
Binary Search Trees

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Search

• The retrieval of a particular piece of
information from large volumes of previously
stored data is a fundamental operation, called
search (αναζήτηση).

• Search is an important operation in many
applications e.g., bank information systems,
airline information systems, Web search etc.

Data Structures and Programming
Techniques

2

The ADT Symbol Table

• A symbol table (πίνακας συμβόλων) is a data structure of items with keys
(αντικείμενα με κλειδιά) that supports the following operations:
– Initialize a symbol table to be empty.
– Count the number of items in a symbol table.
– Insert a new item.
– Search for an item (or items) having a given key.
– Delete a specified item.
– Select the 𝑘-th smallest item in a symbol table.
– Sort the symbol table (visit all items in order of their keys).

• Items can be thought of as pairs (key, value).

• If keys are distinct, symbol tables are also called maps. If they are not,
they are also called dictionaries (λεξικά).

Data Structures and Programming
Techniques

3

Example

• We can use a symbol table to represent
information about students in a university.

• The key can be their student number.
• The item can also contain other information

about students (the value for the key): name,
address, year of study, courses they have taken
etc.

• Keys can be used to find information about a
student, update this information etc.

• Since student numbers are distinct are symbol
table is a map.

Data Structures and Programming
Techniques

4

A Symbol Table Interface

void STinit(int);

int STcount();

void STinsert(Item);

Item STsearch(Key);

void STdelete(Item);

Item STselect(int);

void STsort(void (*visit)(Item));

Data Structures and Programming
Techniques

5

Key-Indexed Search

• Suppose that key values are distinct small
numbers (e.g., numbers less than 𝑀).

• The simplest symbol table implementation in this
case is based on storing the items in an array
indexed by the keys.

• The algorithms implementing the operations of
the symbol table interface are straightforward.

• Insertion and search take 𝑂(1) time while select
takes 𝑂(𝑀) time.

Data Structures and Programming
Techniques

6

Sequential Search

• If the key values are from a large range, one simple
approach for a symbol table implementation is to store
the items contiguously in an array, in order according
to the keys.

• The algorithms implementing the operations of the
symbol table interface in this case are also
straightforward.

• Insertion and search take 𝑂 𝑛 time where 𝑛 is the
number of items.

• Select takes 𝑂 1 time.
• If we use an ordered linked list, insertion, search and

select all take 𝑂 𝑛 time.

Data Structures and Programming
Techniques

7

Binary Search

• In the array implementation of sequential
search, we can reduce significantly the search
time for a large set of items by using a search
procedure called binary search (δυαδική
αναζήτηση) which is based on the divide-and-
conquer paradigm.

Data Structures and Programming
Techniques

8

Binary Search

• The problem to be addressed in binary searching is to find
the position of a search key K in an ordered array A[0:n-
1] of distinct keys arranged in ascending order:

 A[0] < A[1] < … < A[n-1].
• The algorithm chooses the key in the middle of A[0:n-
1], which is located at A[Middle], where
Middle=(0+(n-1))/2, and compares the search key K
and A[Middle].

• If K==A[Middle], the search terminates successfully.
• If K < A[Middle] then further search is conducted

among the keys to the left of A[Middle].
• If K > A[Middle] then further search is conducted

among the keys to the right of A[Middle].

Data Structures and Programming
Techniques

9

Iterative Binary Search

int BinarySearch(Key K)

{

 int L, R, Midpoint;

 /* Initializations */

 L=0;

 R=n-1;

 /* While the interval L:R is non-empty, test key K against the middle key */

 while (L<=R){

 Midpoint=(L+R)/2;

 if (K==A[Midpoint]){

 return Midpoint;

 } else if (K > Midpoint) {

 L=Midpoint+1;

 } else {

 R=Midpoint-1;

 }

 }

 /* If the search interval became empty, key K was not found */

 return -1;

}

Data Structures and Programming
Techniques

10

Recursive Binary Search

int BinarySearch (Key K, int L, int R)

{

 /* To find the position of the search key K in the subarray

 A[L:R]. Note: To search for K in A[0:n-1], the initial call

 is BinarySearch(K, 0, n-1) */

 int Midpoint;

 Midpoint=(L+R)/2;

 if (L>R){

 return -1;

 } else if (K==A[Midpoint]){

 return Midpoint;

 } else if (K > A[Midpoint]){

 return BinarySearch(K, Midpoint+1, R);

 } else {

 return BinarySearch(K, L, Midpoint-1);

 }

}

Data Structures and Programming
Techniques

11

Complexity

• Let us compute the running time of recursive binary
search.

• We call an entry of our array a candidate if, at the
current stage of the algorithm, we cannot rule out that
this entry has key equal to K.

• We observe that a constant amount of primitive
operations are executed at each recursive call of
function BinarySearch.

• Hence the running time is proportional to the number
of recursive calls performed.

• Moreover, the number of remaining candidates is
reduced by at least half with each recursive call.

Data Structures and Programming
Techniques

12

Complexity (cont’d)

• Initially, the number of candidate entries is 𝑛. After the
first call to BinarySearch, it is at most

𝑛

2
. After the

second call, it is at most
𝑛

4
 and so on.

• In general, after the 𝑖-th call to BinarySearch, the
number of candidate entries is at most

𝑛

2𝑖.

• In the worst case (unsuccessful search), the recursive
calls stop when there are no more candidate entries.
Hence, the maximum number of recursive calls
performed, is the smallest integer 𝑚 such that

𝑛

2𝑚 < 1.

Data Structures and Programming
Techniques

13

Complexity (cont’d)

• Equivalently, 2𝑚 > 𝑛.

• Taking logarithms in base 2, we have 𝑚 >
log 𝑛 .

• Thus, we have 𝑚 = log 𝑛 +1 which implies
that the complexity of recursive
BinarySearch is 𝑶(𝐥𝐨𝐠 𝒏).

• The complexity of iterative BinarySearch
is also 𝑶(𝐥𝐨𝐠 𝒏).

Data Structures and Programming
Techniques

14

Binary Search Trees

• To overcome the problem that insertions are expensive, we
use an explicit tree structure as the basis for symbol table
implementation.

• Binary search trees (δένδρα δυαδικής αναζήτησης) are an
excellent data structure for representing sets whose
elements are ordered by some linear order.

• A linear order (γραμμική διάταξη) < on a set 𝑆 satisfies
two properties:
– For any 𝑎, 𝑏 ∈ 𝑆, exactly one of 𝑎 < 𝑏, 𝑎 = 𝑏 or 𝑎 > 𝑏 is true.
– For all 𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎 < 𝑏 and 𝑏 < 𝑐 then 𝑎 < 𝑐 (transitivity).

• Examples of sets with a natural linear order are integers,
floats, characters and strings in C.

Data Structures and Programming
Techniques

15

Definition

• A binary search tree (BST) is a binary tree that
has a key associated with each of its internal
nodes, and it also has the following property:

– For each node N: keys in the left subtree of N ≤
 key K in node N ≤ keys in the right subtree of N

• The above condition is called the binary
search tree property.

Data Structures and Programming
Techniques

16

Duplicate Keys

• The previous definition allows duplicate keys,
this definition of BSTs can be used to
implement dictionaries. If we want to use BSTs
to implement maps, then we have to change
the ≤ to < in the above definition.

Data Structures and Programming
Techniques

17

Example

Data Structures and Programming
Techniques

18

10

5 14

7 12 18

15

Example (for the same set)

Data Structures and Programming
Techniques

19

15

14 18

7 12

10

5

Example

ORY

ZRHJFK

BRU MEX

ARN DUS ORD

NRTGLA

Data Structures and Programming
Techniques

20

Type Definitions for BSTs

• The following statements define the data structure for
a BST:

typedef struct STnode* link;

struct STnode { Item item; link l, r; int N; };

• Each node in a BST contains an item item (with a key),
a left link l, a right link r and an integer N which
counts how many nodes there are in the tree (or
subtree).

• Items, their data types and operations on them can be
defined in an appropriate interface file Item.h.

Data Structures and Programming
Techniques

21

The Interface File Item.h

typedef int Item;

typedef int Key;

#define NULLitem -1 /* NULLitem is a constant */

#define key(A) (A)

#define less(A, B) (key(A) < key(B))

#define eq(A, B) (!less(A, B) && !less(B, A))

Item ITEMrand(void);

int ITEMscan(Item *);

void ITEMshow(Item);

Data Structures and Programming
Techniques

22

Notes

• The previous interface file assumes that items consist
just of keys. This assumption can be changed.

• NULLitem is a constant to be returned when a BST
does not contain a key.

• The function ITEMrand returns a random item.
• The function ITEMscan reads an item from the

standard input.
• The function ITEMshow prints an item on the

standard output.
• less and eq are macros that we will be using in our

code (they could be defined as functions too).

Data Structures and Programming
Techniques

23

An Implementation of the Item
Interface

#include <stdio.h>

#include <stdlib.h>

#include "Item.h"

int ITEMrand(void)

 { return rand(); }

int ITEMscan(int *x)

 { return scanf("%d", x); }

void ITEMshow(int x)

 { printf("%5d ", x); }

Data Structures and Programming
Techniques

24

The Operations Stinit and
STcount

static link head, z;

link NEW(Item item, link l, link r, int N)

 { link x = malloc(sizeof *x);

 x->item = item; x->l = l; x->r = r; x->N = N;

 return x;

 }

void STinit()

 { head = (z = NEW(NULLitem, NULL, NULL, 0)); }

int STcount() { return head->N; }

Data Structures and Programming
Techniques

25

Notes

• head is a static pointer variable that points to
the root of the tree.

• z is a static pointer variable which points to a
dummy node representing empty trees or
external nodes.

• NEW is a function which creates a new tree
node and returns a pointer to it.

Data Structures and Programming
Techniques

26

External Nodes

• In our figures external nodes are represented by small rectangles.

• In our code external nodes are implemented by structures of type
STnode with elements as shown below.

Data Structures and Programming
Techniques

27

NULLitem NULL NULL

STnode

0 in the code

in the figures

The Pointer Variable z

• There is only one dummy (external) node in
the implementation, although in our figures
we will show many such nodes.

• Pointer variable z points to that node.

Data Structures and Programming
Techniques

28

z NULLitem NULL NULL

STnode

0

Example

Data Structures and Programming
Techniques

29

10

5 14

7 12 18

15

The Result of STinit()

Data Structures and Programming
Techniques

30

z NULLitem NULL NULL

STnode

0

head

Important

• If we did not have these dummy nodes to
denote external nodes both our theoretical
discussions and our implementations would
be more complex.

Data Structures and Programming
Techniques

31

Searching for a Key Recursively

• To search for a key K in a BST T, we compare K to
the key Kr of the root of T.

• If K == Kr, the search terminates successfully.

• If K < Kr, the search continues recursively in the
left subtree of T.

• If K > Kr, the search continues recursively in the
right subtree of T.

• If T is the empty tree, we have a search miss and
return NULLitem (which we defined to be -1).

Data Structures and Programming
Techniques

32

The Function STsearch

Item searchR(link h, Key v)

 { Key t = key(h->item);

 if (h == z) return NULLitem;

 if eq(v, t) return h->item;

 if less(v, t) return searchR(h->l, v);

 else return searchR(h->r, v);

 }

Item STsearch(Key v)

 { return searchR(head, v); }

Data Structures and Programming
Techniques

33

Notes

• The function STsearch calls a recursive
function searchR which does the work.

• At each step of searchR, we are guaranteed
that no parts of the tree other than the current
subtree can contain items with the search key.

• Just as the size of the interval in binary search
shrinks by a little more than half on each
iteration, the current subtree in binary tree
search is smaller than the previous (by about
half, ideally).

Data Structures and Programming
Techniques

34

Inserting a Key

• An essential feature of BSTs is that insertion is
as easy to implement as search.

Data Structures and Programming
Techniques

35

Inserting a Key Recursively

• To insert an item with key K in a BST T, we
compare K to the key Kr of the root of T.

• If K < Kr, the algorithm continues recursively
in the left subtree of T.

• If K ≥ Kr, the algorithm continues recursively
in the right subtree of T.

• If T is the empty tree, then the item with key K
is inserted there.

Data Structures and Programming
Techniques

36

Inserting a Key Recursively (cont’d)

• If we disallow duplicate keys, the insertion
algorithm is as follows.

• If K = Kr, the key is already present in T and the
algorithm stops.

• If K < Kr, the algorithm continues recursively in
the left subtree of T.

• If K > Kr, the algorithm continues recursively in
the right subtree of T.

• If T is the empty tree, then the item with key K is
inserted there.

Data Structures and Programming
Techniques

37

Example

• Let us insert keys e, b, d, f, a, g, c into an
initially empty tree in the order given.

Data Structures and Programming
Techniques

38

Initial Empty Tree

Data Structures and Programming
Techniques

39

After Inserting e

e

Data Structures and Programming
Techniques

40

After Inserting b

e

b

Data Structures and Programming
Techniques

41

After Inserting d

e

b

d

Data Structures and Programming
Techniques

42

After Inserting f

e

b

d

f

Data Structures and Programming
Techniques

43

After Inserting a

e

b

d

f

a

Data Structures and Programming
Techniques

44

After Inserting g

e

b

d

f

a g

Data Structures and Programming
Techniques

45

After Inserting c

e

b

d

f

a g

c

Data Structures and Programming
Techniques

46

Example

• Let us now insert the keys e, b, d, e, f, e in an
empty tree.

• Now we have duplicate keys.

Data Structures and Programming
Techniques

47

Initial Empty Tree

Data Structures and Programming
Techniques

48

After Inserting e

e

Data Structures and Programming
Techniques

49

After Inserting b

e

b

Data Structures and Programming
Techniques

50

After Inserting d

e

b

d

Data Structures and Programming
Techniques

51

After Inserting e

e

b

d

e

Data Structures and Programming
Techniques

52

After Inserting f

e

b

d

e

f

Data Structures and Programming
Techniques

53

After Inserting e

e

b

d

e

e

f

Data Structures and Programming
Techniques

54

Comments

• We see that in the case of duplicate keys, these
keys appear scattered throughout the BST.

• However, duplicate keys do all appear on the
appropriate search path for the key from the root
to the external node, so they can be found by the
search algorithm.

• The search algorithm implemented by
STsearch will return the item corresponding
to the first duplicate key in this path.

Data Structures and Programming
Techniques

55

The Function STinsert

link insertR(link h, Item item)

 { Key v = key(item), t = key(h->item);

 if (h == z) return NEW(item, z, z, 1);

 if less(v, t)

 h->l = insertR(h->l, item);

 else h->r = insertR(h->r, item);

 (h->N)++; return h;

 }

void STinsert(Item item)

 { head = insertR(head, item); }

Data Structures and Programming
Techniques

56

Notes

• The function STinsert calls the recursive
function insertR which does the work.

Data Structures and Programming
Techniques

57

Inserting in the Natural Order

• Let us now revisit the previous example and
insert the same keys in their natural order a,
b, c, d, e, f, g.

• Then the tree constructed is a chain
(αλυσίδα).

Data Structures and Programming
Techniques

58

Insert a, b, c, d, e, f, g

b

a

g

c

f

e

d

Data Structures and Programming
Techniques

59

Inserting in the Natural Order (cont’d)

• As we will see below, chains result in
inefficient searching. So, we should never
insert keys in their natural order in a BST.

• Similar things hold if keys are in reverse order
or if they are nearly ordered.

Data Structures and Programming
Techniques

60

Example

e

b

d

f

a g

c

Data Structures and Programming
Techniques

61

Let us traverse this BST in inorder. What do you notice?

Inorder Traversal of BSTs

• If we traverse a BST using the inorder
traversal, then the keys of the nodes come out
sorted in their natural order.

• This gives rise to a sorting algorithm called
TreeSort: insert the keys one by one in a BST,
then traverse the tree inorder.

• The function STsort shown in the next slide
implements traverses a tree in inorder.

Data Structures and Programming
Techniques

62

The Function STsort

void sortR(link h, void (*visit)(Item))

 {

 if (h == z) return;

 sortR(h->l, visit);

 visit(h->item);

 sortR(h->r, visit);

 }

void STsort(void (*visit)(Item))

 { sortR(head, visit); }

Data Structures and Programming
Techniques

63

Notes

• The second parameter of sortR is visit
which is a pointer to a function with return
type void declared by

 void (*visit)(Item).

• sortR can then be called with the name of a
function as second argument; this is the
function that we want to apply to each node
of the tree when we visit it.

Data Structures and Programming
Techniques

64

Example of a Symbol Table Client

#include <stdio.h>

#include <stdlib.h>

#include "Item.h"

#include "ST.h"

void main(int argc, char *argv[])

 { int N, maxN = atoi(argv[1]), sw = atoi(argv[2]);

 Key v; Item item;

 STinit(maxN);

 for (N = 0; N < maxN; N++)

 {

 if (sw) v = ITEMrand();

 else if (ITEMscan(&v) == EOF) break;

 if (STsearch(v) != NULLitem) continue;

 key(item) = v;

 printf("Inserting item %d\n", item);

 STinsert(item);

 }

 STsort(ITEMshow); printf("\n");

 printf("%d keys\n", N);

 printf("%d distinct keys\n", STcount());

 }

Data Structures and Programming
Techniques

65

Notes

• The previous client program generates
randomly or reads from the standard input at
most MaxN integers, inserts them in a BST one
by one and, then, prints them in sorted order
using the inorder traversal of the tree.

• It also prints the number of keys given and the
number of distinct keys encountered.

Data Structures and Programming
Techniques

66

Rotations

• Rotation (περιστροφή) is a fundamental
operation on trees.

• Rotation allows us to interchange the role of the
root node of the rotation and one of the root’s
children in a tree while still preserving the BST
ordering among the keys in the nodes.

• Rotation is important because it helps us make
our trees balanced as we will see in forthcoming
lectures.

• We will define right rotation and left rotation.

Data Structures and Programming
Techniques

67

Example: Right Rotation at Node S

Data Structures and Programming
Techniques

68

A

R

E

C

H

Y

S

h

x

Example: Right Rotation at Node S

Data Structures and Programming
Techniques

69

A

R

E

C

H

Y

S

h
x

Example: Right Rotation at Node S

Data Structures and Programming
Techniques

70

A

R

E

C

H

Y

S

h
x

Example: Right Rotation at Node S

Data Structures and Programming
Techniques

71

A

R

E

C

H

Y

S

h
x

Example: Right Rotation at Node S

Data Structures and Programming
Techniques

72

A

R

E

C

H

Y

S

h
x

Right Rotation

• A right rotation involves the root node of the rotation and its left
child.

• The rotation puts the root on the right, essentially reversing the
direction of the left link of the root.

• Before the rotation, the left link of the root points from the root to
the left child; after the rotation, it points from the old left child (the
new root) to the old root (the right child of the new root).

• The tricky part, which makes the rotation work, is to copy the right
link of the left child to be the left link of the old root. This link
points to all the nodes with keys between the two nodes involved
in the rotation.

• Finally, the link to the old root has to be changed to point to the
new root.

Data Structures and Programming
Techniques

73

Left Rotation

• A left rotation involves the root node of the
rotation and its right child.

• The description of left rotation is identical to
the description of the right rotation with
“right” and “left” interchanged everywhere.

Data Structures and Programming
Techniques

74

Example: Left Rotation at Node B

Data Structures and Programming
Techniques

75

B

R

E

C

H

Y

S

h

x

A

Example: Left Rotation at Node B

Data Structures and Programming
Techniques

76

B

R

E

C

H

Y

Sh

x

A

Example: Left Rotation at Node B

Data Structures and Programming
Techniques

77

B

R

E

C

H

Y

Sh

x

A

Example: Left Rotation at Node B

Data Structures and Programming
Techniques

78

B

R

E

C

H

Y

Sh

x

A

Example: Left Rotation at Node B

Data Structures and Programming
Techniques

79

B

R

E

C

H

Y

Sh

x

A

Functions for Rotation

link rotR(link h)

{

link x = h->l; h->l = x->r;

x->r = h; return x;

}

link rotL(link h)

{

link x = h->r; h->r = x->l;

x->l = h; return x;

}

Data Structures and Programming
Techniques

80

Insertion at the Root

• In the implementation of insertion presented
earlier, every new node inserted goes somewhere
at the bottom of the tree.

• We can consider an alternative insertion method
where we insist that each new node is inserted
at the root.

• In practice, the advantage of the root insertion
method is that recently inserted keys are near the
top. This can be useful in some applications.

Data Structures and Programming
Techniques

81

Insertion at the Root (cont’d)

• The rotation operations provide a
straightforward implementation of root
insertion:

– Recursively insert the new item into the
appropriate subtree, leaving it, when the
recursion is complete, at the root of that tree.

– Then, rotate repeatedly to make it the root of the
tree.

Data Structures and Programming
Techniques

82

Example: Root Insertion of G

Data Structures and Programming
Techniques

83

E

R

S

C

H

X

A

Example: G is inserted

Data Structures and Programming
Techniques

84

E

R

S

C

H

X

A

G

Example: after right rotation at H

Data Structures and Programming
Techniques

85

E

R

S

C

X

A

G

H

Example: after right rotation at R

Data Structures and Programming
Techniques

86

E

R

S

C

X

A

G

H

Example: after left rotation at E

Data Structures and Programming
Techniques

87

E R

S

C

X

A

G

H

Example: after right rotation at S

Data Structures and Programming
Techniques

88

E

R

S

C
X

A

G

H

Example: after left rotation at A

Data Structures and Programming
Techniques

89

E R

S

C

X

A

G

H

Functions for Root Insertion

link insertT(link h, Item item)

 { Key v = key(item);

 if (h == z) return NEW(item, z, z, 1);

 if (less(v, key(h->item)))

 { h->l = insertT(h->l, item); h = rotR(h); }

 else

 { h->r = insertT(h->r, item); h = rotL(h); }

 return h;

 }

void STinsert(Item item)

 { head = insertT(head, item); }

Data Structures and Programming
Techniques

90

Selecting the 𝑘-th Smallest Key

• To implement select, we use a recursive procedure.
• We use zero-based indexing. So, when 𝑘 = 3, we will be

looking for the item with the fourth smallest key.
• To find the item with the 𝑘-the smallest key, we check the

number of nodes in the left subtree.
• If there are 𝑘 nodes there, we return the item at the root.
• If the left subtree has more than 𝑘 nodes, we recursively

look for the item with the 𝑘-th smallest key there.
• If none of the above conditions holds then the left subtree

has 𝑡 items with 𝑡 < 𝑘, and the item with the 𝑘-th smallest
key is the item with the (𝑘 − 𝑡 − 1)-th smallest key in the
right subtree.

Data Structures and Programming
Techniques

91

Functions for Selection

Item selectR(link h, int k)

 {

 int t;

 if (h == z) return NULLitem;

 t = (h->l == z) ? 0 : h->l->N;

 if (t > k) return selectR(h->l, k);

 if (t < k) return selectR(h->r, k-t-1);

 return h->item;

 }

Item STselect(int k)

 { return selectR(head, k); }

Data Structures and Programming
Techniques

92

Partition

• We can change the implementation of the
select operation into a partition operation
(διαμέριση), which rearranges the tree to put
the item with the 𝒌-th smallest key at the
root.

• If we recursively put the desired node at the
root of one of the subtrees, we can then make
it the root of the whole tree with a rotation.

Data Structures and Programming
Techniques

93

Functions for Partition

link partR(link h, int k)

{

int t = h->l->N;

if (t > k)

{ h->l = partR(h->l, k);

h = rotR(h); }

if (t < k)

{ h->r = partR(h->r, k-t-1);

h = rotL(h); }

return h;

}

Data Structures and Programming
Techniques

94

Deletion from a BST

• An algorithm for deleting a key K from a BST T
is the following.

• If K is in an internal node with only (dummy)
external nodes as children, then delete it and
replace the link to the deleted node by a link
to a new (dummy) external node.

Data Structures and Programming
Techniques

95

Example: Delete 7

Data Structures and Programming
Techniques

96

10

5 14

7 12 18

1513

Result

Data Structures and Programming
Techniques

97

10

5 14

12 18

1513

Deletion from a BST (cont’d)

• If K is an internal node with a single (dummy)
external node as its child, then delete it and
adjust the link from its parent to point to its
non-empty subtree.

Data Structures and Programming
Techniques

98

Example: Delete 5

Data Structures and Programming
Techniques

99

10

5 14

7 12 18

1513

Result

Data Structures and Programming
Techniques

100

10

7 14

12 18

1513

Deletion from a BST (cont’d)

• If K is in a node N with both a left and a right
non-empty subtree then delete it and
combine the two subtrees into one tree. But
how?

Data Structures and Programming
Techniques

101

Deletion from a BST (cont’d)

• Various options are available.
• One simple option is to find the lowest-valued key K’

in the descendants of the right child and replace K by
K’.

• This key is in a node N’ which is the successor of N
under the inorder traversal of the tree.

• This node can be found by starting at the right child of
N and then following left child pointers until we find a
node with a left child which is an external node.

• Of course, we also need to remove node N’ from the
tree. This can be done easily since this node has at
most one (right) child.

Data Structures and Programming
Techniques

102

Example: Delete 10

Data Structures and Programming
Techniques

103

10

5 14

7 12 18

1513

The lowest-valued key among the descendants of 14 is 12. This key will replace 10
in the tree and its current node will be removed.

Result

Data Structures and Programming
Techniques

104

12

5 14

13 18

15

7

Deletion from a BST (cont’d)

• Notice that the highest-valued key among the
descendants of the left child would do as well.

• This key is in a node N’’ which is the
predecessor of N under the inorder traversal
of the tree.

Data Structures and Programming
Techniques

105

Example: Delete 10

Data Structures and Programming
Techniques

106

10

5 14

7 12 18

1513

Alternatively, we can replace 10 with the highest-valued key among the
descendants of its left child. This is the key 7.

Alternative Result

Data Structures and Programming
Techniques

107

7

5 14

12 18

1513

Functions for Deletion

link joinLR(link a, link b)

 {

 if (b == z) return a;

 b = partR(b, 0);

 b->l = a;

 return b;

 }

link deleteR(link h, Key v)

 {

 link x;

 Key t = key(h->item);

 if (h == z) return z;

 if (less(v, t)) h->l = deleteR(h->l, v);

 if (less(t, v)) h->r = deleteR(h->r, v);

 if (eq(v, t)) { x = h; h = joinLR(h->l, h->r); free(x); }

 return h;

 }

void STdelete(Key v) { head = deleteR(head, v); }

Data Structures and Programming
Techniques

108

Notes

• The function deleteR implements the algorithm we
discussed in a recursive way.

• The function joinLR combines the two subtrees into
a new tree by utilizing the partition function partR
we presented earlier for making the smallest key of the
right subtree as the new root.

• joinLR searches in the right subtree of the deleted
node, finds its smallest element (call part(b,0)),
makes this element the root of the new tree and
attaches to this root, as left child, the left subtree of
the deleted node (statements b->l=a and return
b).

Data Structures and Programming
Techniques

109

The Join Operation (Ένωση)

• Let us now present an algorithm that merges two
BSTs into one BST. The algorithm is as follows.

• First, we delete the root of the first BST and insert
it into the second BST using root insertion.

• This operation gives us two subtrees with keys
known to be smaller than this root, and two
subtrees with keys known to be larger than this
root.

• We recursively combine the former pair to be the
left subtree of the root and the latter to be the
right subtree of the root.

Data Structures and Programming
Techniques

110

Functions for Join

link STjoin(link a, link b)

 {

 if (b == z) return a;

 if (a == z) return b;

 b = insertT(b, a->item);

 b->l = STjoin(a->l, b->l);

 b->r = STjoin(a->r, b->r);

 free(a);

 return b;

 }

Data Structures and Programming
Techniques

111

Complexity Analysis

• The algorithm for searching in a BST executes
a constant number of primitive operations for
each recursive call.

• SearchR is called on the nodes of a path
that starts at the root and goes down one
level at a time.

• Thus, the number of such nodes is bounded
by 𝒉 + 𝟏 where ℎ is the height of the tree.

Data Structures and Programming
Techniques

112

Complexity Analysis (cont’d)

• The best case for searching in a BST is the case
when the leaves of the tree are on at most
two adjacent levels. We will call these trees
balanced (ισορροπημένα ή ισοζυγισμένα).

• In this case searching takes 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒏)
time where ℎ is the height of the BST and 𝑛 is
the number of nodes.

• Proof?

Data Structures and Programming
Techniques

113

Best Case Examples

Data Structures and Programming
Techniques

114

Best Case Examples (cont’d)

Data Structures and Programming
Techniques

115

Best Case Examples (cont’d)

Data Structures and Programming
Techniques

116

Complexity Analysis (cont’d)

• The worst case for searching in a BST is the
case when the trees are as deep and skinny as
possible. These are trees with exactly one
internal node on each level.

• In this case searching takes 𝑶 𝒉 = 𝑶(𝒏)
time where ℎ is the height of the tree and 𝑛 is
the number of nodes.

Data Structures and Programming
Techniques

117

Worst Case Example (Left-linear Tree)

Data Structures and Programming
Techniques

118

Worst Case Example (Zig-zag)

Data Structures and Programming
Techniques

119

Worst Case Example (Right-linear)

Data Structures and Programming
Techniques

120

Complexity Analysis (cont’d)

• The average case for searching in a BST is the
case when the tree is one from the set of all
equally likely binary search trees, and all keys
are equally likely to be searched.

• For example, consider a BST built from 𝒏
random keys.

• In this case searching takes 𝑶 𝒉 = 𝑶(𝐥𝐨𝐠 𝒏)
time where ℎ is the height of the tree and 𝑛 is
the number of nodes.

Data Structures and Programming
Techniques

121

Complexity Analysis (cont’d)

• The complexity of insertion in a binary search
tree is the same as the complexity of search
given that it makes the same comparisons plus
changing a few pointers.

• The complexity of deletion is also the same.

Data Structures and Programming
Techniques

122

Complexity Analysis (cont’d)

• The complexity of join is 𝑶(𝒏) where 𝑛 is the
number of nodes in the tree.

• This follows from the fact that each node can
be the root node on a recursive call at most
once.

Data Structures and Programming
Techniques

123

Discussion

• Balanced BSTs have very good search times
(𝑂(log 𝑛)). But if the tree gets out of balance
then the performance can degrade to 𝑂 𝑛 .

• How much does it cost to keep a BST
balanced?

Data Structures and Programming
Techniques

124

Example

5

3

2 4 6

7

Data Structures and Programming
Techniques

125

Inserting Key 1

5

3

2 4 6

7

1

Data Structures and Programming
Techniques

126

Rebalancing

• Note that every key was moved to a new
node, hence rebalancing can take 𝑂(𝑛) time.

4

2

1 3 5

6

7

Data Structures and Programming
Techniques

127

Question

• Is there a way to achieve 𝑂(log 𝑛) search time
while also achieving 𝑂(log 𝑛) insertion and
deletion time in the worst case?

• In the following lectures, we will answer this
question positively by introducing special
kinds of BSTs that have this property: AVL
trees, 2-4 trees and red-black trees.

Data Structures and Programming
Techniques

128

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

– Chapter 5. Sections 5.6 and 6.5.

– Chapter 9. Section 9.7.

• R. Sedgewick. Αλγόριθμοι σε C.

– Κεφ. 12.

Data Structures and Programming
Techniques

129

	Slide 1: Binary Search Trees
	Slide 2: Search
	Slide 3: The ADT Symbol Table
	Slide 4: Example
	Slide 5: A Symbol Table Interface
	Slide 6: Key-Indexed Search
	Slide 7: Sequential Search
	Slide 8: Binary Search
	Slide 9: Binary Search
	Slide 10: Iterative Binary Search
	Slide 11: Recursive Binary Search
	Slide 12: Complexity
	Slide 13: Complexity (cont’d)
	Slide 14: Complexity (cont’d)
	Slide 15: Binary Search Trees
	Slide 16: Definition
	Slide 17: Duplicate Keys
	Slide 18: Example
	Slide 19: Example (for the same set)
	Slide 20: Example
	Slide 21: Type Definitions for BSTs
	Slide 22: The Interface File Item.h
	Slide 23: Notes
	Slide 24: An Implementation of the Item Interface
	Slide 25: The Operations Stinit and STcount
	Slide 26: Notes
	Slide 27: External Nodes
	Slide 28: The Pointer Variable z
	Slide 29: Example
	Slide 30: The Result of STinit()
	Slide 31: Important
	Slide 32: Searching for a Key Recursively
	Slide 33: The Function STsearch
	Slide 34: Notes
	Slide 35: Inserting a Key
	Slide 36: Inserting a Key Recursively
	Slide 37: Inserting a Key Recursively (cont’d)
	Slide 38: Example
	Slide 39: Initial Empty Tree
	Slide 40: After Inserting e
	Slide 41: After Inserting b
	Slide 42: After Inserting d
	Slide 43: After Inserting f
	Slide 44: After Inserting a
	Slide 45: After Inserting g
	Slide 46: After Inserting c
	Slide 47: Example
	Slide 48: Initial Empty Tree
	Slide 49: After Inserting e
	Slide 50: After Inserting b
	Slide 51: After Inserting d
	Slide 52: After Inserting e
	Slide 53: After Inserting f
	Slide 54: After Inserting e
	Slide 55: Comments
	Slide 56: The Function STinsert
	Slide 57: Notes
	Slide 58: Inserting in the Natural Order
	Slide 59: Insert a, b, c, d, e, f, g
	Slide 60: Inserting in the Natural Order (cont’d)
	Slide 61: Example
	Slide 62: Inorder Traversal of BSTs
	Slide 63: The Function STsort
	Slide 64: Notes
	Slide 65: Example of a Symbol Table Client
	Slide 66: Notes
	Slide 67: Rotations
	Slide 68: Example: Right Rotation at Node S
	Slide 69: Example: Right Rotation at Node S
	Slide 70: Example: Right Rotation at Node S
	Slide 71: Example: Right Rotation at Node S
	Slide 72: Example: Right Rotation at Node S
	Slide 73: Right Rotation
	Slide 74: Left Rotation
	Slide 75: Example: Left Rotation at Node B
	Slide 76: Example: Left Rotation at Node B
	Slide 77: Example: Left Rotation at Node B
	Slide 78: Example: Left Rotation at Node B
	Slide 79: Example: Left Rotation at Node B
	Slide 80: Functions for Rotation
	Slide 81: Insertion at the Root
	Slide 82: Insertion at the Root (cont’d)
	Slide 83: Example: Root Insertion of G
	Slide 84: Example: G is inserted
	Slide 85: Example: after right rotation at H
	Slide 86: Example: after right rotation at R
	Slide 87: Example: after left rotation at E
	Slide 88: Example: after right rotation at S
	Slide 89: Example: after left rotation at A
	Slide 90: Functions for Root Insertion
	Slide 91: Selecting the k-th Smallest Key
	Slide 92: Functions for Selection
	Slide 93: Partition
	Slide 94: Functions for Partition
	Slide 95: Deletion from a BST
	Slide 96: Example: Delete 7
	Slide 97: Result
	Slide 98: Deletion from a BST (cont’d)
	Slide 99: Example: Delete 5
	Slide 100: Result
	Slide 101: Deletion from a BST (cont’d)
	Slide 102: Deletion from a BST (cont’d)
	Slide 103: Example: Delete 10
	Slide 104: Result
	Slide 105: Deletion from a BST (cont’d)
	Slide 106: Example: Delete 10
	Slide 107: Alternative Result
	Slide 108: Functions for Deletion
	Slide 109: Notes
	Slide 110: The Join Operation (Ένωση)
	Slide 111: Functions for Join
	Slide 112: Complexity Analysis
	Slide 113: Complexity Analysis (cont’d)
	Slide 114: Best Case Examples
	Slide 115: Best Case Examples (cont’d)
	Slide 116: Best Case Examples (cont’d)
	Slide 117: Complexity Analysis (cont’d)
	Slide 118: Worst Case Example (Left-linear Tree)
	Slide 119: Worst Case Example (Zig-zag)
	Slide 120: Worst Case Example (Right-linear)
	Slide 121: Complexity Analysis (cont’d)
	Slide 122: Complexity Analysis (cont’d)
	Slide 123: Complexity Analysis (cont’d)
	Slide 124: Discussion
	Slide 125: Example
	Slide 126: Inserting Key 1
	Slide 127: Rebalancing
	Slide 128: Question
	Slide 129: Readings

