
Recursion

Manolis Koubarakis

Data Structures and Programming 
Techniques

1



Recursion

• Recursion is a fundamental concept of 
Computer Science.

• It usually help us to write simple and elegant 
solutions to programming problems.

• You will learn to program recursively by 
working with many examples to develop your 
skills.

Data Structures and Programming 
Techniques

2



Recursive Programs

• A recursive program is one that calls itself in 
order to obtain a solution to a problem.

• The reason that it calls itself is to compute a 
solution to a subproblem that has the following 
properties:
– The subproblem is smaller than the problem to be 

solved.
– The subproblem can be solved directly (as a base 

case) or recursively by making a recursive call.
– The subproblem’s solution can be combined with 

solutions to other subproblems to obtain a solution 
to the overall problem.

Data Structures and Programming 
Techniques

3



Example

• Let us consider a simple program to add up all the 
squares of integers from m to n.

• An iterative function to do this is the following:

int SumSquares(int m, int n)

{

int i, sum;

sum=0;

for (i=m; i<=n; ++i) sum +=i*i;

return sum;

}

Data Structures and Programming 
Techniques

4



Recursive Sum of Squares

int SumSquares(int m, int n)

{

if (m<n) {

return m*m + SumSquares(m+1, n);

} else {

return m*m;

}

}

Recursive call

Base case

Data Structures and Programming 
Techniques

5



Comments

• In the case that the range m:n contains more than one 
number, the solution to the problem can be found by 
adding (a) the solution to the smaller subproblem of 
summing the squares in the range m+1:n and (b) the 
solution to the subproblem of finding the square of m. (a) is 
then solved in the same way (recursion).

• We stop when we reach the base case that occurs when 
the range m:n contains just one number, in which case 
m==n.

• This recursive solution can be called “going-up” recursion 
since the successive ranges are m+1:n,  m+2:n etc.

Data Structures and Programming 
Techniques

6



Going-Down Recursion

int SumSquares(int m, int n)

{

if (m<n) {

return SumSquares(m, n-1) + n*n;

} else {

return n*n;

}

}

Recursive call

Base case

Data Structures and Programming 
Techniques

7



int SumSquares(int m, int n)

{

int middle;

if (m==n) {

return m*m;

} else {

middle=(m+n)/2;

return

SumSquares(m,middle)+SumSquares(middle+1,n);

}

}

Recursion Combining Two Half-
Solutions

Recursive call

Base case

Recursive call
Data Structures and Programming 

Techniques
8



Comments

• The recursion here says that the sum of the squares  of the 
integers in the range m:n can be obtained by adding the 
sum of the squares of the left half range, m:middle, to 
the sum of the squares of the right half range, 
middle+1:n.

• We stop when we reach the base case that occurs when 
the range contains just one number, in which case m==n.

• The middle is computed by using integer division (operator 
/) which keeps the quotient and throws away the 
remainder.

Data Structures and Programming 
Techniques

9



Call Trees and Traces

• We can depict graphically the behaviour of 
recursive programs by drawing call trees or 
traces.

Data Structures and Programming 
Techniques

10



Call Trees

SumSquares(5,10)

SumSquares(5,7) SumSquares(8,10)

SumSquares(5,6) SumSquares(7,7)

SumSquares(5,5) SumSquares(6,6)

SumSquares(8,9)SumSquares(10,10)

SumSquares(8,8) SumSquares(9,9)

Data Structures and Programming 
Techniques

11



Annotated Call Trees

SumSquares(5,10)

SumSquares(5,7) SumSquares(8,10)

SumSquares(5,6) SumSquares(7,7)

SumSquares(5,5) SumSquares(6,6)

SumSquares(8,9)SumSquares(10,10)

SumSquares(8,8) SumSquares(9,9)

355

245110

61

25 36

64 81

100

145

49

Data Structures and Programming 
Techniques

12



Traces

SumSquares(5,10)=SumSquares(5,7)+SumSquares(8,10)=

=SumSquares(5,6)+SumSquares(7,7)

+SumSquares(8,9)+SumSquares(10,10)

=SumSquares(5,5)+SumSquares(6,6)

+SumSquares(7,7)

+SumSquares(8,8)+SumSquares(9,9)

+SumSquares(10,10)

=((25+36)+49)+((64+81)+100)

=(61+49)+(145+100)

=(110+245)

=355

Data Structures and Programming 
Techniques

13



Computing the Factorial

• Let us consider a simple program to compute the 
factorial n! of n.

• An iterative function to do this is the following:

int Factorial(int n)

{

int i, f;

f=1;

for (i=2; i<=n; ++i) f*=i;

return f;

}

Data Structures and Programming 
Techniques

14



Recursive Factorial

int Factorial(int n)

{

if (n==1) {

return 1;

} else {

return n*Factorial(n-1);

}

}
Recursive call

Base case

Data Structures and Programming 
Techniques

15



Computing the Factorial (cont’d)

• The previous program is a “going-down” 
recursion.

• Can you write a “going-up” recursion for 
factorial?

• Can you write a recursion combining two half-
solutions?

• The above tasks do not appear to be easy.

Data Structures and Programming 
Techniques

16



Computing the Factorial (cont’d)

• It is easier to first write a function 
Product(m,n) which multiplies together 
the numbers in the range m:n. 

• Then Factorial(n)=Product(1,n).

Data Structures and Programming 
Techniques

17



int Product(int m, int n)

{

int middle;

if (m==n) {

return m;

} else {

middle=(m+n)/2;

return Product(m,middle)*Product(middle+1,n);

}

}

Multiplying m:n Together Using Half-
Ranges

Recursive call

Base case

Recursive call
Data Structures and Programming 

Techniques
18



Reversing a Linked List

Data Structures and Programming 
Techniques

19

A

Airport

.
AirportLink

SAN

Link Airport Link

ORDDUS



The Result

Data Structures and Programming 
Techniques

20

A:

Airport

.
AirportLink

DUS

Link Airport Link

ORDSAN



Reversing a Linked List

• Let us now writing a function for reversing a 
linked list L. 

• The type NodeType has been defined in the 
previous lecture as follows:

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

Data Structures and Programming 
Techniques

21



Reversing a List Iteratively

• An iterative function for reversing a list is the following:

void Reverse(NodeType **L)

{

NodeType *R, *N, *L1;

L1=*L;

R=NULL;

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}

*L=R;

}

Data Structures and Programming 
Techniques

22



Reversing a List Iteratively (cont’d)

• In addition to variable L, the function uses the 
variables R, N, L1 which are pointers to 
structures of type NodeType. These variable are 
used as follows:
– L1 is used to traverse the list to be reversed.

– N always points to the previous node of the node L1
points to, as L1 traverses the list to be reversed.

– R is initially NULL and later points to the last node 
of the sublist of L which has been reversed already.

Data Structures and Programming 
Techniques

23



Before the while Loop

L1=*L;

R=NULL;

Data Structures and Programming 
Techniques

24

*L

Airport

.

AirportLink

DUS

Link Airport Link

L1

ORDSAN

L

R



After the First Execution of the while
Loop

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}

Data Structures and Programming 
Techniques

25

*L

Airport

.
AirportLink

DUS

Link Airport Link

L1

ORDSAN

L

RN

.



After the Second Execution of the 
while Loop

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}

Data Structures and Programming 
Techniques

26

*L

Airport

.
AirportLink

DUS

Link Airport Link

L1

ORDSAN

L

RN

.



After the Third Execution of the 
while Loop

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}

Data Structures and Programming 
Techniques

27

*L

Airport

.
AirportLink

DUS

Link Airport Link

L1

ORDSAN

L

RN

.



After the while Loop Terminates

*L=R;

Data Structures and Programming 
Techniques

28

*L

Airport

.
AirportLink

DUS

Link Airport Link

L1

ORDSAN

L

RN

.



Question

• If in our main program we have a list with a 
pointer A to its first node, how do we call the 
previous function?

Data Structures and Programming 
Techniques

29



Answer

• We should make the following call: 
Reverse(&A)

Data Structures and Programming 
Techniques

30



Example

• Let us now call Reverse(&A) for the 
following list.

Data Structures and Programming 
Techniques

31

A

Airport

.
AirportLink

SAN

Link Airport Link

ORDDUS



The Resulting List

Data Structures and Programming 
Techniques

32

A:

Airport

.
AirportLink

DUS

Link Airport Link

ORDSAN



Reversing Linked Lists (cont’d)

• A recursive solution to the problem of 
reversing a list L is found by partitioning the 
list into its head Head(L) and tail Tail(L)
and then concatenating the reverse of 
Tail(L) with Head(L).

Data Structures and Programming 
Techniques

33



Head and Tail of a List

• Let L be a list. Head(L) is a list 
containing the first node of L. Tail(L) is a 
list consisting of L’s second and succeeding 
nodes.

• If L==NULL then Head(L) and Tail(L)
are not defined.

• If L consists of a single node then Head(L) is 
the list that contains that node and Tail(L) 
is NULL.

Data Structures and Programming 
Techniques

34



Example

• Let L=(SAN, ORD, BRU, DUS). Then

Head(L)=(SAN) and

Tail(L)=(ORD, BRU, DUS).

Data Structures and Programming 
Techniques

35



Reversing Linked Lists (cont’d)

NodeType *Reverse(NodeType *L)

{

NodeType *Head, *Tail;

if (L==NULL) {

return NULL;

} else {

Partition(L, &Head, &Tail);

return Concat(Reverse(Tail), Head);

}

}

Data Structures and Programming 
Techniques

36



Reversing Linked Lists: Partitioning the 
List into Head and Tail

void Partition(NodeType *L, NodeType **Head, 

NodeType **Tail)

{

if (L != NULL) {

*Tail=L->Link;

*Head=L;

(*Head)->Link=NULL;

}

}

Data Structures and Programming 
Techniques

37



Example

• Let us execute Partition(L, &Head, 
&Tail) for the following list.

Data Structures and Programming 
Techniques

38

L

Airport

.
AirportLink

SAN

Link Airport Link

ORDDUS



Example (cont’d)

*Tail=L->Link;

*Head=L;

(*Head)->Link=NULL;

Data Structures and Programming 
Techniques

39

L

Airport

.
AirportLink

SAN

Link Airport Link

ORDDUS

*Head

Head

.

*Tail

Tail



Reversing Linked Lists: Concatenation

NodeType *Concat(NodeType *L1, NodeType *L2)

{

NodeType *N;

if (L1 == NULL) {

return L2;

} else {

N=L1;

while (N->Link != NULL) N=N->Link;

N->Link=L2;

return L1;

}

}

Data Structures and Programming 
Techniques

40



Example

• Let us execute Concat(L1,L2) for the 
following two lists

Data Structures and Programming 
Techniques

41

L1

Airport

.
AirportLink

SAN

Link Airport Link

ORDSAN

L2

Link

.



The Resulting List

Data Structures and Programming 
Techniques

42

L1

Airport

.
AirportLink

SAN

Link Airport Link

ORDSAN

L2



Infinite Regress

• Let us consider again the recursive factorial function:
int Factorial(int n);

{

if (n==1) {

return 1;

} else {

return n*Factorial(n-1);

}

}

• What happens if we call Factorial(0)?

Data Structures and Programming 
Techniques

43



Infinite Regress (cont’d)

Factorial(0)= 0 * Factorial(-1)

= 0 * (-1) * Factorial(-2)

= 0 * (-1) * (-2) * Factorial(-3)

and so on, in an infinite regress.

When we execute this function call, we get 
“Segmentation fault (core dumped)”.

Data Structures and Programming 
Techniques

44



The Towers of Hanoi

1 2 3

Data Structures and Programming 
Techniques

45



The Towers of Hanoi (cont’d)

• To Move the 4 disks from Peg 1 to Peg 3 using 
Peg 2 as an intermediate stop:

– Move the top 3 disks from Peg 1 to Peg 2 using 
Peg 3 as an intermediate stop.

– Move the remaining 1 disk from Peg 1 to Peg 3.

– Move 3 disks from Peg 2 to Peg 3 using Peg 1 as an 
intermediate stop.

Data Structures and Programming 
Techniques

46



Move 3 Disks from Peg 1 to Peg 2

1 2 3

Data Structures and Programming 
Techniques

47



Move 1 Disk from Peg 1 to Peg 3

1 2 3

Data Structures and Programming 
Techniques

48



Move 3 Disks from Peg 2 to Peg 3

1 2 3

Data Structures and Programming 
Techniques

49



Done!

1 2 3

Data Structures and Programming 
Techniques

50



A Recursive Solution

void MoveTowers(int n, int start, int finish, int spare)

{

if (n==1){

printf(“Move a disk from peg %1d to peg %1d\n”, start, 

finish);

} else {

MoveTowers(n-1, start, spare, finish);

printf(“Move a disk from peg %1d to peg %1d\n”, start, 

finish);

MoveTowers(n-1, spare, finish, start);

}

}

Data Structures and Programming 
Techniques

51



Analysis

• Let us now compute the number of moves 
L(n) that we need as a function of the 
number of disks n:

L(1)=1

L(n)=L(n-1)+1+L(n-1)=2*L(n-1)+1, n>1

The above are called recurrence relations. They can 
be solved to give:

L(n)=2n-1

Data Structures and Programming 
Techniques

52



Analysis (cont’d)

• Techniques for solving recurrence relations are 
taught in the Algorithms and Complexity 
course.

• The running time of algorithm MoveTowers
is exponential in the size of the input.

Data Structures and Programming 
Techniques

53



Readings

• T. A. Standish. Data structures, algorithms and 
software principles in C.

Chapter 3.

• (προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C. 
Κεφ. 5.1 και 5.2.

Data Structures and Programming 
Techniques

54


	Slide 1: Recursion
	Slide 2: Recursion
	Slide 3: Recursive Programs
	Slide 4: Example
	Slide 5: Recursive Sum of Squares
	Slide 6: Comments
	Slide 7: Going-Down Recursion
	Slide 8: Recursion Combining Two Half-Solutions
	Slide 9: Comments
	Slide 10: Call Trees and Traces
	Slide 11: Call Trees
	Slide 12: Annotated Call Trees
	Slide 13: Traces
	Slide 14: Computing the Factorial
	Slide 15: Recursive Factorial
	Slide 16: Computing the Factorial (cont’d)
	Slide 17: Computing the Factorial (cont’d)
	Slide 18: Multiplying m:n Together Using Half-Ranges
	Slide 19: Reversing a Linked List
	Slide 20: The Result
	Slide 21: Reversing a Linked List
	Slide 22: Reversing a List Iteratively
	Slide 23: Reversing a List Iteratively (cont’d)
	Slide 24: Before the while Loop
	Slide 25: After the First Execution of the while Loop
	Slide 26: After the Second Execution of the while Loop
	Slide 27: After the Third Execution of the while Loop
	Slide 28: After the while Loop Terminates
	Slide 29: Question
	Slide 30: Answer
	Slide 31: Example
	Slide 32: The Resulting List
	Slide 33: Reversing Linked Lists (cont’d)
	Slide 34: Head and Tail of a List
	Slide 35: Example
	Slide 36: Reversing Linked Lists (cont’d)
	Slide 37: Reversing Linked Lists: Partitioning the List into Head and Tail
	Slide 38: Example
	Slide 39: Example (cont’d)
	Slide 40: Reversing Linked Lists: Concatenation
	Slide 41: Example
	Slide 42: The Resulting List
	Slide 43: Infinite Regress
	Slide 44: Infinite Regress (cont’d)
	Slide 45: The Towers of Hanoi
	Slide 46: The Towers of Hanoi (cont’d)
	Slide 47: Move 3 Disks from Peg 1 to Peg 2
	Slide 48: Move 1 Disk from Peg 1 to Peg 3
	Slide 49: Move 3 Disks from Peg 2 to Peg 3
	Slide 50: Done!
	Slide 51: A Recursive Solution
	Slide 52: Analysis
	Slide 53: Analysis (cont’d)
	Slide 54: Readings

