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External Memory

• So far we have assumed that our data 
structures are stored in main memory. 
However, if the size of a data structure is too 
big then it will be stored on external memory 
e.g., on a hard disk.

• Examples: the database of a bank, a database 
of images, a database of videos etc.
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External Searching

• When we access data on a disk or another 
external memory device, we perform external 
searching (εξωτερική αναζήτηση).

• A disk access can be at least 100,000 to 
1,000,000 times longer than a main memory 
access.

• Thus, for data structures residing on disk, we 
want to minimize disk accesses.
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(𝑎, 𝑏) Trees

• An (𝒂, 𝒃) tree, where 𝑎 and 𝑏 are integers, such 
that 2 ≤ 𝑎 ≤

(𝑏+1)

2
, is a multi-way search tree 𝑇

with the following additional restrictions:
– Size property: Each internal node has at least 𝑎

children, unless it is the root, and at most 𝑏 children. 
The root can have as few as 2 children.

– Depth property: All external nodes have the same 
depth.

• A (2,4) tree is an (𝑎, 𝑏) tree with 𝑎 = 2 and 𝑏 =
4.
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Example (3,5) Tree
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Proposition

• The height of an (𝑎, 𝑏) tree storing 𝑛 entries is 

𝑂
log 𝑛

log 𝑎
.

• Proof?
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Proof

• Let 𝑇 be an (𝑎, 𝑏) tree storing 𝑛 entries and let ℎ be the height of 𝑇. 
We justify the proposition by proving the following bounds on ℎ:

1

log 𝑏
log(𝑛 + 1) ≤ ℎ <

1

log 𝑎
log

𝑛+1

2
+1

• By the size and depth properties, the number 𝑛′′ of external nodes 
of 𝑇 is at least 𝟐𝒂𝒉−𝟏 and at most 𝒃𝒉.

• To see the upper bound, consider that we can have 1 node at level 
0, at most 𝑏 nodes at level 1, at most 𝑏2 nodes at level 2 etc. and at 
most 𝑏ℎ at level ℎ (these are the external nodes).

• To see the lower bound, consider that we can have 1 node at level 
0, at least 2 nodes at level 1, at least 2𝑎 nodes at level 2, at least 
2𝑎2 at level 3 etc. and at least 2𝑎ℎ−1 nodes at level  ℎ.
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Proof (cont’d)

• By an earlier proposition for multi-way trees, we have that 𝑛′′ = 𝑛 + 1
therefore

2𝑎ℎ−1 ≤ 𝑛 + 1 ≤ 𝑏ℎ

• Taking the logarithm of base 2 of each term, we get
ℎ − 1 log 𝑎 +1 ≤ log(𝑛 + 1) ≤ ℎ log 𝑏

• The lower bound we want to prove is obvious from the above right 
inequality.

• The upper bound we want to prove is also easy to see using the left 
inequality from above:

ℎ log 𝑎 − log 𝑎 + 1 ≤ log(𝑛 + 1)
ℎ log 𝑎 ≤ log(𝑛 + 1) + log 𝑎 − 1

ℎ ≤
1

log 𝑎
log

𝑛 + 1

2
+ 1 −

1

log 𝑎

ℎ <
1

log 𝑎
log

𝑛 + 1

2
+ 1
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B-Trees

• In an (𝑎, 𝑏) tree , we can select the parameters 𝑎 and 𝑏 so that 
each tree node occupies a single disk block or page. 

• This gives rise to a well-known external memory data structure 
called the B-tree.

• A B-tree of order 𝒎 (B-δένδρο τάξης 𝒎) is an (𝑎, 𝑏) tree with 𝑎 =
⌈
𝑚

2
⌉ and 𝑏 = 𝑚.

• B-trees are used for indexing data stored on external memory.
• When we implement a B-tree, we choose the order 𝑚 so that the 

(at most) 𝑚 children references and the (at most) 𝑚 − 1 keys 
stored at a node can all fit into a single block.

• Nodes are at least half-full all the time due to the value of 𝑎.
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Example B-Tree of Order 𝑚 = 5
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Proposition

• Let 𝑇 be a B-tree of order 𝑚 and height ℎ.

Let 𝑑 = ⌈
𝑚

2
⌉ and 𝑛 the number of entries in 

the tree. Then, the following inequalities hold:

1. 2𝑑ℎ−1 − 1 ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ log𝑑
(𝑛+1)

2
+ 1

• Proof?
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Proof

• Let us prove (1) first. 
• The upper bound follows from the fact that a B-

tree of order 𝑚 is a multi-way tree and the 
respective proposition we proved for multi-way 
trees.

• The lower bound follows from the inequality 
2𝑎ℎ−1 ≤ 𝑛 + 1 which we used in the proof of the 
previous proposition for 𝑎, 𝑏 trees.

• To prove (2), rewrite the inequalities of (1) and 
then take logarithms with bases 𝑚 and 𝑑 for the 
respective terms.
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Result

• From the right inequality of (2) in the previous 
proposition, we have that the height of a B-

tree is 𝑶 𝐥𝐨𝐠𝒅 𝒏 where 𝑑 = ⌈
𝑚

2
⌉ , as we 

would like it for a balanced search tree.
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Insertion into a B-tree

• The general method for insertion in a B-tree is as follows. First, a 
search is made to see if the new key is in the tree. This search (if the 
tree is truly new) will terminate in failure at a leaf. 

• The new key is then added to the parent of the leaf node. If the 
node was not previously full, then the insertion is finished.

• When a key is added to a full node, we have an overflow. Then this 
node splits into two nodes on the same level, except that the 
median key at position ⌈

𝑚

2
⌉ is not put into either of the two new 

nodes, but is instead sent up to the tree to be inserted into the 
parent node.

• When a search is later made through the tree, a comparison with 
the median key will serve to direct the search into the proper 
subtree.
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Example

• Let us see an example of insertions into an 
initially empty B-tree of order 5.
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Insert f
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Insert b
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Insert k - Overflow
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Creation of a New Root Node
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Split
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Insert d
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Insert h
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Insert m
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Insert j - Overflow

Data Structures and Programming 
Techniques

27

a    b   d

f

g    h     j k    m



Sent j to the Parent Node
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Insert e
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Insert s
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Insert r
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Insert x - Overflow
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r is Sent to the Parent Node
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Split
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Insert c - Overflow
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c is Sent to the Parent
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m is Sent to the Parent Node
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Split
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Overflow at the Root
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j is Sent up to a New Root
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Final Tree
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Deletion from a B-tree

• Let us now see how we delete a key from a B-tree.
• If the key to be deleted is in a node with only external 

nodes as children, then it can be deleted immediately.
• If the key to be deleted is in an internal node with only 

internal nodes as children, then its immediate 
predecessor (or successor) under the natural order of 
keys is guaranteed to be in a node with only external-
node children.

• Hence, we can promote the immediate predecessor or 
successor into the position occupied by the key to be 
deleted, and delete the key from the node with only 
external-node children.
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Deletion from a B-tree (cont’d)

• If the node where the deletion takes place contains more than the 
minimum number of keys, then one can be deleted with no further 
action. 

• If the node contains the minimum number, then we first look at its two 
immediate siblings (or in the case of a node on the outside, one sibling).

• If one of these has more than the minimum number for entries, then we 
can do a transfer operation: one child of the sibling is moved to the node 
where the deletion takes place, one of the keys of the sibling is moved into 
the parent node, and a key from the parent node is moved into the node 
where the deletion takes place.

• If the immediate sibling has only the minimum number of keys then we 
perform a fusion operation: the current node and its sibling are merged 
into a new node and a key is moved from the parent into this new node.

• If this fusion step leaves the parent with too few entries, the process 
propagates upward.
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Example
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Delete h
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Delete r
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Find the Successor of r
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Promote the Successor of r – Delete 
the Successor from its Place
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Delete p
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Transfer
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After the Transfer
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Delete d
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Fusion
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After the Fusion – Underflow at f
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Fusion
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After the Fusion – Delete Root
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Final Tree
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Complexity of Operations in a B-tree

• As we have shown for multi-way trees, the 
complexity of search, insertion and deletion in 
a B-tree of order 𝑚 is 𝑂 ℎ𝑡 where 𝑂(𝑡) is the 
time it takes to implement split, transfer or 
fusion using the data structure implementing 
each node of the tree.

• If we count only disk block operations then 
𝑂 𝑡 = 𝑂(1). Therefore, the complexity of 
each operation is 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒎

𝟐

𝒏).
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B+-trees

• A variation of B-trees called B+-trees is one of 
the most important indexing structures used 
in today’s file systems and relational database 
management systems.
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B+-tree example
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B+-trees (cont’d)

• B+-trees are similar to B-trees. But in B+-trees, internal 
nodes store only keys (they are index nodes) while 
external nodes at the bottom layer store keys and 
pointers to values (the pointers are the arrows and the 
values are not shown).

• The external nodes in the bottom layer are ordered 
and linked so that, not only equality queries (e.g., find 
employees with salary 10,000), but also range queries 
can be answered effectively (e.g., find employees with 
salary between 10,000 and 20,000 euros).

• The linking of external nodes is not shown in the 
previous figure.
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B+-trees (cont’d)

• Note another difference with B-trees: for 
every interval of keys (𝑘, 𝑙) in an internal node 
of a B+-tree, this interval is connected to the 
node in the level below which holds keys 
𝑚 such that 𝑘 ≤ 𝑚 < 𝑙.
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Examples of insertions in a B+-tree
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The insertion of key 773 causes a split in the root.  



Notes

• Note the difference with B-trees: a copy of the 
median key 601 goes up to form the new 
root. The original  key 601 remains in one of 
the two nodes resulting from the split (the 
one containing the greater keys) so that it can 
be in an external node and be connected to its 
value. 

• Key 000 in the root is a sentinel key (a special 
key smaller than all the others).
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Examples (cont’d)
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The keys 373, 524, 
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inserted. 



Examples (cont’d)
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Examples (cont’d)
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Examples (cont’d)
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017, 107, and 
147 are inserted.

The insertion of 
key 277 causes a 
split in an 
external node.



Examples (cont’d)
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The insertion of 
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root.



Examples (cont’d)
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The insertion 
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causes a split 
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node.



B+-tree type definitions

typedef struct STnode* link;

typedef struct

{ Key key; union { link next; Item item; } ref; }

entry;

struct STnode { entry b[M]; int m; };

Data Structures and Programming 
Techniques

80



B+-tree definitions (cont’d)

• Each node in a B+-tree contains an array (b) of 
size M (the order of the tree). It also contains a 
count (m) of the number of active entries in the 
array.

• In internal nodes, each array entry is a key and a 
link to a node; in external nodes, each array entry 
is a key and an item.

• The C union construct allows us to specify these 
two options in a single declaration.

• We are not keeping track of the ordered links 
between external nodes.
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B+-tree initialization

static link head;

static int H, N;

link NEW()

{ link x = malloc(sizeof *x);

x->m = 0;

return x;

}

void STinit(int maxN)

{ head = NEW(); H = 0; N = 0; }
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B+-tree initialization (cont’d)

• We initialize new nodes to be empty (count 
field m is set to 0).

• An empty B+-tree is a link  to an empty node. 

• Also, we maintain variables to track the 
number of items in the tree (N) and the 
height of the tree (H).

Data Structures and Programming 
Techniques

83



B+-tree search

Item searchR(link h, Key v, int H)

{ int j;

if (H == 0)

for (j = 0; j < h->m; j++)

if (eq(v, h->b[j].key))

return h->b[j].ref.item;

if (H != 0)

for (j = 0; j < h->m; j++)

if ((j+1 == h->m) || less(v, h->b[j+1].key))

return searchR(h->b[j].ref.next, v, H-1);

return NULLitem;

}

Item STsearch(Key v)

{ return searchR(head, v, H); }
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B+-tree search (cont’d)

• The implementation of search for B+-trees is based on a 
recursive function as usual.

• For internal nodes (positive height), we scan to find the 
first key larger than the search key and do a recursive call 
on the subtree referenced by the previous link. 

• Special consideration is given to the case when we reach 
the last key in the  node (j+1==h->m). In this case, the 
search key is larger than the last key and search continues 
with a recursive call on the subtree referenced by the link 
b[j].

• For external nodes (height 0), we scan to see whether or 
not there is an item with key equal to the search key.
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B+-tree insertion

void STinsert(Item item)

{ link t, u = insertR(head, item, H);

if (u == NULL) return;

t = NEW(); t->m = 2;

t->b[0].key = head->b[0].key;

t->b[0].ref.next = head;

t->b[1].key =  u->b[0].key;

t->b[1].ref.next = u;

head = t; H++;

}
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B+-tree insertion (cont’d)

• The function in the previous slide calls the recursive 
function insertR to do the insertion of the new key.

• If the returned value is NULL, then the insertion took 
place successfully and nothing more needs to be done.

• If the returned value is not NULL, then there has been 
an overflow in the previous root and a new root 
(variable t) with two children (links to head and u – u
is returned by insertR) needs to be created. This is 
the case where the sentinel key 000 of our example is 
inserted in t->b[0].key.
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B+-tree insertion (cont’d)

link insertR(link h, Item item, int H)

{ int i, j; Key v = key(item); entry x; link u;

x.key = v; x.ref.item = item;

if (H == 0)

for (j = 0; j < h->m; j++)

if (less(v, h->b[j].key)) break;

if (H != 0)

for (j = 0; j < h->m; j++)

if ((j+1 == h->m) || less(v, h->b[j+1].key))

{

u = insertR(h->b[j++].ref.next, v, H-1);

if (u == NULL) return NULL;

x.key = u->b[0].key; x.ref.next = u;

break;

}

for (i = ++(h->m); (i > j) && (i != M); i--)

h->b[i] = h->b[i-1];

h->b[j] = x;

if (h->m < M) return NULL; else return split(h);

}
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B+-tree insertion (cont’d)

• We insert new items by moving larger items to 
the right by one position as in insertion sort (this 
is done by the last for loop in the function).

• If the insertion overfills the node, we call split
to divide the node into two halves, and return the 
link to the new node.

• One level up in the recursion, this extra link 
causes a similar insertion in the parent internal 
node, which could also split, possibly propagating 
the insertion all the way up to the root.
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B+-tree insertion (cont’d)

link split(link h)

{ int j; link t = NEW();

for (j = 0; j < M/2; j++)

t->b[j] = h->b[M/2+j];

h->m = M/2; t->m = M/2;

return t;

}
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B+-tree insertion (cont’d)

• To split a node in a B+-tree , we create a new 
node, move the larger half of the keys to the 
new node, and then adjust counts in both 
nodes.

• The code on the previous slide assumes that 
M is even.That is, the maximum number of 
keys in a node is M-1, and when a node gets M
keys, we split it into two nodes with M/2 keys 
each.
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Exercise

• Write a function STdelete that deletes a 
key from a B+-tree.
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Readings

• M. T. Goodrich, R. Tamassia and Michael H. 
Goldwasser. Data Structures and Algorithms in 
Java. 6th edition. John Wiley and Sons, 2014.

– Section 15.3

• Sartaj Sahni. Δομές Δεδομένων, Αλγόριθμοι 
και Εφαρμογές στη C++. Εκδόσεις Τζιόλα.
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Readings (cont’d)

• You should also see the following chapter but 
notice that the data structure called B-tree 
there is essentially a B+-tree (but without the 
linking of the nodes on the bottom layer):

• R. Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 16.3

The presentation of B+-trees in the present

slides comes from that chapter.
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