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The ADT Queue

• A queue Q of items of type T is a sequence of 
items of type T on which the following 
operations are defined:
– Initialize the queue to the empty queue.

– Determine whether or not the queue is empty.

– Determine whether or not the queue is full.

– Provided Q is not full, insert a new item onto the 
rear of the queue.

– Provided Q is nonempty, remove an item from the 
front of Q.
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The ADT Queue (cont’d)

• Queues are also known as FIFO lists (first-in 
first-out).
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Queue Representations

• The ADT queue can be implemented using 
either sequential or linked representations.
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Sequential Queue Representations

• We can use an array as follows:

q1 q2 q3 q4

Departures Arrivals

Direction of travel through memory

Data Structures and Programming 
Techniques

5



Sequential Queue Representations 
(cont’d)

• This representation is not very handy.

• The positions of the array to the right will be 
filled until there is space to do so, while the 
positions to the left of the array will be freed 
but we will not be able to use that free space.

• The bounded space representation proposed 
next is a better one.
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Circular Queue Representation

Front

Rear q1

q2

q3

q4q5

q6
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Circular Queue Representation (cont’d)

• If we have an array Items[0:N-1] and two pointers 
Front and Rear as in the previous figure, then we 
can use the following assignment statements to 
increment the pointers so that they always wrap 
around after falling off the high end of the array.

    Front=(Front+1)%N
  Rear=(Rear+1)%N

• The operator % computes the remainder of the division by N 
so the values of Front and Rear are always in the range 0 
to N-1.

Data Structures and Programming 
Techniques

8



Defining the Queue Data Type

/* This is the file QueueTypes.h */

#define MAXQUEUESIZE 100

typedef int ItemType;

/* the item type can be arbitrary */

typedef struct {

           int Count;

           int Front;

           int Rear;

           ItemType Items[MAXQUEUESIZE];

         } Queue;
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The Interface File

/* This is the file QueueInterface.h   */

#include “QueueTypes.h”

void InitializeQueue(Queue *Q);

int Empty(Queue *Q);

int Full(Queue *Q);

void Insert(ItemType R, Queue *Q);

void Remove(Queue *Q, ItemType *F);
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The Implementation

/* This is the file QueueImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

void InitializeQueue(Queue *Q)

{

   Q->Count=0;

   Q->Front=0;

   Q->Rear=0;

}
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The Implementation (cont’d)

int Empty(Queue *Q)

{

    return(Q->Count==0);

}

int Full(Queue *Q)

{

   return(Q->Count==MAXQUEUESIZE);

}
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The Implementation (cont’d)

void Insert(ItemType R, Queue *Q)

{

   if (Q->Count==MAXQUEUESIZE){

      printf(“attempt to insert item into a 

full queue”);

   } else {

      Q->Items[Q->Rear]=R;

      Q->Rear=(Q->Rear+1)%MAXQUEUESIZE;

      ++(Q->Count);

   }

}
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Example

Front

Rear q1

q2

q3

q4q5

q6
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The Implementation (cont’d)

void Remove(Queue *Q, ItemType *F)

{

   if (Q->Count==0){

      printf(“attempt to remove item from 

empty queue”);

   } else {

      *F=Q->Items[Q->Front];

      Q->Front=(Q->Front+1)%MAXQUEUESIZE;

      --(Q->Count);

   }

}
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Example

Front

Rear q1

q2

q3

q4q5

q6
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Linked Queue Representation

• In this implementation, we represent a queue 
by a struct containing pointers to the front 
and rear of a linked list of nodes.

Item Link LinkItem Item ItemLink Link

RearFront

Q:

x1 x2 x3 x4 .
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Linked Queue Representation (cont’d)

• The empty queue is a special case and it is 
represented by a structure whose front and 
rear pointers are NULL.

RearFront

Q: . .
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Defining the Queue Data Type

/* This is the file QueueTypes.h  */

typedef int ItemType;

/* the item type can be arbitrary */

typedef struct QueueNodeTag {

                     ItemType Item;

                     struct QueueNodeTag *Link;

                } QueueNode;

typedef struct {

                    QueueNode *Front;

                    QueueNode *Rear;

               } Queue;
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The Implementation

/* This is the file QueueImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

void InitializeQueue(Queue *Q)

{

    Q->Front=NULL;

    Q->Rear=NULL;

}
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The Implementation (cont’d)

int Empty(Queue *Q)

{

   return(Q->Front==NULL);

}

int Full(Queue *Q)

{

   return(0);

}

/* We assume an already constructed queue */

/* is not full since it can potentially grow */

/* as a linked structure.                   */
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The Implementation (cont’d)

void Insert(ItemType R, Queue *Q)

{

   QueueNode *Temp;

   

   Temp=(QueueNode *)malloc(sizeOf(QueueNode));

   

   if (Temp==NULL){

      printf(“System storage is exhausted”);

   } else {

      Temp->Item=R;

      Temp->Link=NULL;

      if (Q->Rear==NULL){ /* this is the case when the queue is empty */

         Q->Front=Temp;

         Q->Rear=Temp;

      } else { /* this is the case when the queue is not empty */

         Q->Rear->Link=Temp;

         Q->Rear=Temp;

      }

   }

}
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Exercise

• Show visually what happens when we insert a new 
element in the empty queue below by executing the 
function Insert step by step like we did in the 
lecture for stacks.

RearFront

Q: . .
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Exercise (cont’d)

• Show visually what happens when we insert a new element in 
the non-empty queue below by executing the function 
Insert step by step like we did in the lecture for stacks.

Item Link LinkItem Item ItemLink Link

RearFront

Q:

x1 x2 x3 x4 .
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The Implementation (cont’d)

void Remove(Queue *Q, ItemType *F)

{

   QueueNode *Temp;

   

      

   if (Q->Front==NULL){

      printf(“attempt to remove item from an empty queue”);

   } else {

      *F=Q->Front->Item;

      Temp=Q->Front;

      Q->Front=Temp->Link;

      free(Temp);

      if (Q->Front==NULL) Q->Rear=NULL; /* this if statement 
covers the case when the resulting queue will be empty */

   }

}
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Exercise (cont’d)

• Show visually what happens when we remove an element 
from the queue below by executing the function Remove 
step by step like we did in the lecture for stacks.

Item Link LinkItem Item ItemLink Link

RearFront

Q:

x1 x2 x3 x4 .
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Example main program

#include <stdio.h>

#include <stdlib.h>

#include "QueueInterface.h"

int main(void)

{

   int i,j;

   Queue Q;

   InitializeQueue(&Q);

   for(i=1; i<10; ++i){

      Insert(i, &Q);

   }

   while (!Empty(&Q)){

      Remove(&Q, &j);

      printf("Item %d has been removed.\n", j);

   }

   return 0;

}
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Comparing Linked and Sequential 
Queue Representations

• The sequential queue representation is 
appropriate when there is a bound on the 
number of queue elements at any time.

• The linked representation is appropriate 
when we do not know how large the queue 
will grow.
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Information Hiding Revisited

• The previous definitions and implementations of 
the ADT queue do not do good information 
hiding since client programs can get access to the 
queue representation because the file 
QueueTypes.h is included in the file 
QueueInterface.h.

• We will now give another way to define the ADT 
queue that does not have this weakness and also 
has all the nice features of the previous code such 
as the ability to define multiple queues in a client 
program.
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The Queue ADT Interface

typedef struct queue *QPointer;

QPointer QUEUEinit(int maxN); 

int QUEUEempty(QPointer);

void QUEUEput(QPointer, Item);

Item QUEUEget(QPointer);

In this interface the typedef statement defines the type QPointer 
which is a handle to a structure for which we only give the name 
queue. The details of this structure are given in the implementation 
file and, in this way, they are hidden from client programs.

The functions of the interface take arguments of type QPointer.
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The Implementation of the Interface

• Let us now see how we can implement this 
interface using the linked list representation of 
a queue that we introduced earlier.

• The front and the rear of the queue are now 
accessed using pointer variables head and 
tail.
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Example

• Below is an example of a queue with the new 
interface/implementation.

item next nextitem item itemnext next

tailhead

queue

x1 x2 x3 x4 .
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The Implementation

#include <stdlib.h>

#include "Item.h"

#include "QUEUE.h"

typedef struct QUEUEnode* link;

struct QUEUEnode { Item item; link next; };

struct queue { link head; link tail; };

link NEW(Item item, link next)  

{ 

    link x = malloc(sizeof *x);    

    x->item = item; 

    x->next = next;    

    return x;  

}
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The Implementation (cont’d)

QPointer QUEUEinit(int maxN)  

{ 

    QPointer q = malloc(sizeof *q);    

    q->head = NULL; 

    q->tail = NULL;    

    return q;  

}

Data Structures and Programming 
Techniques

34



The Implementation (cont’d)

int QUEUEempty(QPointer q)  { 

                               return q->head == NULL; }

void QUEUEput(QPointer q, Item item)  

{    

    if (q->head == NULL)      

    { /* this if statement covers the case when the input 
queue is empty */

       q->tail = NEW(item, q->head);        

       q->head = q->tail; 

       return;  

    }    

    q->tail->next = NEW(item, q->tail->next);    

    q->tail = q->tail->next; 

}
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The Implementation (cont’d)

Item QUEUEget(QPointer q) 

{ 

    Item item = q->head->item;   

    link t = q->head->next;    

    free(q->head); 

    q->head = t;    

    return item;  

}
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Notes

• The implementation of queue shown in the 
previous slides uses an auxiliary function NEW 
to allocate memory for a queue node, set its 
fields from the function arguments, and 
return a link to the node.

Data Structures and Programming 
Techniques

37



Exercise

• Show the execution of the functions 
QUEUEput and QUEUEget visually using an 
example queue.
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Queue Simulation

• Let us now use the previous queue interface 
and implementation in a client program.

• The following client program simulates an 
environment with M queues where clients 
(queue members) are assigned to one of these 
queues randomly.
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The Client Program

#include <stdio.h>

#include <stdlib.h>

#include "Item.h"

#include "QUEUE.h"

#define M 10

main(int argc, char *argv[])  

{ 

  int i, j, N = atoi(argv[1]);    

  QPointer queues[M];    

  for (i = 0; i < M; i++) queues[i] = QUEUEinit(N);    

  for (i = 0; i < N; i++) QUEUEput(queues[rand() % M], i);    

  for (i = 0; i < M; i++, printf("\n"))      

     for (j = 0; !QUEUEempty(queues[i]); j++)        

        printf("%3d ", QUEUEget(queues[i]));  

}
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Information Hiding Revisited

• Notice that the previous client program 
cannot access the structure that represents 
the queue because this information is not 
revealed by the interface file QUEUE.h. 

• The details are hidden in the implementation 
which is not accessible to the client.
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Using Queues

• Queues of jobs are used a lot in operating 
systems and networks (e.g., a printer queue).

• Queues are also used in simulation.

• Queuing theory is a branch of mathematics 
that studies the behaviour of systems with 
queues.
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C.

    Chapter 7.
• R. Sedgewick. Αλγόριθμοι σε C.

Κεφ. 4.

• As we also said for other lectures, the code that 
does not do good information hiding is from the 
first book, while the code that does good 
information hiding is from the second one.
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