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Recursion

• Recursion is a fundamental concept of 
Computer Science.

• It usually help us to write simple and elegant 
solutions to programming problems.

• You will learn to program recursively by 
working with many examples to develop your 
skills.
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Recursive Programs

• A recursive program is one that calls itself in 
order to obtain a solution to a problem.

• The reason that it calls itself is to compute a 
solution to a subproblem that has the following 
properties:
– The subproblem is smaller than the problem to be 

solved.
– The subproblem can be solved directly (as a base 

case) or recursively by making a recursive call.
– The subproblem’s solution can be combined with 

solutions to other subproblems to obtain a solution 
to the overall problem.
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Example

• Let us consider a simple program to add up all the 
squares of integers from m to n.

• An iterative function to do this is the following:

int SumSquares(int m, int n)

{

int i, sum;

sum=0;

for (i=m; i<=n; ++i) sum +=i*i;

return sum;

}
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Recursive Sum of Squares

int SumSquares(int m, int n)

{

if (m<n) {

return m*m + SumSquares(m+1, n);

} else {

return m*m;

}

}

Recursive call

Base case
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Comments

• In the case that the range m:n contains more than one 
number, the solution to the problem can be found by 
adding (a) the solution to the smaller subproblem of 
summing the squares in the range m+1:n and (b) the 
solution to the subproblem of finding the square of m. (a) is 
then solved in the same way (recursion).

• We stop when we reach the base case that occurs when 
the range m:n contains just one number, in which case 
m==n.

• This recursive solution can be called “going-up” recursion 
since the successive ranges are m+1:n,  m+2:n etc.
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Going-Down Recursion

int SumSquares(int m, int n)

{

if (m<n) {

return SumSquares(m, n-1) + n*n;

} else {

return n*n;

}

}

Recursive call

Base case
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int SumSquares(int m, int n)

{

int middle;

if (m==n) {

return m*m;

} else {

middle=(m+n)/2;

return

SumSquares(m,middle)+SumSquares(middle+1,n);

}

}

Recursion Combining Two Half-
Solutions

Recursive call

Base case

Recursive call
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Comments

• The recursion here says that the sum of the squares  of the 
integers in the range m:n can be obtained by adding the 
sum of the squares of the left half range, m:middle, to 
the sum of the squares of the right half range, 
middle+1:n.

• We stop when we reach the base case that occurs when 
the range contains just one number, in which case m==n.

• The middle is computed by using integer division (operator 
/) which keeps the quotient and throws away the 
remainder.
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Call Trees and Traces

• We can depict graphically the behaviour of 
recursive programs by drawing call trees or 
traces.
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Call Trees

SumSquares(5,10)

SumSquares(5,7) SumSquares(8,10)

SumSquares(5,6) SumSquares(7,7)

SumSquares(5,5) SumSquares(6,6)

SumSquares(8,9)SumSquares(10,10)

SumSquares(8,8) SumSquares(9,9)
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Annotated Call Trees

SumSquares(5,10)

SumSquares(5,7) SumSquares(8,10)

SumSquares(5,6) SumSquares(7,7)

SumSquares(5,5) SumSquares(6,6)

SumSquares(8,9)SumSquares(10,10)

SumSquares(8,8) SumSquares(9,9)

355

245110

61

25 36

64 81

100

145

49
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Traces

SumSquares(5,10)=SumSquares(5,7)+SumSquares(8,10)=

=SumSquares(5,6)+SumSquares(7,7)

+SumSquares(8,9)+SumSquares(10,10)

=SumSquares(5,5)+SumSquares(6,6)

+SumSquares(7,7)

+SumSquares(8,8)+SumSquares(9,9)

+SumSquares(10,10)

=((25+36)+49)+((64+81)+100)

=(61+49)+(145+100)

=(110+245)

=355
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Computing the Factorial

• Let us consider a simple program to compute the 
factorial n! of n.

• An iterative function to do this is the following:

int Factorial(int n)

{

int i, f;

f=1;

for (i=2; i<=n; ++i) f*=i;

return f;

}
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Recursive Factorial

int Factorial(int n)

{

if (n==1) {

return 1;

} else {

return n*Factorial(n-1);

}

}
Recursive call

Base case
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Computing the Factorial (cont’d)

• The previous program is a “going-down” 
recursion.

• Can you write a “going-up” recursion for 
factorial?

• Can you write a recursion combining two half-
solutions?

• The above tasks do not appear to be easy.
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Computing the Factorial (cont’d)

• It is easier to first write a function 
Product(m,n) which multiplies together 
the numbers in the range m:n. 

• Then Factorial(n)=Product(1,n).
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int Product(int m, int n)

{

int middle;

if (m==n) {

return m;

} else {

middle=(m+n)/2;

return Product(m,middle)*Product(middle+1,n);

}

}

Multiplying m:n Together Using Half-
Ranges

Recursive call

Base case

Recursive call
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Reversing a Linked List
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The Result
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Reversing a Linked List

• Let us now writing a function for reversing a 
linked list L. 

• The type NodeType has been defined in the 
previous lecture as follows:

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;
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Reversing a List Iteratively

• An iterative function for reversing a list is the following:

void Reverse(NodeType **L)

{

NodeType *R, *N, *L1;

L1=*L;

R=NULL;

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}

*L=R;

}
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Reversing a List Iteratively (cont’d)

• In addition to variable L, the function uses the 
variables R, N, L1 which are pointers to 
structures of type NodeType. These variable are 
used as follows:
– L1 is used to traverse the list to be reversed.

– N always points to the previous node of the node L1
points to, as L1 traverses the list to be reversed.

– R is initially NULL and later points to the last node 
of the sublist of L which has been reversed already.
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Before the while Loop

L1=*L;

R=NULL;
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After the First Execution of the while
Loop

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}
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After the Second Execution of the 
while Loop

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}
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After the Third Execution of the 
while Loop

while (L1 != NULL) {

N=L1;

L1=L1->Link;

N->Link=R;

R=N;

}
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After the while Loop Terminates

*L=R;
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Question

• If in our main program we have a list with a 
pointer A to its first node, how do we call the 
previous function?
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Answer

• We should make the following call: 
Reverse(&A)
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Example

• Let us now call Reverse(&A) for the 
following list.
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A
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The Resulting List
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Reversing Linked Lists (cont’d)

• A recursive solution to the problem of 
reversing a list L is found by partitioning the 
list into its head Head(L) and tail Tail(L)
and then concatenating the reverse of 
Tail(L) with Head(L).
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Head and Tail of a List

• Let L be a list. Head(L) is a list 
containing the first node of L. Tail(L) is a 
list consisting of L’s second and succeeding 
nodes.

• If L==NULL then Head(L) and Tail(L)
are not defined.

• If L consists of a single node then Head(L) is 
the list that contains that node and Tail(L) 
is NULL.
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Example

• Let L=(SAN, ORD, BRU, DUS). Then

Head(L)=(SAN) and

Tail(L)=(ORD, BRU, DUS).
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Reversing Linked Lists (cont’d)

NodeType *Reverse(NodeType *L)

{

NodeType *Head, *Tail;

if (L==NULL) {

return NULL;

} else {

Partition(L, &Head, &Tail);

return Concat(Reverse(Tail), Head);

}

}
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Reversing Linked Lists: Partitioning the 
List into Head and Tail

void Partition(NodeType *L, NodeType **Head, 

NodeType **Tail)

{

if (L != NULL) {

*Tail=L->Link;

*Head=L;

(*Head)->Link=NULL;

}

}
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Example

• Let us execute Partition(L, &Head, 
&Tail) for the following list.
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Example (cont’d)

*Tail=L->Link;

*Head=L;

(*Head)->Link=NULL;
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Reversing Linked Lists: Concatenation

NodeType *Concat(NodeType *L1, NodeType *L2)

{

NodeType *N;

if (L1 == NULL) {

return L2;

} else {

N=L1;

while (N->Link != NULL) N=N->Link;

N->Link=L2;

return L1;

}

}
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Example

• Let us execute Concat(L1,L2) for the 
following two lists
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The Resulting List
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Infinite Regress

• Let us consider again the recursive factorial function:
int Factorial(int n);

{

if (n==1) {

return 1;

} else {

return n*Factorial(n-1);

}

}

• What happens if we call Factorial(0)?
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Infinite Regress (cont’d)

Factorial(0)= 0 * Factorial(-1)

= 0 * (-1) * Factorial(-2)

= 0 * (-1) * (-2) * Factorial(-3)

and so on, in an infinite regress.

When we execute this function call, we get 
“Segmentation fault (core dumped)”.
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The Towers of Hanoi

1 2 3
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The Towers of Hanoi (cont’d)

• To Move the 4 disks from Peg 1 to Peg 3 using 
Peg 2 as an intermediate stop:

– Move the top 3 disks from Peg 1 to Peg 2 using 
Peg 3 as an intermediate stop.

– Move the remaining 1 disk from Peg 1 to Peg 3.

– Move 3 disks from Peg 2 to Peg 3 using Peg 1 as an 
intermediate stop.
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Move 3 Disks from Peg 1 to Peg 2

1 2 3
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Move 1 Disk from Peg 1 to Peg 3

1 2 3
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Move 3 Disks from Peg 2 to Peg 3

1 2 3
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Done!

1 2 3
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A Recursive Solution

void MoveTowers(int n, int start, int finish, int spare)

{

if (n==1){

printf(“Move a disk from peg %1d to peg %1d\n”, start, 

finish);

} else {

MoveTowers(n-1, start, spare, finish);

printf(“Move a disk from peg %1d to peg %1d\n”, start, 

finish);

MoveTowers(n-1, spare, finish, start);

}

}
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Analysis

• Let us now compute the number of moves 
L(n) that we need as a function of the 
number of disks n:

L(1)=1

L(n)=L(n-1)+1+L(n-1)=2*L(n-1)+1, n>1

The above are called recurrence relations. They can 
be solved to give:

L(n)=2n-1
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Analysis (cont’d)

• Techniques for solving recurrence relations are 
taught in the Algorithms and Complexity 
course.

• The running time of algorithm MoveTowers
is exponential in the size of the input.
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Readings

• T. A. Standish. Data structures, algorithms and 
software principles in C.

Chapter 3.

• (προαιρετικά) R. Sedgewick. Αλγόριθμοι σε C. 
Κεφ. 5.1 και 5.2.
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