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AVL Trees

• We will now introduce AVL trees that have the 
property that they are kept almost balanced 
but not completely balanced. In this way we 
have 𝑂(log 𝑛) search time but also 𝑂(log 𝑛) 
insertion and deletion time in the worst case.

• AVL trees have been named after their 
inventors, Russian mathematicians Adelson-
Velskii and Landis.
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Definitions - Reminder

• We define the height of a binary search tree 
to be the length of the longest path from the 
root to some leaf. 

• The height of a tree with only one node is 0. 
The height of the empty tree is defined to be 

    −1.
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Definitions – AVL Trees

• If N is a node in a binary search tree T, then we 
say that N has the AVL property if the heights of 
the left and right subtrees of N are either equal 
or they differ by 1 (equivalently, they differ by at 
most 1).

• The AVL property is called height-balance 
property (ιδιότητα ισορροπίας ύψους) by some 
authors.

• An AVL tree is a binary search tree in which each 
node has the AVL property.
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Example – AVL tree
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Example – AVL tree
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Example – AVL tree
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Fact

• It is easy to see that all the subtrees of an AVL 
tree are AVL trees.
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Example – Non-AVL tree

• Which nodes violate the AVL property?
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Example (cont’d)
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Example – Non-AVL tree

• Which nodes violate the AVL property?
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Example (cont’d)
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Example – Non-AVL tree

• Which nodes violate the AVL property?
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Example (cont’d)
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Extended AVL Trees

• If we consider trees in their extended form 
then it is enough if the AVL property holds for 
internal nodes since it trivially holds for 
external ones.

• In the insertion and deletion algorithms given 
below, we will not show the trees in their 
extended form. It is easy to modify the 
algorithms to apply to that case.
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Example
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• In each node, we also show the height of the 
subtree rooted at that node.
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Proposition

• The height of an AVL tree storing 𝑛 keys is 
𝑂 log 𝑛 .

• In other words, the AVL property has the 
important consequence of keeping the height 
of an AVL tree small!

• Proof?
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Proof

• In the proof we assume that the tree is in its 
extended form.

• Instead of trying to find an upper bound for the 
height of an AVL tree directly, we will find a lower 
bound on the minimum number of internal 
nodes 𝒏(𝒉) of an AVL tree with height ℎ. From 
this, it will be easy to derive our result.

• Notice that 𝑛 1 = 1 because an AVL tree of 
height 1 must have at least one internal node.

• Similarly, 𝑛 2 = 2 because an AVL tree of height 
2 must have at least two internal nodes.
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Proof (cont’d)

• An AVL tree of height ℎ ≥ 3 with the 
minimum number of internal nodes is such 
that both subtrees of the root are AVL trees 
with the minimum number of internal nodes: 
one with height ℎ − 1 and one with height 
ℎ − 2.

• Taking the root into account, we obtain the 
following formula: 

𝑛 ℎ = 1 + 𝑛 ℎ − 1 + 𝑛 ℎ − 2 .
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Proof (cont’d)

• The previous formula implies that 𝑛(ℎ) is a 
strictly increasing function of ℎ. 

• Thus, we know that 𝑛 ℎ − 1 > 𝑛 ℎ − 2 .

• Replacing 𝑛(ℎ − 1) with 𝑛(ℎ − 2) in the 
formula of the previous slide and dropping the 
1, we get that for ℎ ≥ 3,

 𝑛 ℎ > 2 𝑛(ℎ − 2).
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Proof (cont’d)

• The previous formula shows that 𝑛(ℎ) at least doubles 
each time ℎ increases by 2, which intuitively means 
that 𝒏 𝒉  grows exponentially.

• To show this formally, we apply the formula of the 
previous slide repeatedly, yielding the following series 
of inequalities:

𝑛 ℎ > 2 𝑛 ℎ − 2

 > 4 𝑛 ℎ − 4
> 8 𝑛 ℎ − 6

⋮
> 2𝑖  𝑛(ℎ − 2𝑖)
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Proof (cont’d)

• That is, 𝑛(ℎ) > 2𝑖𝑛(ℎ − 2𝑖), for any integer 𝑖 such that ℎ − 2𝑖 ≥ 1.
• Since we already know the values of 𝑛 1  and 𝑛(2), we pick 𝑖 so 

that ℎ − 2𝑖 is equal to either 1 or 2. That is, we pick 𝑖 =
ℎ

2
− 1.

• By substituting the value of 𝑖 in the formula above, we obtain, for 
ℎ ≥ 3,

𝑛 ℎ >  2
ℎ
2 −1

 𝑛(ℎ − 2
ℎ

2
+ 2)

≥ 2
ℎ
2 −1

𝑛(1)

≥ 2
ℎ

2
−1.
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Proof (cont’d)

• By taking logarithms of both sides of the 
previous formula, we obtain

log 𝑛(ℎ) >
ℎ

2
− 1.

• This is equivalent to ℎ < 2 log 𝑛(ℎ) + 2.

• This implies that an AVL tree storing 𝑛 keys 
has height at most 2 log 𝑛 + 2.

Data Structures and Programming 
Techniques

23



Definitions

• We will say that a node of an AVL tree is left-
higher if the height of its left subtree is 1 plus 
the height of its right subtree.

• We will say that a node of an AVL tree is right-
higher if the height of its right subtree is 1 
plus the height of its left subtree.
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Notation

• In drawing trees, we shall show a left-higher 
node by “/”, a node whose balance factor 
(παράγοντας ισοζύγισης) is equal by “−”, and 
a right-higher node by “\”.

• We will use notation “//” or “\\” for nodes 
that do not have the AVL property, and they 
have longer paths on the left or right 
respectively.
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Example AVL Tree
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Example AVL Tree
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Example AVL Tree
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Example AVL Tree
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Example AVL Tree
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Example Non-AVL Tree
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Example Non-AVL Tree
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Example Non-AVL Tree
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Example Non-AVL Tree
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Keeping Track of Balance Factors

• By adding a new member to each node of an AVL tree, 
we can keep track of whether the left and right subtree 
are of equal height, or whether one is higher than the 
other.

typedef enum {LeftHigh, Equal, RightHigh} BalanceFactor;

typedef struct AVLTreeNodeTag {

            BalanceFactor BF;

            KeyType       Key;

            struct AVLTreeNodeTag *LLink;

            struct AVLTreeNodeTag *RLink;

        } AVLTreeNode;
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Keeping Track of Balance Factors: an 
Alternative

• An alternative to keeping track of balance 
factors in an implementation of AVL trees is to 
keep the height of each node in the struct that 
represents the node.
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Insertion in AVL Trees

• The insertion algorithm for AVL trees first 
proceeds exactly as the insertion algorithm 
for binary search trees.

• Once the new item is inserted in the tree, 
some rebalancing might need to take place to 
restore the AVL property in all nodes of the 
tree.
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Example: Building an AVL Tree

• Insert ORY

ORY
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Insert JFK

ORY

JFK
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Insert BRU

• The AVL property is violated at node ORY so we need 
to rebalance the tree as we will explain now.

ORY

JFK

BRU

Data Structures and Programming 
Techniques

40

−

/

//



Rebalancing an AVL Tree

• In the insertion and deletion algorithm for AVL 
trees that we will present now, it is possible 
that the AVL property will be lost at some 
point. 

• In this case we apply to the tree some shape-
changing transformations to restore the AVL 
property. These transformations are the 
rotations we have introduced in the previous 
lecture.
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Insertion in an AVL Tree

• If a node N is “-” and we insert a new node in its left or 
right subtree then the AVL tree property at node N is 
not lost and N becomes “/” or “\” respectively.

• If a node Ν is “/” and we insert a node in its right 
subtree (i.e., its shorter subtree) then the AVL tree 
property at node N is not lost and N becomes “-”.

• If a node Ν is “\” and we insert a node in its left 
subtree (i.e., its shorter subtree) then the AVL tree 
property at node N is not lost and N becomes “-”.
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Insertion (cont’d)

• Let us consider the case when a new node has been 
inserted into the taller subtree of a node and its height has 
increased, so that now one subtree has height 2 more than 
the other, and the node no longer satisfies the AVL 
property.

• Let us assume we have inserted the new node into the 
right subtree of node r, its height has increased, and r 
previously was right higher (so now it will become “\\”).

• So, r is the node where the AVL property was lost and let x 
be the root of its right subtree. Then there are three cases 
to consider depending on the balance factor of x. 
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Insertion (cont’d)

• Case 1: x is right higher. Therefore, the new node was inserted in 
the right subtree of x. Then, we can do a single left rotation that 
restores the AVL property as shown on the next slide.

• We have rotated the node x upward to the root, dropping r down 
into the left subtree of x. The subtree T2 of nodes with keys 
between those of r and x now becomes the right subtree of r.

• Note that in the tallest subtree we had height h+2, then height h+3 
when the new node was inserted, then height h+2 again when the 
AVL property was restored. Thus, there are no further height 
increases in the tree that would force us to examine nodes other 
than r.

• Note that r was the closest ancestor of the inserted node where the 
AVL property was lost. We do not need to consider any other nodes 
higher than r.
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Single Left Rotation at r

r

x
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Insertion (cont’d)

• Case 2: x is left higher. Therefore, the new node was inserted in the 
left subtree of x. In this case, we have to move down two levels to 
the node w that roots the left subtree of x. w will be the new root 
of the local tree that will result from the rotation operations. 

• In this case, to restore the AVL property, we have to do one right 
rotation at x (so that w becomes the parent of x), and one left 
rotation at r (moving w up to become the new root of the subtree). 

• We will call these two operations double right-left rotation at x and 
r.

• Note that after the rotation the heights have been restored to h+2 
as they were before the rotation, so no other nodes of the tree 
need to be considered.
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Double Right-Left Rotation at x and r

r

x
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Insertion (cont’d)

• In this case, the new balance factors of r and x 
depend on the balance factor of w after the node 
was inserted. The diagram shows the subtrees of w 
as having equal heights, but it is possible that w may 
be either left or right higher. The resulting balance 
factors are as follows:
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Insertion (cont’d)

• Case 3: Equal Height. This case cannot happen. 

• Remember that we have just inserted a new node into 
the subtree rooted at x, and this subtree now has 
height 2 more than the left subtree of the root. 

• The new node went either into the left or the right 
subtree of x. Hence its insertion increased the height 
of only one subtree of x. 

• If these subtrees had equal heights after the insertion, 
then the height of the full subtree rooted at x was not 
changed by the insertion, contrary to what we already 
know.
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Insertion (cont’d)

• Let us now consider the case symmetric to the 
one we considered so far: r was left higher 
and we introduced the new node in the left 
subtree of r.

• In this case we will use single right rotation 
and double left-right rotation to restore the 
AVL property.
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Single Right Rotation at r

r

x
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Double Left-Right Rotation at x and r

r

x
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Rotations are Local

• Rotations are done only when the height of a 
subtree has increased. After the rotations, the 
increase in height has been removed so no 
further rotations or changes of balance 
factors are done.

• So, the AVL property is restored with a single 
or a double rotation.
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Example: Building an AVL Tree

• Insert ORY

ORY
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Insert JFK

ORY

JFK
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Insert BRU

• The AVL property is violated at node ORY.

ORY

JFK

BRU
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Do a Single Right Rotation at ORY

JFK

BRU ORY
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Insert DUS, ZRH, MEX and ORD

JFK

BRU ORY

DUS MEX ZRH

ORD
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Insert NRT

JFK

BRU ORY

DUS MEX ZRH

ORD

NRT

The AVL property is violated 
at node MEX.
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Double Right-Left Rotation at ORD and 
MEX

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX
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Insert ARN and GLA

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX

ARN

GLA
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Insert GCM

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX

ARN

GLA

GCM

The AVL property is 
violated at node DUS.
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Double Right-Left Rotation at GLA and 
DUS

JFK

BRU ORY

ZRH

ORD

NRT

MEX

ARN

GLA

GCM

DUS
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Deletion of a Node

• To delete a node from an AVL tree, we will use similar ideas with 
the ones we used for insertion.

• As we explained for general binary search trees, we can reduce the 
deletion problem to the case when the node x to be deleted has at 
most one child.

• Suppose x has two children. Then, we can find the immediate 
predecessor y of x under the inorder traversal by first taking the 
left child of x, and then moving right as far as possible to obtain y.

• The node y is guaranteed to have no right child because of the way 
it was found.

• We place y into the position in the tree occupied by x.
• Then, we delete y from its former position by proceeding as 

follows.
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Deletion of a Node (cont’d)

• Delete node y from the tree. 

• Since we know that y has at most one child, we 
delete y by simply linking the parent of y to the 
single child of y (or to NULL, if there is no child).

• The height of the subtree formerly rooted at y 
has been reduced by 1, so we must trace the 
effects of this change on height through all the 
nodes on the path from the parent of y back to 
the root of the tree.
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Example of Deletion in an AVL Tree
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Delete p
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Replace p with o and Delete o
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Resulting Tree
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Tracing the Effects of the Deletions

• We must now trace the effects of this change on 
height through all the nodes on the path from the 
parent of y (i.e., from n) to the root of the tree.
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Tracing the Effects (cont’d)

• To trace the effects of the change on height through all the nodes 
on the path from the parent of y back to the root of the tree we 
proceed as follows.

• We use a Boolean variable shorter to show if the height of a 
subtree has been shortened. The action to be taken at each node 
depends on the value of shorter, on the balance factor of the 
node and sometimes on the balance factor of a child of the node.

• The Boolean variable shorter is initially TRUE. 
• The following steps are to be done for each node p on the path 

from the parent of y to the root of the tree, provided shorter 
remains TRUE. 

• When shorter becomes FALSE, then no further changes are 
needed, and the algorithm terminates.
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Case 1: No rotation

• The current node p has balance factor equal 
(i.e., “-”) . 

• The balance factor of p is changed accordingly 
as its left or right subtree has been shortened, 
and shorter becomes FALSE.

Data Structures and Programming 
Techniques

72



Case 1 Graphically
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Case 2: No rotation

• The balance factor of p is not equal, and the 
taller subtree was shortened. 

• We will change the balance factor of p to 
equal (i.e., “-”) and leave shorter as TRUE 
because the height of tree rooted at p has 
changed.
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Case 2 Graphically
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Case 3

• The balance factor of p is not equal and the 
shorter subtree was shortened. 

• The height requirement for an AVL tree is 
now violated at p, so we apply a rotation as 
follows to restore balance.

• Let q be the root of the taller subtree of p (the 
one not shortened). We have three cases 
according to the balance factor of q.
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Case 3a: Single left rotation

• The balance factor of q is equal (i.e., “-”). A 
single left rotation at p (with changes to the 
balance factors of p and q) restores balance, 
and shorter becomes FALSE.
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Case 3a Graphically
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Case 3b: Single left rotation

• The balance factor of q is the same as that of 
p. 

• We will apply a single left rotation at p, set the 
balance factors of p and q to equal, and leave 
shorter as TRUE.
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Case 3b Graphically
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Case 3c: Double right-left rotation

• The balance factors of p and q are opposite.

• We will apply a double right-left rotation at q 
and p, set the balance factor of the new root 
to equal and the other balance factors as 
appropriate, and leave shorter as TRUE.

• Exercise: construct a table that shows how to 
set the balance factors of the other nodes.
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Case 3c Graphically
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Symmetric Cases

• Notice that our figures show only one case of 
the “not equal” balance factor of node p (i.e., 
“\”). The other case (i.e., “/”) is symmetric.
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Example of Deletion in an AVL Tree
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Delete p
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Replace p with o and Delete o
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Resulting Tree
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Applying the Deletion Algorithm

• We must now trace the effects of this change on 
height through all the nodes on the path from n to 
the root of the tree.

• As we said, we will use a Boolean variable shorter 
to show if the height of a subtree has been 
shortened. 

• The Boolean variable shorter is initially TRUE.

Data Structures and Programming 
Techniques

88



Applying the Deletion Algorithm

• The balance factor of the node n is not equal 
(it is “\”) and the taller subtree was shortened.

• We have Case 2 of the algorithm where no 
rotation is required.

• We will change the balance factor of n to 
equal and leave shorter as TRUE because 
the height of tree rooted at n has changed. 
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Resulting Tree
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Applying the Deletion Algorithm

• Now we move to node o and examine its balance 
factor: it is not equal (it is “\\”) and the shorter 
subtree (the subtree rooted at n) was shortened.

• We will apply a rotation to restore balance.

• The root of the taller subtree of o (the one not 
shortened) is  s and with balance factor of “\” (same 
as o). Therefore, we have case 3b of the algorithm. 

• We will apply a single left rotation at o, set the 
balance factors of o and s to equal, and leave 
shorter as TRUE.
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Single Left Rotation at o
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Resulting Tree
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Applying the Algorithm

• Now we move to node m and examine its balance factor: it 
is not equal (it is “//”) and the shorter subtree was 
shortened.

• We will apply a rotation to restore balance.
• The root of the taller subtree of m (the one not shortened) 

is e with balance factor of “\” (opposite to m). Therefore, 
we have Case 3c of the algorithm. 

• We will apply a double left-right rotation at e and m, set the 
balance factors of the new root j to equal and the balance 
factors of e and m as appropriate, and leave shorter as 
TRUE.

• Since we have reached the root of the tree, the algorithm 
terminates.
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Double Left-Right Rotation at e and m
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Resulting Tree
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Implementing the Deletion Algorithm

• The part of the deletion algorithm that restores 
the AVL property can be implemented by a while 
loop that checks whether  shorter is still 
TRUE and, if it is, it continues until it reaches the 
root of the tree.

• In each iteration, one of the three cases that we 
presented should be applied.

• Alternatively, it can be implemented by a 
recursive algorithm.
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Search in an AVL Tree

• Since an AVL tree is a binary search tree, the 
search algorithm is as in the case of binary 
search trees.
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Complexity of Operations on AVL Trees

• The operations of search, insertion and deletion 
in an AVL tree visit the nodes along a root-to-leaf 
path of the tree, plus, possibly, their siblings.

• There is a going-down phase which typically 
involves search, and a going-up phase which 
involves rotations.

• The complexity of the work done at each node is 
𝑂 1 . 

• Thus, the worst-case complexity for search, 
insertion and deletion in an AVL tree with height 
ℎ and 𝑛 nodes is 𝑶 𝒉 = 𝑶 𝐥𝐨𝐠 𝒏 .
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C.
– Chapter 9. Section 9.8.

• R. Kruse, C.L. Tondo and B.Leung. Data Structures 
and Program Design in C.
– Chapter 9. Section 9.4.

• M. T. Goodrich, R. Tamassia and Michael H. 
Goldwasser. Data Structures and Algorithms in 
Java. 6th edition. John Wiley and Sons, 2014.
– Section 11.3
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Readings (cont’d)

• You can see an implementation of AVL trees at 
the following links:

– https://github.com/chatziko-k08/lecture-
code/blob/master/include/ADTSet.h

– https://github.com/chatziko-k08/lecture-
code/blob/master/modules/UsingAVL/ADTSet.c

Data Structures and Programming 
Techniques

101

https://github.com/chatziko-k08/lecture-code/blob/master/include/ADTSet.h
https://github.com/chatziko-k08/lecture-code/blob/master/include/ADTSet.h
https://github.com/chatziko-k08/lecture-code/blob/master/modules/UsingAVL/ADTSet.c
https://github.com/chatziko-k08/lecture-code/blob/master/modules/UsingAVL/ADTSet.c

	Slide 1: AVL Trees
	Slide 2: AVL Trees
	Slide 3: Definitions - Reminder
	Slide 4: Definitions – AVL Trees
	Slide 5: Example – AVL tree
	Slide 6: Example – AVL tree
	Slide 7: Example – AVL tree
	Slide 8: Fact
	Slide 9: Example – Non-AVL tree
	Slide 10: Example (cont’d)
	Slide 11: Example – Non-AVL tree
	Slide 12: Example (cont’d)
	Slide 13: Example – Non-AVL tree
	Slide 14: Example (cont’d)
	Slide 15: Extended AVL Trees
	Slide 16: Example
	Slide 17: Proposition
	Slide 18: Proof
	Slide 19: Proof (cont’d)
	Slide 20: Proof (cont’d)
	Slide 21: Proof (cont’d)
	Slide 22: Proof (cont’d)
	Slide 23: Proof (cont’d)
	Slide 24: Definitions
	Slide 25: Notation
	Slide 26: Example AVL Tree
	Slide 27: Example AVL Tree
	Slide 28: Example AVL Tree
	Slide 29: Example AVL Tree
	Slide 30: Example AVL Tree
	Slide 31: Example Non-AVL Tree
	Slide 32: Example Non-AVL Tree
	Slide 33: Example Non-AVL Tree
	Slide 34: Example Non-AVL Tree
	Slide 35: Keeping Track of Balance Factors
	Slide 36: Keeping Track of Balance Factors: an Alternative
	Slide 37: Insertion in AVL Trees
	Slide 38: Example: Building an AVL Tree
	Slide 39: Insert JFK
	Slide 40: Insert BRU
	Slide 41: Rebalancing an AVL Tree
	Slide 42: Insertion in an AVL Tree
	Slide 43: Insertion (cont’d)
	Slide 44: Insertion (cont’d)
	Slide 45: Single Left Rotation at r
	Slide 46: Insertion (cont’d)
	Slide 47: Double Right-Left Rotation at x and r
	Slide 48: Insertion (cont’d)
	Slide 49: Insertion (cont’d)
	Slide 50: Insertion (cont’d)
	Slide 51: Single Right Rotation at r
	Slide 52: Double Left-Right Rotation at x and r
	Slide 53: Rotations are Local
	Slide 54: Example: Building an AVL Tree
	Slide 55: Insert JFK
	Slide 56: Insert BRU
	Slide 57: Do a Single Right Rotation at ORY
	Slide 58: Insert DUS, ZRH, MEX and ORD
	Slide 59: Insert NRT
	Slide 60: Double Right-Left Rotation at ORD and MEX
	Slide 61: Insert ARN and GLA
	Slide 62: Insert GCM
	Slide 63: Double Right-Left Rotation at GLA and DUS
	Slide 64: Deletion of a Node
	Slide 65: Deletion of a Node (cont’d)
	Slide 66: Example of Deletion in an AVL Tree
	Slide 67: Delete p
	Slide 68: Replace p with o and Delete o
	Slide 69: Resulting Tree
	Slide 70: Tracing the Effects of the Deletions
	Slide 71: Tracing the Effects (cont’d)
	Slide 72: Case 1: No rotation
	Slide 73: Case 1 Graphically
	Slide 74: Case 2: No rotation
	Slide 75: Case 2 Graphically
	Slide 76: Case 3
	Slide 77: Case 3a: Single left rotation
	Slide 78: Case 3a Graphically
	Slide 79: Case 3b: Single left rotation
	Slide 80: Case 3b Graphically
	Slide 81: Case 3c: Double right-left rotation
	Slide 82: Case 3c Graphically
	Slide 83: Symmetric Cases
	Slide 84: Example of Deletion in an AVL Tree
	Slide 85: Delete p
	Slide 86: Replace p with o and Delete o
	Slide 87: Resulting Tree
	Slide 88: Applying the Deletion Algorithm
	Slide 89: Applying the Deletion Algorithm
	Slide 90: Resulting Tree
	Slide 91: Applying the Deletion Algorithm
	Slide 92: Single Left Rotation at o
	Slide 93: Resulting Tree
	Slide 94: Applying the Algorithm
	Slide 95: Double Left-Right Rotation at e and m
	Slide 96: Resulting Tree
	Slide 97: Implementing the Deletion Algorithm
	Slide 98: Search in an AVL Tree
	Slide 99: Complexity of Operations on AVL Trees
	Slide 100: Readings
	Slide 101: Readings (cont’d)

