
B-Trees

Manolis Koubarakis

Data Structures and Programming
Techniques

1

The Memory Hierarchy

Data Structures and Programming
Techniques

2

External Memory

Main (Internal) Memory

Cache

Registers

CPU

Bigger

Faster

External Memory

• So far we have assumed that our data
structures are stored in main memory.
However, if the size of a data structure is too
big then it will be stored on external memory
e.g., on a hard disk.

• Examples: the database of a bank, a database
of images, a database of videos etc.

Data Structures and Programming
Techniques

3

External Searching

• When we access data on a disk or another
external memory device, we perform external
searching (εξωτερική αναζήτηση).

• A disk access can be at least 100,000 to
1,000,000 times longer than a main memory
access.

• Thus, for data structures residing on disk, we
want to minimize disk accesses.

Data Structures and Programming
Techniques

4

(𝑎, 𝑏) Trees

• An (𝒂, 𝒃) tree, where 𝑎 and 𝑏 are integers, such
that 2 ≤ 𝑎 ≤

(𝑏+1)

2
, is a multi-way search tree 𝑇

with the following additional restrictions:
– Size property: Each internal node has at least 𝑎

children, unless it is the root, and at most 𝑏 children.
The root can have as few as 2 children.

– Depth property: All external nodes have the same
depth.

• A (2,4) tree is an (𝑎, 𝑏) tree with 𝑎 = 2 and 𝑏 =
4.

Data Structures and Programming
Techniques

5

Example (3,5) Tree

Data Structures and Programming
Techniques

6

a b

c f

g h i k l s t u xd e n p

j

m r

Proposition

• The height of an (𝑎, 𝑏) tree storing 𝑛 entries is

𝑂
log 𝑛

log 𝑎
.

• Proof?

Data Structures and Programming
Techniques

7

Proof

• Let 𝑇 be an (𝑎, 𝑏) tree storing 𝑛 entries and let ℎ be the height of 𝑇.
We justify the proposition by proving the following bounds on ℎ:

1

log 𝑏
log(𝑛 + 1) ≤ ℎ <

1

log 𝑎
log

𝑛+1

2
+1

• By the size and depth properties, the number 𝑛′′ of external nodes
of 𝑇 is at least 𝟐𝒂𝒉−𝟏 and at most 𝒃𝒉.

• To see the upper bound, consider that we can have 1 node at level
0, at most 𝑏 nodes at level 1, at most 𝑏2 nodes at level 2 etc. and at
most 𝑏ℎ at level ℎ (these are the external nodes).

• To see the lower bound, consider that we can have 1 node at level
0, at least 2 nodes at level 1, at least 2𝑎 nodes at level 2, at least
2𝑎2 at level 3 etc. and at least 2𝑎ℎ−1 nodes at level ℎ.

Data Structures and Programming
Techniques

8

Proof (cont’d)

• By an earlier proposition for multi-way trees, we have that 𝑛′′ = 𝑛 + 1
therefore

2𝑎ℎ−1 ≤ 𝑛 + 1 ≤ 𝑏ℎ

• Taking the logarithm of base 2 of each term, we get
ℎ − 1 log 𝑎 +1 ≤ log(𝑛 + 1) ≤ ℎ log 𝑏

• The lower bound we want to prove is obvious from the above right
inequality.

• The upper bound we want to prove is also easy to see using the left
inequality from above:

ℎ log 𝑎 − log 𝑎 + 1 ≤ log(𝑛 + 1)
ℎ log 𝑎 ≤ log(𝑛 + 1) + log 𝑎 − 1

ℎ ≤
1

log 𝑎
log

𝑛 + 1

2
+ 1 −

1

log 𝑎

ℎ <
1

log 𝑎
log

𝑛 + 1

2
+ 1

Data Structures and Programming
Techniques

9

B-Trees

• In an (𝑎, 𝑏) tree , we can select the parameters 𝑎 and 𝑏 so that
each tree node occupies a single disk block or page.

• This gives rise to a well-known external memory data structure
called the B-tree.

• A B-tree of order 𝒎 (B-δένδρο τάξης 𝒎) is an (𝑎, 𝑏) tree with 𝑎 =
⌈
𝑚

2
⌉ and 𝑏 = 𝑚.

• B-trees are used for indexing data stored on external memory.
• When we implement a B-tree, we choose the order 𝑚 so that the

(at most) 𝑚 children references and the (at most) 𝑚 − 1 keys
stored at a node can all fit into a single block.

• Nodes are at least half-full all the time due to the value of 𝑎.

Data Structures and Programming
Techniques

10

Example B-Tree of Order 𝑚 = 5

Data Structures and Programming
Techniques

11

a b

c f

g h i k l s t u xd e n p

j

m r

Proposition

• Let 𝑇 be a B-tree of order 𝑚 and height ℎ.

Let 𝑑 = ⌈
𝑚

2
⌉ and 𝑛 the number of entries in

the tree. Then, the following inequalities hold:

1. 2𝑑ℎ−1 − 1 ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ log𝑑
(𝑛+1)

2
+ 1

• Proof?

Data Structures and Programming
Techniques

12

Proof

• Let us prove (1) first.
• The upper bound follows from the fact that a B-

tree of order 𝑚 is a multi-way tree and the
respective proposition we proved for multi-way
trees.

• The lower bound follows from the inequality
2𝑎ℎ−1 ≤ 𝑛 + 1 which we used in the proof of the
previous proposition for 𝑎, 𝑏 trees.

• To prove (2), rewrite the inequalities of (1) and
then take logarithms with bases 𝑚 and 𝑑 for the
respective terms.

Data Structures and Programming
Techniques

13

Result

• From the right inequality of (2) in the previous
proposition, we have that the height of a B-

tree is 𝑶 𝐥𝐨𝐠𝒅 𝒏 where 𝑑 = ⌈
𝑚

2
⌉ , as we

would like it for a balanced search tree.

Data Structures and Programming
Techniques

14

Insertion into a B-tree

• The general method for insertion in a B-tree is as follows. First, a
search is made to see if the new key is in the tree. This search (if the
tree is truly new) will terminate in failure at a leaf.

• The new key is then added to the parent of the leaf node. If the
node was not previously full, then the insertion is finished.

• When a key is added to a full node, we have an overflow. Then this
node splits into two nodes on the same level, except that the
median key at position ⌈

𝑚

2
⌉ is not put into either of the two new

nodes, but is instead sent up to the tree to be inserted into the
parent node.

• When a search is later made through the tree, a comparison with
the median key will serve to direct the search into the proper
subtree.

Data Structures and Programming
Techniques

15

Example

• Let us see an example of insertions into an
initially empty B-tree of order 5.

Data Structures and Programming
Techniques

16

Insert a

Data Structures and Programming
Techniques

17

a

Insert g

Data Structures and Programming
Techniques

18

a g

Insert f

Data Structures and Programming
Techniques

19

a f g

Insert b

Data Structures and Programming
Techniques

20

a b f g

Insert k - Overflow

Data Structures and Programming
Techniques

21

a b f g k

Creation of a New Root Node

Data Structures and Programming
Techniques

22

a b g k

f

Split

Data Structures and Programming
Techniques

23

a b

f

g k

Insert d

Data Structures and Programming
Techniques

24

a b d

f

g k

Insert h

Data Structures and Programming
Techniques

25

a b d

f

g h k

Insert m

Data Structures and Programming
Techniques

26

a b d

f

g h k m

Insert j - Overflow

Data Structures and Programming
Techniques

27

a b d

f

g h j k m

Sent j to the Parent Node

Data Structures and Programming
Techniques

28

a b d

f

g h k m

j

Split

Data Structures and Programming
Techniques

29

a b d

f j

g h k m

Insert e

Data Structures and Programming
Techniques

30

a b d e

f j

g h k m

Insert s

Data Structures and Programming
Techniques

31

a b d e

f j

g h k m s

Insert i

Data Structures and Programming
Techniques

32

a b d e

f j

g h i k m s

Insert r

Data Structures and Programming
Techniques

33

a b d e

f j

g h i k m r s

Insert x - Overflow

Data Structures and Programming
Techniques

34

a b d e

f j

g h i k m r s x

r is Sent to the Parent Node

Data Structures and Programming
Techniques

35

a b d e

f j

g h i k m s x

r

Split

Data Structures and Programming
Techniques

36

a b d e

f j r

g h i k m s x

Insert c - Overflow

Data Structures and Programming
Techniques

37

a b c d e

f j r

g h i k m s x

c is Sent to the Parent

Data Structures and Programming
Techniques

38

a b d e

f j r

g h i k m s x

c

Split

Data Structures and Programming
Techniques

39

a b

c f j r

g h i k m s xd e

Insert l

Data Structures and Programming
Techniques

40

a b

c f j r

g h i k l m s xd e

Insert n

Data Structures and Programming
Techniques

41

a b

c f j r

g h i k l m n s xd e

Insert t

Data Structures and Programming
Techniques

42

a b

c f j r

g h i k l m n s t xd e

Insert u

Data Structures and Programming
Techniques

43

a b

c f j r

g h i k l m n s t u xd e

Insert p - Overflow

Data Structures and Programming
Techniques

44

a b

c f j r

g h i k l m n p s t u xd e

m is Sent to the Parent Node

Data Structures and Programming
Techniques

45

a b

c f j r

g h i k l n p s t u xd e

m

Split

Data Structures and Programming
Techniques

46

a b

c f j m r

g h i k l s t u xd e n p

Overflow at the Root

Data Structures and Programming
Techniques

47

a b

c f j m r

g h i k l s t u xd e n p

j is Sent up to a New Root

Data Structures and Programming
Techniques

48

a b

c f m r

g h i k l s t u xd e n p

j

Split

Data Structures and Programming
Techniques

49

a b

c f

g h i k l s t u xd e n p

j

m r

Final Tree

Data Structures and Programming
Techniques

50

a b

c f

g h i k l s t u xd e n p

j

m r

Deletion from a B-tree

• Let us now see how we delete a key from a B-tree.
• If the key to be deleted is in a node with only external

nodes as children, then it can be deleted immediately.
• If the key to be deleted is in an internal node with only

internal nodes as children, then its immediate
predecessor (or successor) under the natural order of
keys is guaranteed to be in a node with only external-
node children.

• Hence, we can promote the immediate predecessor or
successor into the position occupied by the key to be
deleted, and delete the key from the node with only
external-node children.

Data Structures and Programming
Techniques

51

Deletion from a B-tree (cont’d)

• If the node where the deletion takes place contains more than the
minimum number of keys, then one can be deleted with no further
action.

• If the node contains the minimum number, then we first look at its two
immediate siblings (or in the case of a node on the outside, one sibling).

• If one of these has more than the minimum number for entries, then we
can do a transfer operation: one child of the sibling is moved to the node
where the deletion takes place, one of the keys of the sibling is moved into
the parent node, and a key from the parent node is moved into the node
where the deletion takes place.

• If the immediate sibling has only the minimum number of keys then we
perform a fusion operation: the current node and its sibling are merged
into a new node and a key is moved from the parent into this new node.

• If this fusion step leaves the parent with too few entries, the process
propagates upward.

Data Structures and Programming
Techniques

52

Example

Data Structures and Programming
Techniques

53

a b

c f

g h i k l s t u xd e n p

j

m r

Delete h

Data Structures and Programming
Techniques

54

a b

c f

g i k l s t u xd e n p

j

m r

Delete r

Data Structures and Programming
Techniques

55

a b

c f

g i k l s t u xd e n p

j

m r

Find the Successor of r

Data Structures and Programming
Techniques

56

a b

c f

g i k l s t u xd e n p

j

m r

Promote the Successor of r – Delete
the Successor from its Place

Data Structures and Programming
Techniques

57

a b

c f

g i k l t u xd e n p

j

m s

Delete p

Data Structures and Programming
Techniques

58

a b

c f

g i k l t u xd e n p

j

m s

Transfer

Data Structures and Programming
Techniques

59

a b

c f

g i k l u xd e n

j

m

t
s

After the Transfer

Data Structures and Programming
Techniques

60

a b

c f

g i k l u xd e n s

j

m t

Delete d

Data Structures and Programming
Techniques

61

a b

c f

g i k l u xe n s

j

m t

d

Fusion

Data Structures and Programming
Techniques

62

a b

f

g i k l u xe n s

j

m t

c

After the Fusion – Underflow at f

Data Structures and Programming
Techniques

63

a b c e

f

g i k l u xn s

j

m t

Fusion

Data Structures and Programming
Techniques

64

a b c e

f

g i k l u xn s

j

m t

After the Fusion – Delete Root

Data Structures and Programming
Techniques

65

a b c e g i k l u xn s

f j m t

Final Tree

Data Structures and Programming
Techniques

66

a b c e g i k l u xn s

f j m t

Complexity of Operations in a B-tree

• As we have shown for multi-way trees, the
complexity of search, insertion and deletion in
a B-tree of order 𝑚 is 𝑂 ℎ𝑡 where 𝑂(𝑡) is the
time it takes to implement split, transfer or
fusion using the data structure implementing
each node of the tree.

• If we count only disk block operations then
𝑂 𝑡 = 𝑂(1). Therefore, the complexity of
each operation is 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒎

𝟐

𝒏).

Data Structures and Programming
Techniques

67

B+-trees

• A variation of B-trees called B+-trees is one of
the most important indexing structures used
in today’s file systems and relational database
management systems.

Data Structures and Programming
Techniques

68

B+-tree example

Data Structures and Programming
Techniques

69

B+-trees (cont’d)

• B+-trees are similar to B-trees. But in B+-trees, internal
nodes store only keys (they are index nodes) while
external nodes at the bottom layer store keys and
pointers to values (the pointers are the arrows and the
values are not shown).

• The external nodes in the bottom layer are ordered
and linked so that, not only equality queries (e.g., find
employees with salary 10,000), but also range queries
can be answered effectively (e.g., find employees with
salary between 10,000 and 20,000 euros).

• The linking of external nodes is not shown in the
previous figure.

Data Structures and Programming
Techniques

70

B+-trees (cont’d)

• Note another difference with B-trees: for
every interval of keys (𝑘, 𝑙) in an internal node
of a B+-tree, this interval is connected to the
node in the level below which holds keys
𝑚 such that 𝑘 ≤ 𝑚 < 𝑙.

Data Structures and Programming
Techniques

71

Examples of insertions in a B+-tree

Data Structures and Programming
Techniques

72

The insertion of key 773 causes a split in the root.

Notes

• Note the difference with B-trees: a copy of the
median key 601 goes up to form the new
root. The original key 601 remains in one of
the two nodes resulting from the split (the
one containing the greater keys) so that it can
be in an external node and be connected to its
value.

• Key 000 in the root is a sentinel key (a special
key smaller than all the others).

Data Structures and Programming
Techniques

73

Examples (cont’d)

Data Structures and Programming
Techniques

74

The keys 373, 524,
742 and 766 are
inserted.

Examples (cont’d)

Data Structures and Programming
Techniques

75

The insertion of
key 275 causes a
split in an
external node.

Examples (cont’d)

Data Structures and Programming
Techniques

76

The insertion of key
737 causes a split in
an external node.

Examples (cont’d)

Data Structures and Programming
Techniques

77

The 13 keys 574,
434, 641, 207,
001, 277, 061,
736, 526, 562,
017, 107, and
147 are inserted.

The insertion of
key 277 causes a
split in an
external node.

Examples (cont’d)

Data Structures and Programming
Techniques

78

The insertion of
key 526 causes a
split in an external
node and in the
root.

Examples (cont’d)

Data Structures and Programming
Techniques

79

The insertion
of key 107
causes a split
in an external
node.

B+-tree type definitions

typedef struct STnode* link;

typedef struct

{ Key key; union { link next; Item item; } ref; }

entry;

struct STnode { entry b[M]; int m; };

Data Structures and Programming
Techniques

80

B+-tree definitions (cont’d)

• Each node in a B+-tree contains an array (b) of
size M (the order of the tree). It also contains a
count (m) of the number of active entries in the
array.

• In internal nodes, each array entry is a key and a
link to a node; in external nodes, each array entry
is a key and an item.

• The C union construct allows us to specify these
two options in a single declaration.

• We are not keeping track of the ordered links
between external nodes.

Data Structures and Programming
Techniques

81

B+-tree initialization

static link head;

static int H, N;

link NEW()

{ link x = malloc(sizeof *x);

x->m = 0;

return x;

}

void STinit(int maxN)

{ head = NEW(); H = 0; N = 0; }

Data Structures and Programming
Techniques

82

B+-tree initialization (cont’d)

• We initialize new nodes to be empty (count
field m is set to 0).

• An empty B+-tree is a link to an empty node.

• Also, we maintain variables to track the
number of items in the tree (N) and the
height of the tree (H).

Data Structures and Programming
Techniques

83

B+-tree search

Item searchR(link h, Key v, int H)

{ int j;

if (H == 0)

for (j = 0; j < h->m; j++)

if (eq(v, h->b[j].key))

return h->b[j].ref.item;

if (H != 0)

for (j = 0; j < h->m; j++)

if ((j+1 == h->m) || less(v, h->b[j+1].key))

return searchR(h->b[j].ref.next, v, H-1);

return NULLitem;

}

Item STsearch(Key v)

{ return searchR(head, v, H); }

Data Structures and Programming
Techniques

84

B+-tree search (cont’d)

• The implementation of search for B+-trees is based on a
recursive function as usual.

• For internal nodes (positive height), we scan to find the
first key larger than the search key and do a recursive call
on the subtree referenced by the previous link.

• Special consideration is given to the case when we reach
the last key in the node (j+1==h->m). In this case, the
search key is larger than the last key and search continues
with a recursive call on the subtree referenced by the link
b[j].

• For external nodes (height 0), we scan to see whether or
not there is an item with key equal to the search key.

Data Structures and Programming
Techniques

85

B+-tree insertion

void STinsert(Item item)

{ link t, u = insertR(head, item, H);

if (u == NULL) return;

t = NEW(); t->m = 2;

t->b[0].key = head->b[0].key;

t->b[0].ref.next = head;

t->b[1].key = u->b[0].key;

t->b[1].ref.next = u;

head = t; H++;

}

Data Structures and Programming
Techniques

86

B+-tree insertion (cont’d)

• The function in the previous slide calls the recursive
function insertR to do the insertion of the new key.

• If the returned value is NULL, then the insertion took
place successfully and nothing more needs to be done.

• If the returned value is not NULL, then there has been
an overflow in the previous root and a new root
(variable t) with two children (links to head and u – u
is returned by insertR) needs to be created. This is
the case where the sentinel key 000 of our example is
inserted in t->b[0].key.

Data Structures and Programming
Techniques

87

B+-tree insertion (cont’d)

link insertR(link h, Item item, int H)

{ int i, j; Key v = key(item); entry x; link u;

x.key = v; x.ref.item = item;

if (H == 0)

for (j = 0; j < h->m; j++)

if (less(v, h->b[j].key)) break;

if (H != 0)

for (j = 0; j < h->m; j++)

if ((j+1 == h->m) || less(v, h->b[j+1].key))

{

u = insertR(h->b[j++].ref.next, v, H-1);

if (u == NULL) return NULL;

x.key = u->b[0].key; x.ref.next = u;

break;

}

for (i = ++(h->m); (i > j) && (i != M); i--)

h->b[i] = h->b[i-1];

h->b[j] = x;

if (h->m < M) return NULL; else return split(h);

}

Data Structures and Programming
Techniques

88

B+-tree insertion (cont’d)

• We insert new items by moving larger items to
the right by one position as in insertion sort (this
is done by the last for loop in the function).

• If the insertion overfills the node, we call split
to divide the node into two halves, and return the
link to the new node.

• One level up in the recursion, this extra link
causes a similar insertion in the parent internal
node, which could also split, possibly propagating
the insertion all the way up to the root.

Data Structures and Programming
Techniques

89

B+-tree insertion (cont’d)

link split(link h)

{ int j; link t = NEW();

for (j = 0; j < M/2; j++)

t->b[j] = h->b[M/2+j];

h->m = M/2; t->m = M/2;

return t;

}

Data Structures and Programming
Techniques

90

B+-tree insertion (cont’d)

• To split a node in a B+-tree , we create a new
node, move the larger half of the keys to the
new node, and then adjust counts in both
nodes.

• The code on the previous slide assumes that
M is even.That is, the maximum number of
keys in a node is M-1, and when a node gets M
keys, we split it into two nodes with M/2 keys
each.

Data Structures and Programming
Techniques

91

Exercise

• Write a function STdelete that deletes a
key from a B+-tree.

Data Structures and Programming
Techniques

92

Readings

• M. T. Goodrich, R. Tamassia and Michael H.
Goldwasser. Data Structures and Algorithms in
Java. 6th edition. John Wiley and Sons, 2014.

– Section 15.3

• Sartaj Sahni. Δομές Δεδομένων, Αλγόριθμοι
και Εφαρμογές στη C++. Εκδόσεις Τζιόλα.

Data Structures and Programming
Techniques

93

Readings (cont’d)

• You should also see the following chapter but
notice that the data structure called B-tree
there is essentially a B+-tree (but without the
linking of the nodes on the bottom layer):

• R. Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 16.3

The presentation of B+-trees in the present

slides comes from that chapter.

Data Structures and Programming
Techniques

94

	Slide 1: B-Trees
	Slide 2: The Memory Hierarchy
	Slide 3: External Memory
	Slide 4: External Searching
	Slide 5: open paren a. ,b close paren Trees
	Slide 6: Example (3,5) Tree
	Slide 7: Proposition
	Slide 8: Proof
	Slide 9: Proof (cont’d)
	Slide 10: B-Trees
	Slide 11: Example B-Tree of Order m equals 5
	Slide 12: Proposition
	Slide 13: Proof
	Slide 14: Result
	Slide 15: Insertion into a B-tree
	Slide 16: Example
	Slide 17: Insert a
	Slide 18: Insert g
	Slide 19: Insert f
	Slide 20: Insert b
	Slide 21: Insert k - Overflow
	Slide 22: Creation of a New Root Node
	Slide 23: Split
	Slide 24: Insert d
	Slide 25: Insert h
	Slide 26: Insert m
	Slide 27: Insert j - Overflow
	Slide 28: Sent j to the Parent Node
	Slide 29: Split
	Slide 30: Insert e
	Slide 31: Insert s
	Slide 32: Insert i
	Slide 33: Insert r
	Slide 34: Insert x - Overflow
	Slide 35: r is Sent to the Parent Node
	Slide 36: Split
	Slide 37: Insert c - Overflow
	Slide 38: c is Sent to the Parent
	Slide 39: Split
	Slide 40: Insert l
	Slide 41: Insert n
	Slide 42: Insert t
	Slide 43: Insert u
	Slide 44: Insert p - Overflow
	Slide 45: m is Sent to the Parent Node
	Slide 46: Split
	Slide 47: Overflow at the Root
	Slide 48: j is Sent up to a New Root
	Slide 49: Split
	Slide 50: Final Tree
	Slide 51: Deletion from a B-tree
	Slide 52: Deletion from a B-tree (cont’d)
	Slide 53: Example
	Slide 54: Delete h
	Slide 55: Delete r
	Slide 56: Find the Successor of r
	Slide 57: Promote the Successor of r – Delete the Successor from its Place
	Slide 58: Delete p
	Slide 59: Transfer
	Slide 60: After the Transfer
	Slide 61: Delete d
	Slide 62: Fusion
	Slide 63: After the Fusion – Underflow at f
	Slide 64: Fusion
	Slide 65: After the Fusion – Delete Root
	Slide 66: Final Tree
	Slide 67: Complexity of Operations in a B-tree
	Slide 68: B+-trees
	Slide 69: B+-tree example
	Slide 70: B+-trees (cont’d)
	Slide 71: B+-trees (cont’d)
	Slide 72: Examples of insertions in a B+-tree
	Slide 73: Notes
	Slide 74: Examples (cont’d)
	Slide 75: Examples (cont’d)
	Slide 76: Examples (cont’d)
	Slide 77: Examples (cont’d)
	Slide 78: Examples (cont’d)
	Slide 79: Examples (cont’d)
	Slide 80: B+-tree type definitions
	Slide 81: B+-tree definitions (cont’d)
	Slide 82: B+-tree initialization
	Slide 83: B+-tree initialization (cont’d)
	Slide 84: B+-tree search
	Slide 85: B+-tree search (cont’d)
	Slide 86: B+-tree insertion
	Slide 87: B+-tree insertion (cont’d)
	Slide 88: B+-tree insertion (cont’d)
	Slide 89: B+-tree insertion (cont’d)
	Slide 90: B+-tree insertion (cont’d)
	Slide 91: B+-tree insertion (cont’d)
	Slide 92: Exercise
	Slide 93: Readings
	Slide 94: Readings (cont’d)

