
AVL Trees

Manolis Koubarakis

Data Structures and Programming
Techniques

1

AVL Trees

• We will now introduce AVL trees that have the
property that they are kept almost balanced
but not completely balanced. In this way we
have 𝑂(log 𝑛) search time but also 𝑂(log 𝑛)
insertion and deletion time in the worst case.

• AVL trees have been named after their
inventors, Russian mathematicians Adelson-
Velskii and Landis.

Data Structures and Programming
Techniques

2

Definitions - Reminder

• We define the height of a binary search tree
to be the length of the longest path from the
root to some leaf.

• The height of a tree with only one node is 0.
The height of the empty tree is defined to be

 −1.

Data Structures and Programming
Techniques

3

Definitions – AVL Trees

• If N is a node in a binary search tree T, then we
say that N has the AVL property if the heights of
the left and right subtrees of N are either equal
or they differ by 1 (equivalently, they differ by at
most 1).

• The AVL property is called height-balance
property (ιδιότητα ισορροπίας ύψους) by some
authors.

• An AVL tree is a binary search tree in which each
node has the AVL property.

Data Structures and Programming
Techniques

4

Example – AVL tree

Data Structures and Programming
Techniques

5

Example – AVL tree

Data Structures and Programming
Techniques

6

Example – AVL tree

Data Structures and Programming
Techniques

7

Fact

• It is easy to see that all the subtrees of an AVL
tree are AVL trees.

Data Structures and Programming
Techniques

8

Example – Non-AVL tree

• Which nodes violate the AVL property?

Data Structures and Programming
Techniques

9

Example (cont’d)

Data Structures and Programming
Techniques

10

Example – Non-AVL tree

• Which nodes violate the AVL property?

Data Structures and Programming
Techniques

11

Example (cont’d)

Data Structures and Programming
Techniques

12

Example – Non-AVL tree

• Which nodes violate the AVL property?

Data Structures and Programming
Techniques

13

Example (cont’d)

Data Structures and Programming
Techniques

14

Extended AVL Trees

• If we consider trees in their extended form
then it is enough if the AVL property holds for
internal nodes since it trivially holds for
external ones.

• In the insertion and deletion algorithms given
below, we will not show the trees in their
extended form. It is easy to modify the
algorithms to apply to that case.

Data Structures and Programming
Techniques

15

Example

Data Structures and Programming
Techniques

16

• In each node, we also show the height of the
subtree rooted at that node.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

Proposition

• The height of an AVL tree storing 𝑛 keys is
𝑂 log 𝑛 .

• In other words, the AVL property has the
important consequence of keeping the height
of an AVL tree small!

• Proof?

Data Structures and Programming
Techniques

17

Proof

• In the proof we assume that the tree is in its
extended form.

• Instead of trying to find an upper bound for the
height of an AVL tree directly, we will find a lower
bound on the minimum number of internal
nodes 𝒏(𝒉) of an AVL tree with height ℎ. From
this, it will be easy to derive our result.

• Notice that 𝑛 1 = 1 because an AVL tree of
height 1 must have at least one internal node.

• Similarly, 𝑛 2 = 2 because an AVL tree of height
2 must have at least two internal nodes.

Data Structures and Programming
Techniques

18

Proof (cont’d)

• An AVL tree of height ℎ ≥ 3 with the
minimum number of internal nodes is such
that both subtrees of the root are AVL trees
with the minimum number of internal nodes:
one with height ℎ − 1 and one with height
ℎ − 2.

• Taking the root into account, we obtain the
following formula:

𝑛 ℎ = 1 + 𝑛 ℎ − 1 + 𝑛 ℎ − 2 .

Data Structures and Programming
Techniques

19

Proof (cont’d)

• The previous formula implies that 𝑛(ℎ) is a
strictly increasing function of ℎ.

• Thus, we know that 𝑛 ℎ − 1 > 𝑛 ℎ − 2 .

• Replacing 𝑛(ℎ − 1) with 𝑛(ℎ − 2) in the
formula of the previous slide and dropping the
1, we get that for ℎ ≥ 3,

 𝑛 ℎ > 2 𝑛(ℎ − 2).

Data Structures and Programming
Techniques

20

Proof (cont’d)

• The previous formula shows that 𝑛(ℎ) at least doubles
each time ℎ increases by 2, which intuitively means
that 𝒏 𝒉 grows exponentially.

• To show this formally, we apply the formula of the
previous slide repeatedly, yielding the following series
of inequalities:

𝑛 ℎ > 2 𝑛 ℎ − 2

 > 4 𝑛 ℎ − 4
> 8 𝑛 ℎ − 6

⋮
> 2𝑖 𝑛(ℎ − 2𝑖)

Data Structures and Programming
Techniques

21

Proof (cont’d)

• That is, 𝑛(ℎ) > 2𝑖𝑛(ℎ − 2𝑖), for any integer 𝑖 such that ℎ − 2𝑖 ≥ 1.
• Since we already know the values of 𝑛 1 and 𝑛(2), we pick 𝑖 so

that ℎ − 2𝑖 is equal to either 1 or 2. That is, we pick 𝑖 =
ℎ

2
− 1.

• By substituting the value of 𝑖 in the formula above, we obtain, for
ℎ ≥ 3,

𝑛 ℎ > 2
ℎ
2 −1

 𝑛(ℎ − 2
ℎ

2
+ 2)

≥ 2
ℎ
2 −1

𝑛(1)

≥ 2
ℎ

2
−1.

Data Structures and Programming
Techniques

22

Proof (cont’d)

• By taking logarithms of both sides of the
previous formula, we obtain

log 𝑛(ℎ) >
ℎ

2
− 1.

• This is equivalent to ℎ < 2 log 𝑛(ℎ) + 2.

• This implies that an AVL tree storing 𝑛 keys
has height at most 2 log 𝑛 + 2.

Data Structures and Programming
Techniques

23

Definitions

• We will say that a node of an AVL tree is left-
higher if the height of its left subtree is 1 plus
the height of its right subtree.

• We will say that a node of an AVL tree is right-
higher if the height of its right subtree is 1
plus the height of its left subtree.

Data Structures and Programming
Techniques

24

Notation

• In drawing trees, we shall show a left-higher
node by “/”, a node whose balance factor
(παράγοντας ισοζύγισης) is equal by “−”, and
a right-higher node by “\”.

• We will use notation “//” or “\\” for nodes
that do not have the AVL property, and they
have longer paths on the left or right
respectively.

Data Structures and Programming
Techniques

25

Example AVL Tree

Data Structures and Programming
Techniques

26

−

Example AVL Tree

Data Structures and Programming
Techniques

27

/

−

Example AVL Tree

Data Structures and Programming
Techniques

28

\

− /

−

Example AVL Tree

Data Structures and Programming
Techniques

29

− −

−

−

−

\

Example AVL Tree

Data Structures and Programming
Techniques

30

−

/

−

−

/

−−−

−

−

Example Non-AVL Tree

Data Structures and Programming
Techniques

31

//

/

−

Example Non-AVL Tree

Data Structures and Programming
Techniques

32

\\

\\

\

−

−

Example Non-AVL Tree

Data Structures and Programming
Techniques

33

// \\

\

−

−

−

/

Example Non-AVL Tree

Data Structures and Programming
Techniques

34

\\

−

−

−

Keeping Track of Balance Factors

• By adding a new member to each node of an AVL tree,
we can keep track of whether the left and right subtree
are of equal height, or whether one is higher than the
other.

typedef enum {LeftHigh, Equal, RightHigh} BalanceFactor;

typedef struct AVLTreeNodeTag {

 BalanceFactor BF;

 KeyType Key;

 struct AVLTreeNodeTag *LLink;

 struct AVLTreeNodeTag *RLink;

 } AVLTreeNode;

Data Structures and Programming
Techniques

35

Keeping Track of Balance Factors: an
Alternative

• An alternative to keeping track of balance
factors in an implementation of AVL trees is to
keep the height of each node in the struct that
represents the node.

Data Structures and Programming
Techniques

36

Insertion in AVL Trees

• The insertion algorithm for AVL trees first
proceeds exactly as the insertion algorithm
for binary search trees.

• Once the new item is inserted in the tree,
some rebalancing might need to take place to
restore the AVL property in all nodes of the
tree.

Data Structures and Programming
Techniques

37

Example: Building an AVL Tree

• Insert ORY

ORY

Data Structures and Programming
Techniques

38

−

Insert JFK

ORY

JFK

Data Structures and Programming
Techniques

39

−

/

Insert BRU

• The AVL property is violated at node ORY so we need
to rebalance the tree as we will explain now.

ORY

JFK

BRU

Data Structures and Programming
Techniques

40

−

/

//

Rebalancing an AVL Tree

• In the insertion and deletion algorithm for AVL
trees that we will present now, it is possible
that the AVL property will be lost at some
point.

• In this case we apply to the tree some shape-
changing transformations to restore the AVL
property. These transformations are the
rotations we have introduced in the previous
lecture.

Data Structures and Programming
Techniques

41

Insertion in an AVL Tree

• If a node N is “-” and we insert a new node in its left or
right subtree then the AVL tree property at node N is
not lost and N becomes “/” or “\” respectively.

• If a node Ν is “/” and we insert a node in its right
subtree (i.e., its shorter subtree) then the AVL tree
property at node N is not lost and N becomes “-”.

• If a node Ν is “\” and we insert a node in its left
subtree (i.e., its shorter subtree) then the AVL tree
property at node N is not lost and N becomes “-”.

Data Structures and Programming
Techniques

42

Insertion (cont’d)

• Let us consider the case when a new node has been
inserted into the taller subtree of a node and its height has
increased, so that now one subtree has height 2 more than
the other, and the node no longer satisfies the AVL
property.

• Let us assume we have inserted the new node into the
right subtree of node r, its height has increased, and r
previously was right higher (so now it will become “\\”).

• So, r is the node where the AVL property was lost and let x
be the root of its right subtree. Then there are three cases
to consider depending on the balance factor of x.

Data Structures and Programming
Techniques

43

Insertion (cont’d)

• Case 1: x is right higher. Therefore, the new node was inserted in
the right subtree of x. Then, we can do a single left rotation that
restores the AVL property as shown on the next slide.

• We have rotated the node x upward to the root, dropping r down
into the left subtree of x. The subtree T2 of nodes with keys
between those of r and x now becomes the right subtree of r.

• Note that in the tallest subtree we had height h+2, then height h+3
when the new node was inserted, then height h+2 again when the
AVL property was restored. Thus, there are no further height
increases in the tree that would force us to examine nodes other
than r.

• Note that r was the closest ancestor of the inserted node where the
AVL property was lost. We do not need to consider any other nodes
higher than r.

Data Structures and Programming
Techniques

44

Single Left Rotation at r

r

x

Data Structures and Programming
Techniques

45

\

\\

T1

T2

h

h h

h

T1 T2h h

x

r

−

−

Tree height h+3 Tree height h+2

T3

New node

T3

New node

Insertion (cont’d)

• Case 2: x is left higher. Therefore, the new node was inserted in the
left subtree of x. In this case, we have to move down two levels to
the node w that roots the left subtree of x. w will be the new root
of the local tree that will result from the rotation operations.

• In this case, to restore the AVL property, we have to do one right
rotation at x (so that w becomes the parent of x), and one left
rotation at r (moving w up to become the new root of the subtree).

• We will call these two operations double right-left rotation at x and
r.

• Note that after the rotation the heights have been restored to h+2
as they were before the rotation, so no other nodes of the tree
need to be considered.

Data Structures and Programming
Techniques

46

Double Right-Left Rotation at x and r

r

x

Data Structures and Programming
Techniques

47

/

\\

T1

T2

h

h-1
or
h

hT1h

w

r

One of T2 or T3 has the new node and height h
Tree height h+3

Tree height h+2

w

−

x

T4

h-1
or
h

h T4

T3

T2
T3

Insertion (cont’d)

• In this case, the new balance factors of r and x
depend on the balance factor of w after the node
was inserted. The diagram shows the subtrees of w
as having equal heights, but it is possible that w may
be either left or right higher. The resulting balance
factors are as follows:

Data Structures and Programming
Techniques

48

Old w New r New x

− − −

/ − \

\ / −

Insertion (cont’d)

• Case 3: Equal Height. This case cannot happen.

• Remember that we have just inserted a new node into
the subtree rooted at x, and this subtree now has
height 2 more than the left subtree of the root.

• The new node went either into the left or the right
subtree of x. Hence its insertion increased the height
of only one subtree of x.

• If these subtrees had equal heights after the insertion,
then the height of the full subtree rooted at x was not
changed by the insertion, contrary to what we already
know.

Data Structures and Programming
Techniques

49

Insertion (cont’d)

• Let us now consider the case symmetric to the
one we considered so far: r was left higher
and we introduced the new node in the left
subtree of r.

• In this case we will use single right rotation
and double left-right rotation to restore the
AVL property.

Data Structures and Programming
Techniques

50

Single Right Rotation at r

r

x

Data Structures and Programming
Techniques

51

/

//

T2

T3 h

hh
T2 T3h h

x

r

Tree height h+3 Tree height h+2

−

−

New node

T1

h T1

Double Left-Right Rotation at x and r

r

x

Data Structures and Programming
Techniques

52

\

//

T1h
hT1h

w

r

One of T2 or T3 has the new node and height h
Tree height h+3

Tree height h+2

w

−

x

T4

h T4

h-1
or
h

T3T2

h-1
or
h

T3T2

Rotations are Local

• Rotations are done only when the height of a
subtree has increased. After the rotations, the
increase in height has been removed so no
further rotations or changes of balance
factors are done.

• So, the AVL property is restored with a single
or a double rotation.

Data Structures and Programming
Techniques

53

Example: Building an AVL Tree

• Insert ORY

ORY

Data Structures and Programming
Techniques

54

−

Insert JFK

ORY

JFK

Data Structures and Programming
Techniques

55

−

/

Insert BRU

• The AVL property is violated at node ORY.

ORY

JFK

BRU

Data Structures and Programming
Techniques

56

−

/

//

Do a Single Right Rotation at ORY

JFK

BRU ORY

Data Structures and Programming
Techniques

57

−

−−

Insert DUS, ZRH, MEX and ORD

JFK

BRU ORY

DUS MEX ZRH

ORD

Data Structures and Programming
Techniques

58

−

− −\

/\

\

Insert NRT

JFK

BRU ORY

DUS MEX ZRH

ORD

NRT

The AVL property is violated
at node MEX.

Data Structures and Programming
Techniques

59
−

− −

/

\\

/\

\

Double Right-Left Rotation at ORD and
MEX

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX

Data Structures and Programming
Techniques

60

− −

−−

\

−

/

\

Insert ARN and GLA

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX

ARN

GLA

Data Structures and Programming
Techniques

61

− − −

− −− \

\ /

−

Insert GCM

JFK

BRU ORY

DUS ZRH

ORD

NRT

MEX

ARN

GLA

GCM

The AVL property is
violated at node DUS.

Data Structures and Programming
Techniques

62

−

− −

−− −

/

/

\\

\

−

Double Right-Left Rotation at GLA and
DUS

JFK

BRU ORY

ZRH

ORD

NRT

MEX

ARN

GLA

GCM

DUS

Data Structures and Programming
Techniques

63

− −

−

− −

−−

\

−

/

−

Deletion of a Node

• To delete a node from an AVL tree, we will use similar ideas with
the ones we used for insertion.

• As we explained for general binary search trees, we can reduce the
deletion problem to the case when the node x to be deleted has at
most one child.

• Suppose x has two children. Then, we can find the immediate
predecessor y of x under the inorder traversal by first taking the
left child of x, and then moving right as far as possible to obtain y.

• The node y is guaranteed to have no right child because of the way
it was found.

• We place y into the position in the tree occupied by x.
• Then, we delete y from its former position by proceeding as

follows.

Data Structures and Programming
Techniques

64

Deletion of a Node (cont’d)

• Delete node y from the tree.

• Since we know that y has at most one child, we
delete y by simply linking the parent of y to the
single child of y (or to NULL, if there is no child).

• The height of the subtree formerly rooted at y
has been reduced by 1, so we must trace the
effects of this change on height through all the
nodes on the path from the parent of y back to
the root of the tree.

Data Structures and Programming
Techniques

65

Example of Deletion in an AVL Tree

Data Structures and Programming
Techniques

66

m/

e

j

k

l

h

ig

f

c

b d

a

p

n s

o

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

− −

\

\

\

/

Delete p

Data Structures and Programming
Techniques

67

m/

e

j

k

l

h

ig

f

c

b d

a

p

n s

o

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

− −

\

\

\

/

The immediate predecessor of p under the
inorder traversal is o

Replace p with o and Delete o

Data Structures and Programming
Techniques

68

m/

e

j

k

l

h

ig

f

c

b d

a

p

n s

o

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

− −

\

\

\

/

o

Resulting Tree

Data Structures and Programming
Techniques

69

m/

e

j

k

l

h

ig

f

c

b d

a

n s

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

−

\\

\

/

o

−

Tracing the Effects of the Deletions

• We must now trace the effects of this change on
height through all the nodes on the path from the
parent of y (i.e., from n) to the root of the tree.

Data Structures and Programming
Techniques

70

Tracing the Effects (cont’d)

• To trace the effects of the change on height through all the nodes
on the path from the parent of y back to the root of the tree we
proceed as follows.

• We use a Boolean variable shorter to show if the height of a
subtree has been shortened. The action to be taken at each node
depends on the value of shorter, on the balance factor of the
node and sometimes on the balance factor of a child of the node.

• The Boolean variable shorter is initially TRUE.
• The following steps are to be done for each node p on the path

from the parent of y to the root of the tree, provided shorter
remains TRUE.

• When shorter becomes FALSE, then no further changes are
needed, and the algorithm terminates.

Data Structures and Programming
Techniques

71

Case 1: No rotation

• The current node p has balance factor equal
(i.e., “-”) .

• The balance factor of p is changed accordingly
as its left or right subtree has been shortened,
and shorter becomes FALSE.

Data Structures and Programming
Techniques

72

Case 1 Graphically

Data Structures and Programming
Techniques

73

p−

Deleted node

T2 T1

p\

Height of tree rooted at p
unchanged

T2

T1

Case 2: No rotation

• The balance factor of p is not equal, and the
taller subtree was shortened.

• We will change the balance factor of p to
equal (i.e., “-”) and leave shorter as TRUE
because the height of tree rooted at p has
changed.

Data Structures and Programming
Techniques

74

Case 2 Graphically

Data Structures and Programming
Techniques

75

p/

Deleted node

T2

T1 T2

p−

Height of the tree
rooted at p reduced

T1

Case 3

• The balance factor of p is not equal and the
shorter subtree was shortened.

• The height requirement for an AVL tree is
now violated at p, so we apply a rotation as
follows to restore balance.

• Let q be the root of the taller subtree of p (the
one not shortened). We have three cases
according to the balance factor of q.

Data Structures and Programming
Techniques

76

Case 3a: Single left rotation

• The balance factor of q is equal (i.e., “-”). A
single left rotation at p (with changes to the
balance factors of p and q) restores balance,
and shorter becomes FALSE.

Data Structures and Programming
Techniques

77

Case 3a Graphically

Data Structures and Programming
Techniques

78

p\\

Deleted node

T2 T2

p

Height unchanged

T3

q

h-1

h h

−

T1

T3 h

h
h-1

\

/ q

T1

Case 3b: Single left rotation

• The balance factor of q is the same as that of
p.

• We will apply a single left rotation at p, set the
balance factors of p and q to equal, and leave
shorter as TRUE.

Data Structures and Programming
Techniques

79

Case 3b Graphically

Data Structures and Programming
Techniques

80

p\\

Deleted node
T2

p

Height reduced

T3

q

h-1

h-1
h

\

T1

T3 h

h-1h-1

−

− q

T2 T2

T1

Case 3c: Double right-left rotation

• The balance factors of p and q are opposite.

• We will apply a double right-left rotation at q
and p, set the balance factor of the new root
to equal and the other balance factors as
appropriate, and leave shorter as TRUE.

• Exercise: construct a table that shows how to
set the balance factors of the other nodes.

Data Structures and Programming
Techniques

81

Case 3c Graphically

Data Structures and Programming
Techniques

82

p\\

Deleted
node

T2

p

Height reduced

T4

q

h-1

h-1
or
h-2

h-1

/

T1 T4 h-1

h-1
or
h-2

h-1

− r

T3

T2

r

q

T3

T1

Symmetric Cases

• Notice that our figures show only one case of
the “not equal” balance factor of node p (i.e.,
“\”). The other case (i.e., “/”) is symmetric.

Data Structures and Programming
Techniques

83

Example of Deletion in an AVL Tree

Data Structures and Programming
Techniques

84

m/

e

j

k

l

h

ig

f

c

b d

a

p

n s

o

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

− −

\

\

\

/

Delete p

Data Structures and Programming
Techniques

85

m/

e

j

k

l

h

ig

f

c

b d

a

p

n s

o

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

− −

\

\

\

/

The immediate predecessor of p under the
inorder traversal is o

Replace p with o and Delete o

Data Structures and Programming
Techniques

86

m/

e

j

k

l

h

ig

f

c

b d

a

p

n s

o

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

− −

\

\

\

/

o

Resulting Tree

Data Structures and Programming
Techniques

87

m/

e

j

k

l

h

ig

f

c

b d

a

n s

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

−

\

\\

\

/

o

Applying the Deletion Algorithm

• We must now trace the effects of this change on
height through all the nodes on the path from n to
the root of the tree.

• As we said, we will use a Boolean variable shorter
to show if the height of a subtree has been
shortened.

• The Boolean variable shorter is initially TRUE.

Data Structures and Programming
Techniques

88

Applying the Deletion Algorithm

• The balance factor of the node n is not equal
(it is “\”) and the taller subtree was shortened.

• We have Case 2 of the algorithm where no
rotation is required.

• We will change the balance factor of n to
equal and leave shorter as TRUE because
the height of tree rooted at n has changed.

Data Structures and Programming
Techniques

89

Resulting Tree

Data Structures and Programming
Techniques

90

m/

e

j

k

l

h

ig

f

c

b d

a

n s

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

−

\\

\

/

o

−

Applying the Deletion Algorithm

• Now we move to node o and examine its balance
factor: it is not equal (it is “\\”) and the shorter
subtree (the subtree rooted at n) was shortened.

• We will apply a rotation to restore balance.

• The root of the taller subtree of o (the one not
shortened) is s and with balance factor of “\” (same
as o). Therefore, we have case 3b of the algorithm.

• We will apply a single left rotation at o, set the
balance factors of o and s to equal, and leave
shorter as TRUE.

Data Structures and Programming
Techniques

91

Single Left Rotation at o

Data Structures and Programming
Techniques

92

m/

e

j

k

l

h

ig

f

c

b d

a

n s

r

t

u

\

/

/

/

−

− −

\

/

/ −

− −

−

\\

\

/

o

−

Resulting Tree

Data Structures and Programming
Techniques

93

m//

e

j

k

l

h

ig

f

c

b d

a

o

n t

u

\

/

/

/

−

− −

\

/

/ −

−

−

/

s

−

−

− −r

Applying the Algorithm

• Now we move to node m and examine its balance factor: it
is not equal (it is “//”) and the shorter subtree was
shortened.

• We will apply a rotation to restore balance.
• The root of the taller subtree of m (the one not shortened)

is e with balance factor of “\” (opposite to m). Therefore,
we have Case 3c of the algorithm.

• We will apply a double left-right rotation at e and m, set the
balance factors of the new root j to equal and the balance
factors of e and m as appropriate, and leave shorter as
TRUE.

• Since we have reached the root of the tree, the algorithm
terminates.

Data Structures and Programming
Techniques

94

Double Left-Right Rotation at e and m

Data Structures and Programming
Techniques

95

m//

e

j

k

l

h

ig

f

c

b d

a

o

n t

u

\

/

/

/

−

− −

\

/

/ −

−

−

/

s

−

−

− −r

Resulting Tree

Data Structures and Programming
Techniques

96

j

e

h

g

f

c

b d

a

k

n

o

s

/

−

/

/ −

−

− /

m

−

−l

−

−

−

/

\

\

− − −

u

r t

/

Implementing the Deletion Algorithm

• The part of the deletion algorithm that restores
the AVL property can be implemented by a while
loop that checks whether shorter is still
TRUE and, if it is, it continues until it reaches the
root of the tree.

• In each iteration, one of the three cases that we
presented should be applied.

• Alternatively, it can be implemented by a
recursive algorithm.

Data Structures and Programming
Techniques

97

Search in an AVL Tree

• Since an AVL tree is a binary search tree, the
search algorithm is as in the case of binary
search trees.

Data Structures and Programming
Techniques

98

Complexity of Operations on AVL Trees

• The operations of search, insertion and deletion
in an AVL tree visit the nodes along a root-to-leaf
path of the tree, plus, possibly, their siblings.

• There is a going-down phase which typically
involves search, and a going-up phase which
involves rotations.

• The complexity of the work done at each node is
𝑂 1 .

• Thus, the worst-case complexity for search,
insertion and deletion in an AVL tree with height
ℎ and 𝑛 nodes is 𝑶 𝒉 = 𝑶 𝐥𝐨𝐠 𝒏 .

Data Structures and Programming
Techniques

99

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.
– Chapter 9. Section 9.8.

• R. Kruse, C.L. Tondo and B.Leung. Data Structures
and Program Design in C.
– Chapter 9. Section 9.4.

• M. T. Goodrich, R. Tamassia and Michael H.
Goldwasser. Data Structures and Algorithms in
Java. 6th edition. John Wiley and Sons, 2014.
– Section 11.3

Data Structures and Programming
Techniques

100

Readings (cont’d)

• You can see an implementation of AVL trees at
the following links:

– https://github.com/chatziko-k08/lecture-
code/blob/master/include/ADTSet.h

– https://github.com/chatziko-k08/lecture-
code/blob/master/modules/UsingAVL/ADTSet.c

Data Structures and Programming
Techniques

101

https://github.com/chatziko-k08/lecture-code/blob/master/include/ADTSet.h
https://github.com/chatziko-k08/lecture-code/blob/master/include/ADTSet.h
https://github.com/chatziko-k08/lecture-code/blob/master/modules/UsingAVL/ADTSet.c
https://github.com/chatziko-k08/lecture-code/blob/master/modules/UsingAVL/ADTSet.c

	Slide 1: AVL Trees
	Slide 2: AVL Trees
	Slide 3: Definitions - Reminder
	Slide 4: Definitions – AVL Trees
	Slide 5: Example – AVL tree
	Slide 6: Example – AVL tree
	Slide 7: Example – AVL tree
	Slide 8: Fact
	Slide 9: Example – Non-AVL tree
	Slide 10: Example (cont’d)
	Slide 11: Example – Non-AVL tree
	Slide 12: Example (cont’d)
	Slide 13: Example – Non-AVL tree
	Slide 14: Example (cont’d)
	Slide 15: Extended AVL Trees
	Slide 16: Example
	Slide 17: Proposition
	Slide 18: Proof
	Slide 19: Proof (cont’d)
	Slide 20: Proof (cont’d)
	Slide 21: Proof (cont’d)
	Slide 22: Proof (cont’d)
	Slide 23: Proof (cont’d)
	Slide 24: Definitions
	Slide 25: Notation
	Slide 26: Example AVL Tree
	Slide 27: Example AVL Tree
	Slide 28: Example AVL Tree
	Slide 29: Example AVL Tree
	Slide 30: Example AVL Tree
	Slide 31: Example Non-AVL Tree
	Slide 32: Example Non-AVL Tree
	Slide 33: Example Non-AVL Tree
	Slide 34: Example Non-AVL Tree
	Slide 35: Keeping Track of Balance Factors
	Slide 36: Keeping Track of Balance Factors: an Alternative
	Slide 37: Insertion in AVL Trees
	Slide 38: Example: Building an AVL Tree
	Slide 39: Insert JFK
	Slide 40: Insert BRU
	Slide 41: Rebalancing an AVL Tree
	Slide 42: Insertion in an AVL Tree
	Slide 43: Insertion (cont’d)
	Slide 44: Insertion (cont’d)
	Slide 45: Single Left Rotation at r
	Slide 46: Insertion (cont’d)
	Slide 47: Double Right-Left Rotation at x and r
	Slide 48: Insertion (cont’d)
	Slide 49: Insertion (cont’d)
	Slide 50: Insertion (cont’d)
	Slide 51: Single Right Rotation at r
	Slide 52: Double Left-Right Rotation at x and r
	Slide 53: Rotations are Local
	Slide 54: Example: Building an AVL Tree
	Slide 55: Insert JFK
	Slide 56: Insert BRU
	Slide 57: Do a Single Right Rotation at ORY
	Slide 58: Insert DUS, ZRH, MEX and ORD
	Slide 59: Insert NRT
	Slide 60: Double Right-Left Rotation at ORD and MEX
	Slide 61: Insert ARN and GLA
	Slide 62: Insert GCM
	Slide 63: Double Right-Left Rotation at GLA and DUS
	Slide 64: Deletion of a Node
	Slide 65: Deletion of a Node (cont’d)
	Slide 66: Example of Deletion in an AVL Tree
	Slide 67: Delete p
	Slide 68: Replace p with o and Delete o
	Slide 69: Resulting Tree
	Slide 70: Tracing the Effects of the Deletions
	Slide 71: Tracing the Effects (cont’d)
	Slide 72: Case 1: No rotation
	Slide 73: Case 1 Graphically
	Slide 74: Case 2: No rotation
	Slide 75: Case 2 Graphically
	Slide 76: Case 3
	Slide 77: Case 3a: Single left rotation
	Slide 78: Case 3a Graphically
	Slide 79: Case 3b: Single left rotation
	Slide 80: Case 3b Graphically
	Slide 81: Case 3c: Double right-left rotation
	Slide 82: Case 3c Graphically
	Slide 83: Symmetric Cases
	Slide 84: Example of Deletion in an AVL Tree
	Slide 85: Delete p
	Slide 86: Replace p with o and Delete o
	Slide 87: Resulting Tree
	Slide 88: Applying the Deletion Algorithm
	Slide 89: Applying the Deletion Algorithm
	Slide 90: Resulting Tree
	Slide 91: Applying the Deletion Algorithm
	Slide 92: Single Left Rotation at o
	Slide 93: Resulting Tree
	Slide 94: Applying the Algorithm
	Slide 95: Double Left-Right Rotation at e and m
	Slide 96: Resulting Tree
	Slide 97: Implementing the Deletion Algorithm
	Slide 98: Search in an AVL Tree
	Slide 99: Complexity of Operations on AVL Trees
	Slide 100: Readings
	Slide 101: Readings (cont’d)

