of algorithm
Breadth-First so that we output the
edges of various kinds for undirected or
directed graphs?

Data Structures and Programming
Techniques

167

Directed Acyclic Graphs

• Let G be a directed graph with no cycles. Such
a graph is called acyclic. We abbreviate the
term directed acyclic graph to dag.

• Dags are more general than trees but less
general than arbitrary directed graphs.

Data Structures and Programming
Techniques

168

Example Tree

Data Structures and Programming
Techniques

169

Example Dag

Data Structures and Programming
Techniques

170

Another Example Dag

Data Structures and Programming
Techniques

171

Applications of Dags

• Dags are useful in compilers for representing
the syntactic structure of arithmetic
expressions with common subexpressions.

• Example: Consider the following arithmetic
expression

𝑎 + 𝑏 ∗ 𝑐 + 𝑎 + 𝑏 + 𝑒 ∗ 𝑒 + 𝑓

∗ (𝑎 + 𝑏 ∗ 𝑐)

Data Structures and Programming
Techniques

172

The Dag for the Example

Data Structures and Programming
Techniques

173

*

+

* *

+ +

e fa b

c

+

Prerequisites in a Program of Study

Data Structures and Programming
Techniques

174

Applications of Dags (cont’d)

• Dags are also useful for representing partial
orders.

• A partial order 𝑅 on a set 𝑆 is a binary relation
such that
– For all 𝑎 in 𝑆, 𝑎 𝑅 𝑎 is false (irreflexivity)

– For all 𝑎, 𝑏, 𝑐 in 𝑆, if 𝑎 𝑅 𝑏 and 𝑏 𝑅 𝑐 then 𝑎 𝑅 𝑐
(transitivity)

• Two natural examples of partial orders are the
“less than” relation (<) on integers, and the
relation of proper containment (⊂) on sets.

Data Structures and Programming
Techniques

175

Example

• Let 𝑆 = 1, 2, 3 and let 𝑃(𝑆) be the power set
of 𝑆, that is, the set of all subsets of 𝑆. The
relation ⊂ is a partial order on 𝑃(𝑆).

Data Structures and Programming
Techniques

176

The Dag of the Example

Data Structures and Programming
Techniques

177

{1,2,3}

{1,2} {1,3} {2,3}

{2}{1} {3}

∅

Class Hierarchies

Data Structures and Programming
Techniques

178

Test for Acyclicity

• Suppose we are given a digraph 𝐺 and we
wish to determine whether 𝑮 is acyclic.

• DFS can be used to answer this question.

• If a back edge is encountered during a DFS
then clearly the graph has a cycle.

• Conversely, if the graph has a cycle then a
back edge will be encountered in any DFS of
the graph. Proof?

Data Structures and Programming
Techniques

179

Proof

• Suppose 𝐺 is cyclic. If we do a DFS of 𝐺, there will
be one vertex 𝑣 having the lowest preorder
number of any vertex on a cycle.

• Consider an edge (𝑢, 𝑣) on some cycle containing
𝑣. Since 𝑢 is on the cycle, 𝑢 must be a descendant
of 𝑣 in the depth-first spanning forest. Thus,
(𝑢, 𝑣) cannot be a cross edge.

• Since the preorder number of 𝑢 is greater than
the preorder number of 𝑣, (𝑢, 𝑣) cannot be a tree
edge or a forward edge. Hence, (𝑢, 𝑣) is a back
edge.

Data Structures and Programming
Techniques

180

Important

• In undirected graphs, any edge to a previously
visited vertex indicates a cycle.

• In directed graphs, this is true only for back
edges.

Data Structures and Programming
Techniques

181

Topological Ordering of a DAG

• A topological ordering (τοπολογική
ταξινόμηση) of the vertices of a dag G is a
sequential list L of the vertices of G (a linear
ordering) such that if there is a directed path
from vertex A to vertex B in G, then A comes
before B in the list L.

Data Structures and Programming
Techniques

182

Example

• G might be a graph in which the vertices
represent university courses to take and in
which an edge is directed from the vertex for
course A to the vertex for course B if course A
is a prerequisite of B.

• Then a topological ordering of the vertices of
G gives us a possible way to organize one’s
studies.

Data Structures and Programming
Techniques

183

Example

Data Structures and Programming
Techniques

184

2

1 3

4 5

54231

A topological ordering is:
1, 3, 2, 4, 5A DAG

Example (cont’d)

Data Structures and Programming
Techniques

185

2

1 3

4 5

54321

Another topological ordering
is: 1, 2, 3, 4, 5A DAG

Another Example

Data Structures and Programming
Techniques

186

2

1 3

4 5

54231

A topological ordering is:
1, 3, 2, 4, 5A DAG

Important

• In general, there can be more than one
topological orderings for a given dag.

• Question: How many topological orderings do
the previous two dags have?

Data Structures and Programming
Techniques

187

Computing a Topological Ordering

• We will compute a list of vertices L that contains the vertices
of G in topological order.

• We will use an array D such that D[v] gives the number of
predecessors p of vertex v in graph G such that p is not in L.

• We will use a queue Q of vertices from where we will take
vertices to process (from the front of the queue).

• The vertices of G in Q will be processed in breadth-first order.
• Initially Q will contain all the vertices of G with no

predecessors.
• When we find a vertex w of G such that D[w]==0, we see

that w has all its predecessors in list L, so we add w to the
rear of queue Q so that it can be processed.

Data Structures and Programming
Techniques

188

Algorithm for Topological Ordering

void BreadthTopSort(Graph G, List *L)

{

Let G=(V,E) be the input graph.

Let L be a list of vertices.

Let Q be a queue of vertices.

Let D[V] be an array of vertices indexed by vertices

in V.

/* Compute the in-degrees D[x] of the vertices x

in G */

for (each vertex x in V) D[x]=0;

for (each vertex x in V){

for (each successor w in Succ(x)) D[w]++;

}

Data Structures and Programming
Techniques

189

Algorithm for Topological Ordering
(cont’d)

/* Initialize the queue Q to contain all

vertices having zero in-degrees */

Initialize(&Q);

for (each vertex x in V){

if (D[x]==0) Insert(x, &Q);

}

Data Structures and Programming
Techniques

190

Algorithm for Topological Ordering
(cont’d)

/* Initialize the list L to be the empty list */

InitializeList(&L);

/* Process vertices in the queue Q until the queue becomes

empty */

while (!Empty(&Q)){

Remove(&Q,x);

AddToList(x,&L);

for (each successor w in Succ(x)){

D[w]--;

if (D[w]==0) Insert(w, &Q);

}

}

/* The list L now contains the vertices of G in

topological order */

}

Data Structures and Programming
Techniques

191

Implementing Topological Sort in C

• We first need to define a new type for an array
that will be used to store the vertices of a
graph in topological order:

typedef Vertex Toporder[MAXVERTEX];

• We will also use the functions for the ADT
queue that we have defined in a previous
lecture.

Data Structures and Programming
Techniques

192

Topological Sort in C (cont’d)

/* BreadthTopSort: generates breadth-first topological ordering

Pre: G is a directed graph with no cycles implemented with a contiguous list of vertices

and linked adjacency lists.

Post: The function makes a breadth-first traversal of G and generates the resulting

topological order in T

Uses: Queue functions */

void BreadthTopSort(Graph G, Toporder T)

{

int predecessorcount[MAXVERTEX]; /* number of predecessors of each vertex */

/* (the array D of the previous algorithm) */

Queue Q;

Vertex v, succ;

Edge *curedge;

int place;

/* initialize all the predecessor counts to 0 */

for (v=0; v < G.n; v++)

predecessorcount[v]=0;

/* increase the predecessor count for each vertex that is a successor of another one */

for (v=0; v < G.n; v++)

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge)

predecessorcount[curedge->endpoint]++;

Data Structures and Programming
Techniques

193

Topological Sort in C (cont’d)

/* initialize a queue */

InitializeQueue(&Q);

/* place all vertices with no predecessors into the queue */

for (v=0; v < G.n; v++)

if (predecessorcount[v]==0)

Insert(v, &Q);

/* start the breadth-first traversal */

place=-1;

while (!Empty(&Q)) {

/* visit v by placing it into the topological order */

Remove(&Q, &v);

place++;

T[place]=v;

/* traverse the list of successors of v */

for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge){

/* reduce the predecessor count for each successor */

succ=curedge->endpoint;

predecessorcount[succ]--;

if (predecessorcount[succ]==0)

/* succ has no further predecessors, so it is ready to process */

Insert(succ, &Q);

}

}

}

Data Structures and Programming
Techniques

194

Complexity of Topological Sort

• We can see that the complexity of topological
sort is 𝑶(𝒏 + 𝒆).

Data Structures and Programming
Techniques

195

Strongly Connected Components of a
Directed Graph (Reminder)

• A strongly connected component or strong component
(ισχυρά συνεκτική συνιστώσα ή ισχυρή συνιστώσα) of a
directed graph is a maximal set of vertices in which there is
a path from any one vertex in the set to any other vertex.

• More formally, let 𝐺 = (𝑉, 𝐸) be a directed graph. We can
partition 𝑉 into equivalence classes 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑟, such that
vertices 𝑣 and 𝑤 are equivalent if and only if there is a path
from 𝑣 to 𝑤 and a path from 𝑤 to 𝑣. Let 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑟, be
the set of edges with endpoints in 𝑉𝑖 . The graphs 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖) are called the strongly connected components or
just strong components (ισχυρές συνιστώσες) of 𝐺.

• A directed graph with only one strong component is
strongly connected (ισχυρά συνεκτικός).

Data Structures and Programming
Techniques

196

Example Directed Graph

Data Structures and Programming
Techniques

197

A B

D C

The Strong Components of the Digraph

Data Structures and Programming
Techniques

198

A B

D C

Strong Components (cont’d)

• Every vertex of a directed graph 𝐺 is in some strong component,
but certain edges may not be in any component.

• Such edges, called cross-component edges, go from one vertex
in one component to a vertex in another.

• We can represent the interconnections among components by
constructing a reduced graph (ελαττωμένο γράφο) for 𝐺.

• The vertices of the reduced graph correspond to the strong
components of 𝐺.

• There is an edge from vertex 𝐶 to vertex 𝐶′ of the reduced graph
if there is an edge in 𝐺 from some vertex in the component 𝐶 to
some vertex in the component 𝐶′.

• The reduced graph is always a dag.

Data Structures and Programming
Techniques

199

Example Directed Graph 𝐺

Data Structures and Programming
Techniques

200

A B

D C

Example Reduced Graph for 𝐺

Data Structures and Programming
Techniques

201

A, B, C

D

Kosaraju’s Algorithm for Computing
Strong Components

• We can use DFS to compute the strong components of
a given directed graph 𝐺 as follows:
1. Perform a DFS of 𝐺 and number the vertices in order of

completion of the recursive calls (postorder numbering).
2. Construct the reverse of 𝐺, a new directed graph 𝐺𝑟 by

reversing the direction of each edge in 𝐺.
3. Perform a DFS of 𝐺𝑟, starting the search from the highest

numbered vertex according to the postorder numbering
assigned in Step 1. If the DFS does not reach all vertices,
start the next DFS from the highest-numbered remaining
vertex.

4. Each tree in the resulting DFS forest of 𝐺𝑟 gives us a
strongly connected component of 𝐺.

Data Structures and Programming
Techniques

202

Example Directed Graph 𝐺

• We first perform a DFS starting from vertex A.

Data Structures and Programming
Techniques

203

A B

D C

After Step 1

• The numbers show the post-order numbering.

Data Structures and Programming
Techniques

204

A B

D C

Tree edges

Back edges

4 3

21

Forward edges

The Reverse Directed Graph 𝐺𝑟

• Then we perform a DFS of 𝐺𝑟 starting from the highest-numbered
vertex A. The search will visit the vertices in the order A, C, B and D.

Data Structures and Programming
Techniques

205

A B

D C

4 3

21

Characterization of Edges of 𝐺𝑟

Data Structures and Programming
Techniques

206

A B

D C

Tree edges

Back edges

4 3

21

Cross edges

DFS Forest for 𝐺𝑟

Data Structures and Programming
Techniques

207

A B

D C

The Strong Components of 𝐺

Data Structures and Programming
Techniques

208

A B

D C

Complexity of Algorithm for
Computing Strong Components

• The complexity of the algorithm we presented
for computing strong components is again
𝑶(𝒏 + 𝒆).

• This can be seen easily because the
complexity for every step of the algorithm is
𝑶(𝒏 + 𝒆).

Data Structures and Programming
Techniques

209

Readings

• The material in the present slides comes (often verbatim) from the
following sources:
– T. A. Standish. Data Structures , Algorithms and Software Principles in C.

• Chapter 10

– A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data Structures and Algorithms.
• Chapters 6 and 7

– M. T. Goodrich, R. Tamassia and M. H. Goldwasser. Data Structures and
Algorithms in Java. 6th edition. John Wiley and Sons, 2014.
• Chapter 14

– M. T. Goodrich, R. Tamassia. Δομές Δεδομένων και Αλγόριθμοι σε Java. 5η

έκδοση. Εκδόσεις Δίαυλος.
• Chapter 13

– R. Sedgewick. Algorithms in C. 3rd edition. Part 5. Graph Algorithms.
• Chapters 18 and 19

– T. H Cormen, C. E. Leiserson and R.L. Rivest. Introduction to Algorithms.
• Chapters 5.4 and 23.

Data Structures and Programming
Techniques

210

