Recursion

Manolis Koubarakis

Recursion

- Recursion is a fundamental concept of Computer Science.
- It usually help us to write simple and elegant solutions to programming problems.
- You will learn to program recursively by working with many examples to develop your skills.

Recursive Programs

- A recursive program is one that calls itself in order to obtain a solution to a problem.
- The reason that it calls itself is to compute a solution to a subproblem that has the following properties:
- The subproblem is smaller than the problem to be solved.
- The subproblem can be solved directly (as a base case) or recursively by making a recursive call.
- The subproblem's solution can be combined with solutions to other subproblems to obtain a solution to the overall problem.

Example

- Let us consider a simple program to add up all the squares of integers from m to n.
- An iterative function to do this is the following:

```
int SumSquares(int m, int n)
{
    int i, sum;
    sum=0;
    for (i=m; i<=n; ++i) sum +=i*i;
    return sum;
```


Recursive Sum of Squares

Comments

- In the case that the range m : n contains more than one number, the solution to the problem can be found by adding (a) the solution to the smaller subproblem of summing the squares in the range $m+1: n$ and (b) the solution to the subproblem of finding the square of m. (a) is then solved in the same way (recursion).
- We stop when we reach the base case that occurs when the range $m: n$ contains just one number, in which case $\mathrm{m}=\mathrm{=} \mathrm{n}$.
- This recursive solution can be called "going-up" recursion since the successive ranges are $m+1: n, m+2: n$ etc.

Going-Down Recursion

Recursion Combining Two HalfSolutions

SumSquares (m, middle) +SumSquares (middle+1,n);

Comments

- The recursion here says that the sum of the squares of the integers in the range $m: n$ can be obtained by adding the sum of the squares of the left half range, $m: m i d d l e$, to the sum of the squares of the right half range, middle+1:n.
- We stop when we reach the base case that occurs when the range contains just one number, in which case $m==n$.
- The middle is computed by using integer division (operator /) which keeps the quotient and throws away the remainder.

Call Trees and Traces

- We can depict graphically the behaviour of recursive programs by drawing call trees or traces.

Call Trees

SumSquares $(5,6)$ SumSquares $(7,7)$ SumSquares $(8,9)$ SumSquares $(10,10)$

SumSquares $(5,5)$ SumSquares $(6,6)$

Annotated Call Trees

SumSquares $(5,6)$ SumSquares $(7,7)$ SumSquares $(8,9)$ SumSquares $(10,10)$
 SumSquares $(5,5)$ 25

SumSquares $(6,6)$
SumSquares $(8,8)$

SumSquares $(9,9)$

Traces

$$
\begin{aligned}
& \text { SumSquares }(5,10)= \operatorname{SumSquares}(5,7)+\operatorname{SumSquares}(8,10)= \\
&= \operatorname{SumSquares}(5,6)+\operatorname{SumSquares}(7,7) \\
& \quad \quad \text { SumSquares }(8,9)+\operatorname{SumSquares}(10,10) \\
&= \operatorname{SumSquares}(5,5)+\operatorname{SumSquares}(6,6) \\
& \quad+\operatorname{SumSquares}(7,7) \\
& \quad \quad \text { SumSquares }(8,8)+\operatorname{SumSquares}(9,9) \\
& \quad \quad \quad \operatorname{SumSquares}(10,10) \\
&=((25+36)+49)+((64+81)+100) \\
&=(61+49)+(145+100) \\
&=(110+245) \\
&= 355
\end{aligned}
$$

Computing the Factorial

- Let us consider a simple program to compute the factorial n ! of n .
- An iterative function to do this is the following:

```
int Factorial(int n)
{
    int i, f;
    f=1;
    for (i=2; i<=n; ++i) f*=i;
    return f;
```


Recursive Factorial

Computing the Factorial (cont'd)

- The previous program is a "going-down" recursion.
- Can you write a "going-up" recursion for factorial?
- Can you write a recursion combining two halfsolutions?
- The above tasks do not appear to be easy.

Computing the Factorial (cont'd)

- It is easier to first write a function Product (m, n) which multiplies together the numbers in the range $m: n$.
- Then Factorial (n) =Product (1,n).

Multiplying m : n Together Using HalfRanges

int Product(int m, int n)
\{
int middle;
if ($\mathrm{m}==\mathrm{n}$) \{
return m;
\} else \{
middle= $(m+n) / 2$;
return Product(m,middle)*Product(middle+1,n);
\}

Reversing a Linked List

The Result

Reversing a Linked List

- Let us now writing a function for reversing a linked list L.
- The type NodeType has been defined in the previous lecture as follows:
typedef char AirportCode[4];
typedef struct NodeTag \{

$$
\begin{gathered}
\text { AirportCode Airport; } \\
\text { struct NodeTag *Link; } \\
\text { \} NodeType; }
\end{gathered}
$$

Reversing a List Iteratively

- An iterative function for reversing a list is the following:

```
void Reverse(NodeType **L)
{
    NodeType *R, *N, *L1;
    L1=*L;
    R=NULL;
    while (L1 != NULL) {
        N=L1;
        L1=L1->Link;
        N->Link=R;
        R=N;
    }
    * L=R;
}
```


Reversing a List Iteratively (cont’d)

- In addition to variable L, the function uses the variables $\mathrm{R}, \mathrm{N}, \mathrm{L} 1$ which are pointers to structures of type NodeType. These variable are used as follows:
- L1 is used to traverse the list to be reversed.
- N always points to the previous node of the node L1 points to, as L1 traverses the list to be reversed.
$-R$ is initially NULL and later points to the last node of the sublist of L which has been reversed already.

Before the while Loop

$$
\mathrm{L} 1=\star \mathrm{L} ;
$$

R=NULL;

After the First Execution of the while Loop

```
while (L1 != NULL) {
    N=L1;
    L1=L1->Link;
    N->Link=R;
    R=N;
    }
```


After the Second Execution of the while Loop

while (L1 != NULL) {
while (L1 != NULL) {
N=L1;
N=L1;
L1=L1->Link;
L1=L1->Link;
N->Link=R;
N->Link=R;
R=N;
R=N;

After the Third Execution of the while Loop

After the while Loop Terminates

$$
* \mathrm{~L}=\mathrm{R} ;
$$

Question

- If in our main program we have a list with a pointer A to its first node, how do we call the previous function?

Answer

- We should make the following call: Reverse (\&A)

Example

- Let us now call Reverse (\&A) for the following list.

The Resulting List

Reversing Linked Lists (cont'd)

- A recursive solution to the problem of reversing a list L is found by partitioning the list into its head Head (L) and tail Tail (L) and then concatenating the reverse of Tail(L) with Head(L).

Head and Tail of a List

- Let L be a list. Head (L) is a list containing the first node of L. Tail (L) is a list consisting of L's second and succeeding nodes.
- If $L==N U L L$ then Head (L) and Tail (L) are not defined.
- If L consists of a single node then $\operatorname{Head}(L)$ is the list that contains that node and Tail (L) is NULL.

Example

- Let $L=(S A N, O R D, B R U, ~ D U S)$. Then $\operatorname{Head}(L)=(S A N)$ and Tail(L) $=(O R D, B R U, ~ D U S)$.

Reversing Linked Lists (cont'd)

```
NodeType *Reverse(NodeType *L)
{
    NodeType *Head, *Tail;
    if (L==NULL) {
    return NULL;
    } else {
    Partition(L, &Head, &Tail);
    return Concat(Reverse(Tail), Head);
}
}
```


Reversing Linked Lists: Partitioning the List into Head and Tail

```
void Partition(NodeType *L, NodeType **Head,
NodeType **Tail)
{
    if (L != NULL) {
    *Tail=L->Link;
    * Head=L;
    (*Head) ->Link=NULL;
    }
```


Example

- Let us execute Partition(L, \&Head, \&Tail) for the following list.

Example (cont'd)

*Tail=L->Link;

* Head=L;
(*Head) ->Link=NULL;

Reversing Linked Lists: Concatenation

```
NodeType *Concat(NodeType *L1, NodeType *L2)
{
    NodeType *N;
    if (L1 == NULL) {
        return L2;
    } else {
        N=L1;
    while (N->Link != NULL) N=N->Link;
    N->Link=L2;
    return L1;
}
}
```


Example

- Let us execute Concat (L1, L2) for the following two lists

The Resulting List

Infinite Regress

- Let us consider again the recursive factorial function:

```
int Factorial(int n);
{
    if (n==1) {
        return 1;
    } else {
        return n*Factorial(n-1);
    }
}
```

- What happens if we call Factorial(0)?

Infinite Regress (cont'd)

$$
\begin{aligned}
\text { Factorial }(0) & =0 \star \text { Factorial }(-1) \\
& =0 \star(-1) \star \text { Factorial }(-2) \\
& =0 \star(-1) \star(-2) \star \text { Factorial }(-3)
\end{aligned}
$$

and so on, in an infinite regress.

When we execute this function call, we get "Segmentation fault (core dumped)".

The Towers of Hanoi

The Towers of Hanoi (cont'd)

- To Move the 4 disks from Peg 1 to Peg 3 using Peg 2 as an intermediate stop:
- Move the top 3 disks from Peg 1 to Peg 2 using Peg 3 as an intermediate stop.
- Move the remaining 1 disk from Peg 1 to Peg 3.
- Move 3 disks from Peg 2 to Peg 3 using Peg 1 as an intermediate stop.

Move 3 Disks from Peg 1 to Peg 2

Move 1 Disk from Peg 1 to Peg 3

Move 3 Disks from Peg 2 to Peg 3

3

Done!

A Recursive Solution

```
void MoveTowers(int n, int start, int finish, int spare)
{
        if (n==1){
        printf("Move a disk from peg %1d to peg %1d\n", start,
finish);
    } else {
        MoveTowers(n-1, start, spare, finish);
        printf("Move a disk from peg %1d to peg %1d\n", start,
finish);
        MoveTowers(n-1, spare, finish, start);
    }
}
```


Analysis

- Let us now compute the number of moves $L(n)$ that we need as a function of the number of disks n :

$$
\begin{aligned}
& L(1)=1 \\
& L(n)=L(n-1)+1+L(n-1)=2 * L(n-1)+1, n>1
\end{aligned}
$$

The above are called recurrence relations. They can be solved to give:

$$
L(n)=2^{n}-1
$$

Analysis (cont'd)

- Techniques for solving recurrence relations are taught in the Algorithms and Complexity course.
- The running time of algorithm MoveTowers is exponential in the size of the input.

Readings

- T. A. Standish. Data structures, algorithms and software principles in C.
Chapter 3.
- ($\pi \rho о \alpha \iota \rho \varepsilon \tau \iota \kappa \alpha ́) ~ R . ~ S e d g e w i c k . ~ A \lambda y o ́ \rho ı \vartheta ิ \mu o \imath ~ \sigma \varepsilon ~ C . ~$ Кєф. 5.1 каı 5.2.

