
Skip lists (Λίστες παράλειψης)

Data Structures and Programming
Techniques

1

Skip lists

• We will now consider an approach to developing a fast
implementation of symbol-table operations that seems at
first to be completely different from the tree-based
methods that we have been considering, but actually is
closely related to them.

• The approach is based on a randomized data structure
(τυχαιοκρατική ή πιθανοτική δομή δεδομένων) and is
almost certain to provide near-optimal performance for
the basic operations of the symbol table ADT.

• The data structure is called a skip list (λίστα παράλειψης).
It uses extra links in the nodes of a linked list to skip
through large portions of a list at a time during search.

Data Structures and Programming
Techniques

2

Example

Data Structures and Programming
Techniques

3

Notes

• The previous slide shows an example of a skip list
where every third node in an ordered linked list
contains an extra link that allow us to skip three nodes
in the list.

• We can use the extra links to speed up search: we scan
through the top list until we find the key or a node with
a smaller key with a link to a node with a larger key,
then use the links at the bottom to check the two
intervening nodes.

• This method speeds up search by a factor of 3, because
we examine only k/3 nodes in a successful search for
the k-th node on the list.

Data Structures and Programming
Techniques

4

Notes (cont’d)

• We can iterate this construction, and provide
a second extra link to be able to scan faster
through nodes with extra links, and so forth.

• Also, we can generalize the construction by
skipping a variable number of nodes with each
link. See the example on the next slide.

Data Structures and Programming
Techniques

5

Example

Data Structures and Programming
Techniques

6

Definition

• A skip list is an ordered linked list where each
node contains a variable number of links, with
the i-th links in the nodes implementing singly
linked lists that skip the nodes with fewer than
i links.

Data Structures and Programming
Techniques

7

Skip list definition

typedef struct STnode* link;

struct STnode

{ Item item; link* next; int sz; };

static link head, z;

static int N, lgN;

Data Structures and Programming
Techniques

8

Notes

• The element next of a skip list node is an array
of links.

• The element sz of a skip list node is the number
of links in the node.

• The variable N keeps the number of items in the
list.

• The variable lgN is the current maximum
number of levels in a node of the skip list.

• z is a sentinel node (we will see below how it is
used).

Data Structures and Programming
Techniques

9

Skip list initialization

link NEW(Item item, int k)

{ int i; link x = malloc(sizeof *x);

x->next = malloc(k*sizeof(link));

x->item = item; x->sz = k;

for (i = 0; i < k; i++) x->next[i] = z;

return x;

}

void STinit(int max)

{ N = 0; lgN = 0;

z = NEW(NULLitem, 0);

head = NEW(NULLitem, lgNmax);

}

Data Structures and Programming
Techniques

10

Notes

• Nodes in skip lists have an array of links, so NEW needs to allocate
the array and to set the links to the sentinel z.

• The constant lgNmax is the maximum number of levels that we
allow in the list. It might be set to 5 for tiny lists, or to 30 for huge
lists.

• An empty skip list is a header node with lgNmax links, all set to z,
with N and lgN set to 0.

• In other words, to initialize a skip list, we build a header node with
the maximum number of levels that we will allow in the list, with
pointers at all levels to the sentinel node z.

• The sentinel node z has item NULLitem with key maxKey which
is larger than all keys in the list (see later how it is used in search).

Data Structures and Programming
Techniques

11

Example

Data Structures and Programming
Techniques

12

Header node

Example: search for key L

Data Structures and Programming
Techniques

13

Searching in skip lists

• To search in a skip list for a given key, we scan
through the top list until we find the search key
or a node that has a link to a node with a larger
key. Then, we move to the second-from-the-top
list and iterate the same procedure.

• If the next node has a key smaller than the search
key the we continue our search in that node and
iterate the procedure.

• We continue in this way until the search key is
found or a search miss happens at the bottom
level.

Data Structures and Programming
Techniques

14

Searching in skip lists

Item searchR(link t, Key v, int k)

{ if (eq(v, key(t->item))) return t->item;

if (less(v, key(t->next[k]->item)))

{

if (k == 0) return NULLitem;

return searchR(t, v, k-1);

}

return searchR(t->next[k], v, k);

}

Item STsearch(Key v)

{ return searchR(head, v, lgN); }

Data Structures and Programming
Techniques

15

Notes

• For k equal to 0, this code is equivalent to code
for searching in singly linked lists.

• For general k, we move to the next node in the
list on level k if its key is smaller than the search
key and down to level k-1 if its key is not smaller.

• To simplify the code, we assume that all the lists
end with a sentinel node z that has item
NULLitem with key maxKey which is larger
than all keys in the list.

Data Structures and Programming
Techniques

16

Notes (cont’d)

• The previous code is also similar to binary
search or searching in binary search trees:

– We test whether the current node has the search
key.

– Then, if it does not, we compare the key in the
current node with the search key.

– We do one recursive call if it is larger and a
different recursive call if it is smaller.

Data Structures and Programming
Techniques

17

Insertion in skip lists

• The first task that we face when we want to insert
a new node into a skip list is to determine how
many links we want that node to have.

• All the nodes have at least one link; we can skip 𝑡
nodes at a time on the second level if one out of
every 𝑡 nodes has two links; iterating we come to
the conclusion that we want one out of 𝑡𝑗 nodes
to have at least 𝑗 + 1 links.

Data Structures and Programming
Techniques

18

Insertion in skip lists (cont’d)

• To make nodes with this property, we randomize, using
a function that returns 𝑖 with probability ൗ1 2𝑖

.

• Given 𝑖, we create a new node with 𝑖 links and insert it
into the skip list using the same recursive procedure as
we did for search.

• After we have reached level 𝑖, we link in the new node
each time that we move down a level.

• At that point, we have established that the item in the
current node is less than the search key and links (on
level 𝑖) to a node that is not less than the search key.

Data Structures and Programming
Techniques

19

Insertion in skip lists (cont’d)

void insertR(link t, link x, int k)

{ Key v = key(x->item);

if (less(v, key(t->next[k]->item)))

{

if (k < x->sz)

{ x->next[k] = t->next[k];

t->next[k] = x;

}

if (k == 0) return;

insertR(t, x, k-1); return;

}

insertR(t->next[k], x, k);

}

void STinsert(Key v)

{ insertR(head, NEW(v, randX()), lgN); N++; }

Data Structures and Programming
Techniques

20

Notes

• In the code of the previous slide, insertR is
called with a second argument a node with a
random number of links given by the function
randX.

• The function insertR works similarly to
searchR.

• When we reach the level k=x->sz-1, we link in
the new node each time that we move down a
level. This is done by the code inside the second
if statement where t is linked with x which is
linked with the node that used to come after t.

Data Structures and Programming
Techniques

21

Randomization

int randX()

{ int i, j, t = rand();

for (i = 1, j = 2; i < lgNmax; i++, j +=

j)

if (t > RAND_MAX/j) break;

if (i > lgN) lgN = i;

return i;

}

Data Structures and Programming
Techniques

22

Notes

• The function randX on the previous slide
generates a positive integer 𝑖 with probability

ൗ1 2𝑖
.

Data Structures and Programming
Techniques

23

Example

• The following slides show the construction of
a skip list for a sample set of keys when
inserted in random order.

Data Structures and Programming
Techniques

24

Example (cont’d)

Data Structures and Programming
Techniques

25

Example (cont’d)

Data Structures and Programming
Techniques

26

Proposition

• Search and insertion in a randomized skip list
with parameter 𝑡 require about

(𝑡 log𝑡 𝑁)

2
=

𝑡

2 log2 𝑡
log2𝑁

comparisons, on the average.

• Proof omitted.

• Note: in the code presented earlier, we used 𝑡 =
2.

Data Structures and Programming
Techniques

27

Proposition

• Skip lists have Τ𝑡 𝑡−1 𝑁 links on the average.

• Proof omitted.

Data Structures and Programming
Techniques

28

Deletion in skip lists

• The next slide presents an implementation of
the delete function, using the same recursive
scheme that we used for insert.

• To delete, we unlink the node from the lists at
each level (where we linked it during
insertion), and we free the node after
unlinking it from the bottom list (as opposed
to creating it before traversing the link for
insert).

Data Structures and Programming
Techniques

29

Deletion in skip lists (cont’d)

void deleteR(link t, Key v, int k)

{ link x = t->next[k];

if (!less(key(x->item), v))

{

if (eq(v, key(x->item)))

{ t->next[k] = x->next[k]; }

if (k == 0) { free(x); return; }

deleteR(t, v, k-1); return;

}

deleteR(t->next[k], v, k);

}

void STdelete(Key v)

{ deleteR(head, v, lgN); N--; }

Data Structures and Programming
Techniques

30

Example: delete H

Data Structures and Programming
Techniques

31

Skip lists vs. (2,4) trees

• Although skip lists are easy to conceptualize as
a systematic way to move quickly through a
linked list, it is also important to understand
that the underlying data structure is nothing
more than an alternative representation of a
balanced tree.

• For example, the next two slides show a (2,4)
tree and an equivalent skip list representation.

Data Structures and Programming
Techniques

32

(2,4) tree

Data Structures and Programming
Techniques

33

An equivalent skip list

Data Structures and Programming
Techniques

34

Readings

• The material in the present slides comes
verbatim from the following source:

– R. Sedgewick. Αλγόριθμοι σε C. 3η Αμερικανική
Έκδοση. Εκδόσεις Κλειδάριθμος.

• Κεφάλαιο 13.5

Data Structures and Programming
Techniques

35

	Slide 1: Skip lists (Λίστες παράλειψης)
	Slide 2: Skip lists
	Slide 3: Example
	Slide 4: Notes
	Slide 5: Notes (cont’d)
	Slide 6: Example
	Slide 7: Definition
	Slide 8: Skip list definition
	Slide 9: Notes
	Slide 10: Skip list initialization
	Slide 11: Notes
	Slide 12: Example
	Slide 13: Example: search for key L
	Slide 14: Searching in skip lists
	Slide 15: Searching in skip lists
	Slide 16: Notes
	Slide 17: Notes (cont’d)
	Slide 18: Insertion in skip lists
	Slide 19: Insertion in skip lists (cont’d)
	Slide 20: Insertion in skip lists (cont’d)
	Slide 21: Notes
	Slide 22: Randomization
	Slide 23: Notes
	Slide 24: Example
	Slide 25: Example (cont’d)
	Slide 26: Example (cont’d)
	Slide 27: Proposition
	Slide 28: Proposition
	Slide 29: Deletion in skip lists
	Slide 30: Deletion in skip lists (cont’d)
	Slide 31: Example: delete H
	Slide 32: Skip lists vs. (2,4) trees
	Slide 33: (2,4) tree
	Slide 34: An equivalent skip list
	Slide 35: Readings

