
Queues

Manolis Koubarakis

Data Structures and Programming
Techniques

1

The ADT Queue

• A queue Q of items of type T is a sequence of
items of type T on which the following
operations are defined:
– Initialize the queue to the empty queue.

– Determine whether or not the queue is empty.

– Determine whether or not the queue is full.

– Provided Q is not full, insert a new item onto the
rear of the queue.

– Provided Q is nonempty, remove an item from the
front of Q.

Data Structures and Programming
Techniques

2

The ADT Queue (cont’d)

• Queues are also known as FIFO lists (first-in
first-out).

Data Structures and Programming
Techniques

3

Queue Representations

• The ADT queue can be implemented using
either sequential or linked representations.

Data Structures and Programming
Techniques

4

Sequential Queue Representations

• We can use an array as follows:

q1 q2 q3 q4

Departures Arrivals

Direction of travel through memory

Data Structures and Programming
Techniques

5

Sequential Queue Representations
(cont’d)

• This representation is not very handy.

• The positions of the array to the right will be
filled until there is space to do so, while the
positions to the left of the array will be freed
but we will not be able to use that free space.

• The bounded space representation proposed
next is a better one.

Data Structures and Programming
Techniques

6

Circular Queue Representation

Front

Rear q1

q2

q3

q4q5

q6

Data Structures and Programming
Techniques

7

Circular Queue Representation (cont’d)

• If we have an array Items[0:N-1] and two pointers
Front and Rear as in the previous figure, then we
can use the following assignment statements to
increment the pointers so that they always wrap
around after falling off the high end of the array.

 Front=(Front+1)%N
 Rear=(Rear+1)%N

• The operator % computes the remainder of the division by N
so the values of Front and Rear are always in the range 0
to N-1.

Data Structures and Programming
Techniques

8

Defining the Queue Data Type

/* This is the file QueueTypes.h */

#define MAXQUEUESIZE 100

typedef int ItemType;

/* the item type can be arbitrary */

typedef struct {

 int Count;

 int Front;

 int Rear;

 ItemType Items[MAXQUEUESIZE];

 } Queue;

Data Structures and Programming
Techniques

9

The Interface File

/* This is the file QueueInterface.h */

#include “QueueTypes.h”

void InitializeQueue(Queue *Q);

int Empty(Queue *Q);

int Full(Queue *Q);

void Insert(ItemType R, Queue *Q);

void Remove(Queue *Q, ItemType *F);

Data Structures and Programming
Techniques

10

The Implementation

/* This is the file QueueImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

void InitializeQueue(Queue *Q)

{

 Q->Count=0;

 Q->Front=0;

 Q->Rear=0;

}

Data Structures and Programming
Techniques

11

The Implementation (cont’d)

int Empty(Queue *Q)

{

 return(Q->Count==0);

}

int Full(Queue *Q)

{

 return(Q->Count==MAXQUEUESIZE);

}

Data Structures and Programming
Techniques

12

The Implementation (cont’d)

void Insert(ItemType R, Queue *Q)

{

 if (Q->Count==MAXQUEUESIZE){

 printf(“attempt to insert item into a

full queue”);

 } else {

 Q->Items[Q->Rear]=R;

 Q->Rear=(Q->Rear+1)%MAXQUEUESIZE;

 ++(Q->Count);

 }

}

Data Structures and Programming
Techniques

13

Example

Front

Rear q1

q2

q3

q4q5

q6

Data Structures and Programming
Techniques

14

The Implementation (cont’d)

void Remove(Queue *Q, ItemType *F)

{

 if (Q->Count==0){

 printf(“attempt to remove item from

empty queue”);

 } else {

 *F=Q->Items[Q->Front];

 Q->Front=(Q->Front+1)%MAXQUEUESIZE;

 --(Q->Count);

 }

}

Data Structures and Programming
Techniques

15

Example

Front

Rear q1

q2

q3

q4q5

q6

Data Structures and Programming
Techniques

16

Linked Queue Representation

• In this implementation, we represent a queue
by a struct containing pointers to the front
and rear of a linked list of nodes.

Item Link LinkItem Item ItemLink Link

RearFront

Q:

x1 x2 x3 x4 .

Data Structures and Programming
Techniques

17

Linked Queue Representation (cont’d)

• The empty queue is a special case and it is
represented by a structure whose front and
rear pointers are NULL.

RearFront

Q: . .

Data Structures and Programming
Techniques

18

Defining the Queue Data Type

/* This is the file QueueTypes.h */

typedef int ItemType;

/* the item type can be arbitrary */

typedef struct QueueNodeTag {

 ItemType Item;

 struct QueueNodeTag *Link;

 } QueueNode;

typedef struct {

 QueueNode *Front;

 QueueNode *Rear;

 } Queue;

Data Structures and Programming
Techniques

19

The Implementation

/* This is the file QueueImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

void InitializeQueue(Queue *Q)

{

 Q->Front=NULL;

 Q->Rear=NULL;

}

Data Structures and Programming
Techniques

20

The Implementation (cont’d)

int Empty(Queue *Q)

{

 return(Q->Front==NULL);

}

int Full(Queue *Q)

{

 return(0);

}

/* We assume an already constructed queue */

/* is not full since it can potentially grow */

/* as a linked structure. */

Data Structures and Programming
Techniques

21

The Implementation (cont’d)

void Insert(ItemType R, Queue *Q)

{

 QueueNode *Temp;

 Temp=(QueueNode *)malloc(sizeOf(QueueNode));

 if (Temp==NULL){

 printf(“System storage is exhausted”);

 } else {

 Temp->Item=R;

 Temp->Link=NULL;

 if (Q->Rear==NULL){ /* this is the case when the queue is empty */

 Q->Front=Temp;

 Q->Rear=Temp;

 } else { /* this is the case when the queue is not empty */

 Q->Rear->Link=Temp;

 Q->Rear=Temp;

 }

 }

}

Data Structures and Programming
Techniques

22

Exercise

• Show visually what happens when we insert a new
element in the empty queue below by executing the
function Insert step by step like we did in the
lecture for stacks.

RearFront

Q: . .

Data Structures and Programming
Techniques

23

Exercise (cont’d)

• Show visually what happens when we insert a new element in
the non-empty queue below by executing the function
Insert step by step like we did in the lecture for stacks.

Item Link LinkItem Item ItemLink Link

RearFront

Q:

x1 x2 x3 x4 .

Data Structures and Programming
Techniques

24

The Implementation (cont’d)

void Remove(Queue *Q, ItemType *F)

{

 QueueNode *Temp;

 if (Q->Front==NULL){

 printf(“attempt to remove item from an empty queue”);

 } else {

 *F=Q->Front->Item;

 Temp=Q->Front;

 Q->Front=Temp->Link;

 free(Temp);

 if (Q->Front==NULL) Q->Rear=NULL; /* this if statement
covers the case when the resulting queue will be empty */

 }

}

Data Structures and Programming
Techniques

25

Exercise (cont’d)

• Show visually what happens when we remove an element
from the queue below by executing the function Remove
step by step like we did in the lecture for stacks.

Item Link LinkItem Item ItemLink Link

RearFront

Q:

x1 x2 x3 x4 .

Data Structures and Programming
Techniques

26

Example main program

#include <stdio.h>

#include <stdlib.h>

#include "QueueInterface.h"

int main(void)

{

 int i,j;

 Queue Q;

 InitializeQueue(&Q);

 for(i=1; i<10; ++i){

 Insert(i, &Q);

 }

 while (!Empty(&Q)){

 Remove(&Q, &j);

 printf("Item %d has been removed.\n", j);

 }

 return 0;

}

Data Structures and Programming
Techniques

27

Comparing Linked and Sequential
Queue Representations

• The sequential queue representation is
appropriate when there is a bound on the
number of queue elements at any time.

• The linked representation is appropriate
when we do not know how large the queue
will grow.

Data Structures and Programming
Techniques

28

Information Hiding Revisited

• The previous definitions and implementations of
the ADT queue do not do good information
hiding since client programs can get access to the
queue representation because the file
QueueTypes.h is included in the file
QueueInterface.h.

• We will now give another way to define the ADT
queue that does not have this weakness and also
has all the nice features of the previous code such
as the ability to define multiple queues in a client
program.

Data Structures and Programming
Techniques

29

The Queue ADT Interface

typedef struct queue *QPointer;

QPointer QUEUEinit(int maxN);

int QUEUEempty(QPointer);

void QUEUEput(QPointer, Item);

Item QUEUEget(QPointer);

In this interface the typedef statement defines the type QPointer
which is a handle to a structure for which we only give the name
queue. The details of this structure are given in the implementation
file and, in this way, they are hidden from client programs.

The functions of the interface take arguments of type QPointer.

Data Structures and Programming
Techniques

30

The Implementation of the Interface

• Let us now see how we can implement this
interface using the linked list representation of
a queue that we introduced earlier.

• The front and the rear of the queue are now
accessed using pointer variables head and
tail.

Data Structures and Programming
Techniques

31

Example

• Below is an example of a queue with the new
interface/implementation.

item next nextitem item itemnext next

tailhead

queue

x1 x2 x3 x4 .

Data Structures and Programming
Techniques

32

QUEUEnode

Q

The Implementation

#include <stdlib.h>

#include "Item.h"

#include "QUEUE.h"

typedef struct QUEUEnode* link;

struct QUEUEnode { Item item; link next; };

struct queue { link head; link tail; };

link NEW(Item item, link next)

{

 link x = malloc(sizeof *x);

 x->item = item;

 x->next = next;

 return x;

}

Data Structures and Programming
Techniques

33

The Implementation (cont’d)

QPointer QUEUEinit(int maxN)

{

 QPointer q = malloc(sizeof *q);

 q->head = NULL;

 q->tail = NULL;

 return q;

}

Data Structures and Programming
Techniques

34

The Implementation (cont’d)

int QUEUEempty(QPointer q) {

 return q->head == NULL; }

void QUEUEput(QPointer q, Item item)

{

 if (q->head == NULL)

 { /* this if statement covers the case when the input
queue is empty */

 q->tail = NEW(item, q->head);

 q->head = q->tail;

 return;

 }

 q->tail->next = NEW(item, q->tail->next);

 q->tail = q->tail->next;

}

Data Structures and Programming
Techniques

35

The Implementation (cont’d)

Item QUEUEget(QPointer q)

{

 Item item = q->head->item;

 link t = q->head->next;

 free(q->head);

 q->head = t;

 return item;

}

Data Structures and Programming
Techniques

36

Notes

• The implementation of queue shown in the
previous slides uses an auxiliary function NEW
to allocate memory for a queue node, set its
fields from the function arguments, and
return a link to the node.

Data Structures and Programming
Techniques

37

Exercise

• Show the execution of the functions
QUEUEput and QUEUEget visually using an
example queue.

Data Structures and Programming
Techniques

38

Queue Simulation

• Let us now use the previous queue interface
and implementation in a client program.

• The following client program simulates an
environment with M queues where clients
(queue members) are assigned to one of these
queues randomly.

Data Structures and Programming
Techniques

39

The Client Program

#include <stdio.h>

#include <stdlib.h>

#include "Item.h"

#include "QUEUE.h"

#define M 10

main(int argc, char *argv[])

{

 int i, j, N = atoi(argv[1]);

 QPointer queues[M];

 for (i = 0; i < M; i++) queues[i] = QUEUEinit(N);

 for (i = 0; i < N; i++) QUEUEput(queues[rand() % M], i);

 for (i = 0; i < M; i++, printf("\n"))

 for (j = 0; !QUEUEempty(queues[i]); j++)

 printf("%3d ", QUEUEget(queues[i]));

}

Data Structures and Programming
Techniques

40

Information Hiding Revisited

• Notice that the previous client program
cannot access the structure that represents
the queue because this information is not
revealed by the interface file QUEUE.h.

• The details are hidden in the implementation
which is not accessible to the client.

Data Structures and Programming
Techniques

41

Using Queues

• Queues of jobs are used a lot in operating
systems and networks (e.g., a printer queue).

• Queues are also used in simulation.

• Queuing theory is a branch of mathematics
that studies the behaviour of systems with
queues.

Data Structures and Programming
Techniques

42

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

 Chapter 7.
• R. Sedgewick. Αλγόριθμοι σε C.

Κεφ. 4.

• As we also said for other lectures, the code that
does not do good information hiding is from the
first book, while the code that does good
information hiding is from the second one.

Data Structures and Programming
Techniques

43

	Slide 1: Queues
	Slide 2: The ADT Queue
	Slide 3: The ADT Queue (cont’d)
	Slide 4: Queue Representations
	Slide 5: Sequential Queue Representations
	Slide 6: Sequential Queue Representations (cont’d)
	Slide 7: Circular Queue Representation
	Slide 8: Circular Queue Representation (cont’d)
	Slide 9: Defining the Queue Data Type
	Slide 10: The Interface File
	Slide 11: The Implementation
	Slide 12: The Implementation (cont’d)
	Slide 13: The Implementation (cont’d)
	Slide 14: Example
	Slide 15: The Implementation (cont’d)
	Slide 16: Example
	Slide 17: Linked Queue Representation
	Slide 18: Linked Queue Representation (cont’d)
	Slide 19: Defining the Queue Data Type
	Slide 20: The Implementation
	Slide 21: The Implementation (cont’d)
	Slide 22: The Implementation (cont’d)
	Slide 23: Exercise
	Slide 24: Exercise (cont’d)
	Slide 25: The Implementation (cont’d)
	Slide 26: Exercise (cont’d)
	Slide 27: Example main program
	Slide 28: Comparing Linked and Sequential Queue Representations
	Slide 29: Information Hiding Revisited
	Slide 30: The Queue ADT Interface
	Slide 31: The Implementation of the Interface
	Slide 32: Example
	Slide 33: The Implementation
	Slide 34: The Implementation (cont’d)
	Slide 35: The Implementation (cont’d)
	Slide 36: The Implementation (cont’d)
	Slide 37: Notes
	Slide 38: Exercise
	Slide 39: Queue Simulation
	Slide 40: The Client Program
	Slide 41: Information Hiding Revisited
	Slide 42: Using Queues
	Slide 43: Readings

