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Search

• The retrieval of a particular piece of 
information from large volumes of previously 
stored data is a fundamental operation, called 
search (αναζήτηση).

• Search is an important operation in many 
applications e.g., bank information systems, 
airline information systems, Web search etc.
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The ADT Symbol Table

• A symbol table (πίνακας συμβόλων) is a data structure of items with keys 
(αντικείμενα με κλειδιά) that supports the following operations:
– Initialize a symbol table to be empty.
– Count the number of items in a symbol table.
– Insert a new item.
– Search for an item (or items) having a given key.
– Delete a specified item.
– Select the 𝑘-th smallest item in a symbol table.
– Sort the symbol table (visit all items in order of their keys).

• Items can be thought of as pairs (key, value).

• If keys are distinct, symbol tables are also called maps. If they are not, 
they are also called dictionaries (λεξικά).
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Example

• We can use a symbol table to represent 
information about students in a university.

• The key can be their student number.
• The item can also contain other information 

about students (the value for the key): name, 
address, year of study, courses they have taken 
etc.

• Keys can be used to find information about a 
student, update this information etc.

• Since student numbers are distinct are symbol 
table is a map.
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A Symbol Table Interface

void STinit(int); 

int STcount();

void STinsert(Item);

Item STsearch(Key);

void STdelete(Item);

Item STselect(int);

void STsort(void (*visit)(Item));
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Key-Indexed Search

• Suppose that key values are distinct small 
numbers (e.g., numbers less than 𝑀).

• The simplest symbol table implementation in this 
case is based on storing the items in an array 
indexed by the keys.

• The algorithms implementing the operations of 
the symbol table interface are straightforward.

• Insertion and search take 𝑂(1) time while select 
takes 𝑂(𝑀) time.
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Sequential Search

• If the key values are from a large range, one simple 
approach for a symbol table implementation is to store 
the items contiguously in an array, in order according 
to the keys.

• The algorithms implementing the operations of the 
symbol table interface in this case are also 
straightforward.

• Insertion and search take 𝑂 𝑛  time where 𝑛 is the 
number of items.

• Select takes 𝑂 1  time.
• If we use an ordered linked list, insertion, search and 

select all take 𝑂 𝑛  time.
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Binary Search

• In the array implementation of sequential 
search, we can reduce significantly the search 
time for a large set of items by using a search 
procedure called binary search (δυαδική 
αναζήτηση) which is based on the divide-and-
conquer paradigm.
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Binary Search

• The problem to be addressed in binary searching is to find 
the position of a search key K in an ordered array A[0:n-
1] of distinct keys arranged in ascending order:

    A[0] < A[1] < … < A[n-1].
• The algorithm chooses the key in the middle of A[0:n-
1], which is located at A[Middle], where 
Middle=(0+(n-1))/2, and compares the search key K 
and A[Middle].

• If K==A[Middle], the search terminates successfully.
• If K < A[Middle] then further search is conducted 

among the keys to the left of A[Middle].
• If K > A[Middle] then further search is conducted 

among the keys to the right of A[Middle].
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Iterative Binary Search

int BinarySearch(Key K)

{

    int L, R, Midpoint;

    /* Initializations */

    L=0;

    R=n-1;

    /* While the interval L:R is  non-empty, test key K against the middle key */

    while (L<=R){

      Midpoint=(L+R)/2;

      if (K==A[Midpoint]){

        return Midpoint;

      } else if (K > Midpoint) {

        L=Midpoint+1;

      } else {

        R=Midpoint-1;

      }

    }

    /* If the search interval became empty, key K was not found */

    return -1;

}
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Recursive Binary Search

int BinarySearch (Key K, int L, int R)

{

   /* To find the position of the search key K in the subarray 

      A[L:R]. Note: To search for K in A[0:n-1], the initial call 

      is BinarySearch(K, 0, n-1) */

   int Midpoint;

   Midpoint=(L+R)/2;

   

   if (L>R){

     return -1;

   } else if (K==A[Midpoint]){

     return Midpoint;

   } else if (K > A[Midpoint]){

     return BinarySearch(K, Midpoint+1, R);

   } else {

     return BinarySearch(K, L, Midpoint-1);

   }

}
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Complexity

• Let us compute the running time of recursive binary 
search.

• We call an entry of our array a candidate if, at the 
current stage of the algorithm, we cannot rule out that 
this entry has key equal to K.

• We observe that a constant amount of primitive 
operations are executed at each recursive call of 
function BinarySearch.

• Hence the running time is proportional to the number 
of recursive calls performed.

• Moreover, the number of remaining candidates is 
reduced by at least half with each recursive call.
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Complexity (cont’d)

• Initially, the number of candidate entries is 𝑛. After the 
first call to BinarySearch, it is at most 

𝑛

2
. After the 

second call, it is at most 
𝑛

4
 and so on.

• In general, after the 𝑖-th call to BinarySearch, the 
number of candidate entries is at most 

𝑛

2𝑖.

• In the worst case (unsuccessful search), the recursive 
calls stop when there are no more candidate entries. 
Hence, the maximum number of recursive calls 
performed, is the smallest integer 𝑚 such that 

𝑛

2𝑚 < 1.
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Complexity (cont’d)

• Equivalently, 2𝑚 > 𝑛.

• Taking logarithms in base 2, we have 𝑚 >
log 𝑛 .

• Thus, we have 𝑚 = log 𝑛 +1 which implies 
that the complexity of recursive 
BinarySearch is 𝑶(𝐥𝐨𝐠 𝒏).

• The complexity of iterative BinarySearch 
is also 𝑶(𝐥𝐨𝐠 𝒏).
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Binary Search Trees

• To overcome the problem that insertions are expensive, we 
use an explicit tree structure as the basis for symbol table 
implementation.

• Binary search trees (δένδρα δυαδικής αναζήτησης) are an 
excellent data structure for representing sets whose 
elements are ordered by some linear order.

• A linear order (γραμμική διάταξη) < on a set 𝑆 satisfies 
two properties:
– For any 𝑎, 𝑏 ∈ 𝑆, exactly one of 𝑎 < 𝑏, 𝑎 = 𝑏 or 𝑎 > 𝑏 is true.
– For all 𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎 < 𝑏 and 𝑏 < 𝑐 then 𝑎 < 𝑐 (transitivity).

• Examples of sets with a natural linear order are integers, 
floats, characters and strings in C.
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Definition

• A binary search tree (BST) is a binary tree that 
has a key associated with each of its internal 
nodes, and it also has the following property:

– For each node N: keys in the left subtree of N ≤
 key K in node N ≤ keys in the right subtree of N

• The above condition is called the binary 
search tree property.
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Duplicate Keys

• The previous definition allows duplicate keys, 
this definition of BSTs can be used to 
implement dictionaries. If we want to use BSTs 
to implement maps, then we have to change 
the ≤ to < in the above definition.
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Example
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Example (for the same set)
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Example

ORY

ZRHJFK

BRU MEX

ARN DUS ORD

NRTGLA
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Type Definitions for BSTs

• The following statements define the data structure for 
a BST:

typedef struct STnode* link;

struct STnode { Item item; link l, r; int N; };

• Each node in a BST contains an item item (with a key), 
a left link l, a right link r and an integer N which 
counts how many nodes there are in the tree (or 
subtree).

• Items, their data types and operations on them can be 
defined in an appropriate interface file Item.h.
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The Interface File Item.h

typedef int Item;

typedef int Key;

#define NULLitem -1 /* NULLitem is a constant */

#define key(A) (A)

#define less(A, B) (key(A) < key(B))

#define eq(A, B) (!less(A, B) && !less(B, A))

Item ITEMrand(void);

int ITEMscan(Item *);

void ITEMshow(Item);
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Notes

• The previous interface file assumes that items consist 
just of keys. This assumption can be changed.

• NULLitem is a constant to be returned when a BST 
does not contain a key.

• The function ITEMrand returns a random item.
• The function ITEMscan reads an item from the 

standard input.
• The function ITEMshow prints an item on the 

standard output.
• less and eq are macros that we will be using in our 

code (they could be defined as functions too).
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An Implementation of the Item 
Interface

#include <stdio.h>

#include <stdlib.h>

#include "Item.h"

int ITEMrand(void)

         { return rand(); }

int ITEMscan(int *x)

         { return scanf("%d", x); }

void ITEMshow(int x)

         { printf("%5d ", x); }
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The Operations Stinit and 
STcount

static link head, z;

link NEW(Item item, link l, link r, int N)

  { link x = malloc(sizeof *x);

    x->item = item; x->l = l; x->r = r; x->N = N;

    return x;

  }

void STinit()

  { head = (z = NEW(NULLitem, NULL, NULL, 0)); }

int STcount() { return head->N; }
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Notes

• head is a static pointer variable that points to 
the root of the tree.

• z is a static pointer variable which points to a 
dummy node representing empty trees or 
external nodes.

• NEW is a function which creates a new tree 
node and returns a pointer to it.
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External Nodes

• In our figures external nodes are represented by small rectangles.

• In our code external nodes are implemented by structures of type 
STnode with elements as shown below.
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The Pointer Variable z

• There is only one dummy (external) node in 
the implementation, although in our figures 
we will show many such nodes.

• Pointer variable z points to that node.
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Example
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The Result of STinit()
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Important

• If we did not have these dummy nodes to 
denote external nodes both our theoretical 
discussions and our implementations would 
be more complex.
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Searching for a Key Recursively

• To search for a key K in a BST T, we compare K to 
the key Kr of the root of T.

• If K == Kr, the search terminates successfully.

• If K < Kr, the search continues recursively in the 
left subtree of T.

• If K > Kr, the search continues recursively in the 
right subtree of T.

• If T is the empty tree, we have a search miss and 
return NULLitem (which we defined to be -1).
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The Function STsearch

Item searchR(link h, Key v)

  { Key t = key(h->item);

    if (h == z) return NULLitem;

    if eq(v, t) return h->item;

    if less(v, t) return searchR(h->l, v);

             else return searchR(h->r, v);

  }

  

Item STsearch(Key v)

  { return searchR(head, v); }
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Notes

• The function STsearch calls a recursive 
function searchR which does the work.

• At each step of searchR, we are guaranteed 
that no parts of the tree other than the current 
subtree can contain items with the search key.

• Just as the size of the interval in binary search 
shrinks by a little more than half on each 
iteration, the current subtree in binary tree 
search is smaller than the previous (by about 
half, ideally).
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Inserting a Key

• An essential feature of BSTs is that insertion is 
as easy to implement as search.
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Inserting a Key Recursively

• To insert an item with key K in a BST T, we 
compare K to the key Kr of the root of T.

• If K < Kr, the algorithm continues recursively 
in the left subtree of T.

• If K ≥ Kr, the algorithm continues recursively 
in the right subtree of T.

• If T is the empty tree, then the item with key K 
is inserted there.
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Inserting a Key Recursively (cont’d)

• If we disallow duplicate keys, the insertion 
algorithm is as follows.

• If K = Kr, the key is already present in T and the 
algorithm stops.

• If K < Kr, the algorithm continues recursively in 
the left subtree of T.

• If K > Kr, the algorithm continues recursively in 
the right subtree of T.

• If T is the empty tree, then the item with key K is 
inserted there.
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Example

• Let us insert keys e, b, d, f, a, g, c into an 
initially empty tree in the order given.
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Initial Empty Tree
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After Inserting e

e
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After Inserting b

e

b

Data Structures and Programming 
Techniques

41



After Inserting d

e

b

d
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After Inserting f

e

b

d

f
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After Inserting a

e

b

d

f

a
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After Inserting g
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d

f

a g
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After Inserting c

e

b

d

f

a g

c
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Example

• Let us now insert the keys e, b, d, e, f, e in an 
empty tree. 

• Now we have duplicate keys.
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Initial Empty Tree
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After Inserting e

e
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After Inserting b

e

b
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After Inserting d

e

b

d
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After Inserting e

e

b

d

e
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After Inserting f

e

b

d

e

f
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After Inserting e
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d

e
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Comments

• We see that in the case of duplicate keys, these 
keys appear scattered throughout the BST.

• However, duplicate keys do all appear on the 
appropriate search path for the key from the root 
to the external node, so they can be found by the 
search algorithm.

• The search algorithm implemented by 
STsearch will return the item corresponding 
to the first duplicate key in this path.
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The Function STinsert

link insertR(link h, Item item)

  { Key v = key(item), t = key(h->item);

    if (h == z) return NEW(item, z, z, 1);

    if less(v, t)

         h->l = insertR(h->l, item);

    else h->r = insertR(h->r, item);

    (h->N)++; return h;

  }

  

void STinsert(Item item)

  { head = insertR(head, item); }
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Notes

• The function STinsert calls the recursive 
function insertR which does the work.
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Inserting in the Natural Order

• Let us now revisit the previous example and 
insert the same keys in their natural order a, 
b, c, d, e, f, g.

• Then the tree constructed is a chain 
(αλυσίδα).
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Insert a, b, c, d, e, f, g

b

a

g

c

f

e

d
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Inserting in the Natural Order (cont’d)

• As we will see below, chains result in 
inefficient searching. So, we should never 
insert keys in their natural order in a BST.

• Similar things hold if keys are in reverse order 
or if they are nearly ordered.
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Example

e

b

d

f

a g

c
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Inorder Traversal of BSTs

• If we traverse a BST using the inorder 
traversal, then the keys of the nodes come out 
sorted in their natural order.

• This gives rise to a sorting algorithm called 
TreeSort: insert the keys one by one in a BST, 
then traverse the tree inorder.

• The function STsort shown in the next slide 
implements traverses a tree in inorder.
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The Function STsort

void sortR(link h, void (*visit)(Item))  

   {    

        if (h == z) return;    

        sortR(h->l, visit);    

        visit(h->item);    

        sortR(h->r, visit);  

   }

void STsort(void (*visit)(Item))  

   { sortR(head, visit); }
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Notes

• The second parameter of sortR is visit 
which is a pointer to a function with return 
type void declared by 

      void (*visit)(Item).

• sortR can then be called with the name of a 
function as second argument; this is the 
function that we want to apply to each node 
of the tree when we visit it.
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Example of a Symbol Table Client

#include <stdio.h>

#include <stdlib.h>

#include "Item.h"

#include "ST.h"

void main(int argc, char *argv[])

 { int N, maxN = atoi(argv[1]), sw = atoi(argv[2]);

    Key v; Item item;

    STinit(maxN);

    for (N = 0; N < maxN; N++)

      {

        if (sw) v = ITEMrand();

          else if (ITEMscan(&v) == EOF) break;

        if (STsearch(v) != NULLitem) continue;

        key(item) = v;

        printf("Inserting item %d\n", item);

        STinsert(item);

      }

    STsort(ITEMshow); printf("\n");

    printf("%d keys\n", N);

    printf("%d distinct keys\n", STcount());

 }
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Notes

• The previous client program generates 
randomly or reads from the standard input at 
most MaxN integers, inserts them in a BST one 
by one and, then, prints them in sorted order 
using the inorder traversal of the tree.

• It also prints the number of keys given and the 
number of distinct keys encountered.
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Rotations

• Rotation (περιστροφή) is a fundamental  
operation on trees.

• Rotation allows us to interchange the role of the 
root node of the rotation and one of the root’s 
children in a tree while still preserving the BST 
ordering among the keys in the nodes.

• Rotation is important because it helps us make 
our trees balanced as we will see in forthcoming 
lectures.

• We will define right rotation and left rotation.
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Example: Right Rotation at Node S
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Example: Right Rotation at Node S
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Example: Right Rotation at Node S
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Example: Right Rotation at Node S
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Example: Right Rotation at Node S
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Right Rotation

• A right rotation involves the root node of the rotation and its left 
child.

• The rotation puts the root on the right, essentially reversing the 
direction of the left link of the root.

• Before the rotation, the left link of the root points from the root to 
the left child; after the rotation, it points from the old left child (the 
new root) to the old root (the right child of the new root).

• The tricky part, which makes the rotation work, is to copy the right 
link of the left child to be the left link of the old root. This link 
points to all the nodes with keys between the two nodes involved 
in the rotation.

• Finally, the link to the old root has to be changed to point to the 
new root.
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Left Rotation

• A left rotation involves the root node of the 
rotation and its right child.

• The description of left rotation is identical to 
the description of the right rotation with 
“right” and “left” interchanged everywhere.
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Example: Left Rotation at Node B
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Example: Left Rotation at Node B
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Example: Left Rotation at Node B
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Example: Left Rotation at Node B
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Example: Left Rotation at Node B
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Functions for Rotation

link rotR(link h)  

{ 

link x = h->l; h->l = x->r;

x->r = h; return x; 

}

link rotL(link h)  

{ 

link x = h->r; h->r = x->l;

x->l = h; return x; 

}
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Insertion at the Root

• In the implementation of insertion presented 
earlier, every new node inserted goes somewhere 
at the bottom of the tree.

• We can consider an alternative insertion method 
where we insist that each new node is inserted 
at the root.

• In practice, the advantage of the root insertion 
method is that recently inserted keys are near the 
top. This can be useful in some applications.
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Insertion at the Root (cont’d)

• The rotation operations provide a 
straightforward implementation of root 
insertion: 

– Recursively insert the new item into the 
appropriate subtree, leaving it, when the 
recursion is complete, at the root of that tree.

– Then, rotate repeatedly to make it the root of the 
tree.

Data Structures and Programming 
Techniques

82



Example: Root Insertion of G
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Example: G is inserted
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Example: after right rotation at H
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Example: after right rotation at R
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Example: after left rotation at E
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Example: after right rotation at S
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Example: after left rotation at A
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Functions for Root Insertion

link insertT(link h, Item item)

  { Key v = key(item);

    if (h == z) return NEW(item, z, z, 1);

    if (less(v, key(h->item)))      

      { h->l = insertT(h->l, item); h = rotR(h); }    

    else      

      { h->r = insertT(h->r, item); h = rotL(h); }    

    return h;  

  }

void STinsert(Item item)  

  { head = insertT(head, item); }
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Selecting the 𝑘-th Smallest Key

• To implement select, we use a recursive procedure.
• We use zero-based indexing. So, when 𝑘 = 3, we will be 

looking for the item with the fourth smallest key.
• To find the item with the 𝑘-the smallest key, we check the 

number of nodes in the left subtree. 
• If there are 𝑘 nodes there, we return the item at the root.
• If the left subtree has more than 𝑘 nodes, we recursively 

look for the item with the 𝑘-th smallest key there.
• If none of the above conditions holds then the left subtree 

has 𝑡 items with 𝑡 < 𝑘, and the item with the 𝑘-th smallest 
key is the item with the (𝑘 − 𝑡 − 1)-th smallest key in the 
right subtree.
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Functions for Selection

Item selectR(link h, int k)

  { 

    int t;

    if (h == z) return NULLitem;

    t = (h->l == z) ? 0 : h->l->N;

    if (t > k) return selectR(h->l, k);

    if (t < k) return selectR(h->r, k-t-1);

    return h->item;

  }

Item STselect(int k)  

  { return selectR(head, k); }
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Partition

• We can change the implementation of the 
select operation into a partition operation 
(διαμέριση), which rearranges the tree to put 
the item with the 𝒌-th smallest key at the 
root.

• If we recursively put the desired node at the 
root of one of the subtrees, we can then make 
it the root of the whole tree with a rotation.
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Functions for Partition

link partR(link h, int k)  

{ 

int t = h->l->N;    

if (t > k )      

{ h->l = partR(h->l, k); 

h = rotR(h); }    

if (t < k )      

{ h->r = partR(h->r, k-t-1); 

h = rotL(h); }

return h;  

}
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Deletion from a BST

• An algorithm for deleting a key K from a BST T 
is the following.

• If K is in an internal node with only (dummy) 
external nodes as children, then delete it and 
replace the link to the deleted node by a link 
to a new (dummy) external node.
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Example: Delete 7
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Result
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Deletion from a BST (cont’d)

• If K is an internal node with a single (dummy) 
external node as its child,  then delete it and 
adjust the link from its parent to point to its 
non-empty subtree.
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Example: Delete 5
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Result
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Deletion from a BST (cont’d)

• If K is in a node N with both a left and a right 
non-empty subtree then delete it and 
combine the two subtrees into one tree. But 
how?

Data Structures and Programming 
Techniques

101



Deletion from a BST (cont’d)

• Various options are available.
• One simple option is to find the lowest-valued key K’ 

in the descendants of the right child and replace K by 
K’.

• This key is in a node N’ which is the successor of N 
under the inorder traversal of the tree.

• This node can be found by starting at the right child of 
N and then following left child pointers until we find a 
node with a left child which is an external node.

• Of course, we also need to remove node N’ from the 
tree. This can be done easily since this node has at 
most one (right) child.
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Example: Delete 10
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The lowest-valued key among the descendants of 14 is 12. This key will replace 10
in the tree and its current node will be removed.



Result
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Deletion from a BST (cont’d)

• Notice that the highest-valued key among the 
descendants of the left child would do as well.

• This key is in a node N’’ which is the 
predecessor of N under the inorder traversal 
of the tree.
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Example: Delete 10
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Alternatively, we can replace 10 with the highest-valued key among the 
descendants of its left child. This is the key 7. 



Alternative Result
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Functions for Deletion

link joinLR(link a, link b)  

  {  

     if (b == z) return a;  

     b = partR(b, 0); 

     b->l = a;    

     return b;  

   }

link deleteR(link h, Key v)  

  { 

     link x; 

     Key t = key(h->item);

     if (h == z) return z;

     if (less(v, t)) h->l = deleteR(h->l, v);    

     if (less(t, v)) h->r = deleteR(h->r, v);

     if (eq(v, t)) { x = h; h = joinLR(h->l, h->r); free(x); }

     return h;  

   }

void STdelete(Key v)  { head = deleteR(head, v); }
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Notes

• The function deleteR implements the algorithm we 
discussed in a recursive way.

• The function joinLR combines the two subtrees into 
a new tree by utilizing the partition function partR 
we presented earlier for making the smallest key of the 
right subtree as the new root.

• joinLR searches in the right subtree of the deleted 
node, finds its smallest element (call part(b,0)), 
makes this element the root of the new tree and 
attaches to this root, as left child, the left subtree of 
the deleted node (statements b->l=a and return 
b).
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The Join Operation (Ένωση)

• Let us now present an algorithm that merges two 
BSTs into one BST. The algorithm is as follows.

• First, we delete the root of the first BST and insert 
it into the second BST using root insertion.

• This operation gives us two subtrees with keys 
known to be smaller than this root, and two 
subtrees with keys known to be larger than this 
root.

• We recursively combine the former pair to be the 
left subtree of the root and the latter to be the 
right subtree of the root.
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Functions for Join

link STjoin(link a, link b)  

  {    

    if (b == z) return a;

    if (a == z) return b;

    b = insertT(b, a->item);

    b->l = STjoin(a->l, b->l);

    b->r = STjoin(a->r, b->r);

    free(a);

    return b;

  }
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Complexity Analysis

• The algorithm for searching in a BST executes 
a constant number of primitive operations for 
each recursive call.

• SearchR is called on the nodes of a path 
that starts at the root and goes down one 
level at a time.

• Thus, the number of such nodes is bounded 
by 𝒉 + 𝟏 where ℎ is the height of the tree.
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Complexity Analysis (cont’d)

• The best case for searching in a BST is the case 
when the leaves of the tree are on at  most 
two adjacent levels. We will call these trees 
balanced (ισορροπημένα ή ισοζυγισμένα).

• In this case searching takes 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒏) 
time where ℎ is the height of the BST and 𝑛 is 
the number of nodes.

• Proof?
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Best Case Examples
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Best Case Examples (cont’d)
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Best Case Examples (cont’d)
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Complexity Analysis (cont’d)

• The worst case for searching in a BST is the 
case when the trees are as deep and skinny as 
possible. These are trees with exactly one 
internal node on each level.

• In this case searching takes 𝑶 𝒉 = 𝑶(𝒏) 
time where ℎ is the height of the tree and 𝑛 is 
the number of nodes.
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Worst Case Example (Left-linear Tree)
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Worst Case Example (Zig-zag)
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Worst Case Example (Right-linear)
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Complexity Analysis (cont’d)

• The average case for searching in a BST is the 
case when the tree is one from the set of all 
equally likely binary search trees, and all keys 
are equally likely to be searched. 

• For example, consider a BST built from 𝒏 
random keys.

• In this case searching takes 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒏) 
time where ℎ is the height of the tree and 𝑛 is 
the number of nodes.
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Complexity Analysis (cont’d)

• The complexity of insertion in a binary search 
tree is the same as the complexity of search 
given that it makes the same comparisons plus 
changing a few pointers.

• The complexity of deletion is also the same.
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Complexity Analysis (cont’d)

• The complexity of join is 𝑶(𝒏) where 𝑛 is the 
number of nodes in the tree.

• This follows from the fact that each node can 
be the root node on a recursive call at most 
once.
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Discussion

• Balanced BSTs have very good search times 
(𝑂(log 𝑛)). But if the tree gets out of balance 
then the performance can degrade to 𝑂 𝑛 .

• How much does it cost to keep a BST 
balanced?
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Example
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Inserting Key 1
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Rebalancing

• Note that every key was moved to a new 
node, hence rebalancing can take 𝑂(𝑛) time.
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1 3 5

6

7
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Question

• Is there a way to achieve 𝑂(log 𝑛) search time 
while also achieving 𝑂(log 𝑛) insertion and 
deletion time in the worst case?

• In the following lectures, we will answer this 
question positively by introducing special 
kinds of BSTs that have this property: AVL 
trees, 2-4 trees and red-black trees.
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C.

– Chapter 5. Sections 5.6 and 6.5.

– Chapter 9. Section 9.7.

• R. Sedgewick. Αλγόριθμοι σε C.

– Κεφ. 12.
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