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Multi-Way Search Trees

• Multi-way trees (δένδρα πολλών δρόμων) are trees 
such that each internal node can store more than one 
key and can have more than two children.

• As in binary search trees, we assume that the entries
we store in a multi-way search tree are pairs of the 
form (𝒌, 𝒙) where 𝑘 is the key and 𝑥 the value
associated with the key.

• Example: Assume we store information about 
students. The key can be the student ID while the value 
can be information such as name, year of study etc.
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Definitions

• A tree is ordered (διατεταγμένο) if there is a 
linear ordering defined for the children of 
each node; that  is, we can identify children of 
a node as being the first, the second, third and 
so on.

• Let 𝑣 be a node of an ordered tree. We say 
that 𝑣 is a 𝒅-node if 𝑣 has 𝑑 children.
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Definitions (cont’d)

• A multi-way search tree (δένδρο αναζήτησης 
πολλών δρόμων) is an ordered tree 𝑇 that has 
the following properties:
– Each internal node of 𝑇 has at least 2 children. That is, 

each internal node is a 𝑑-node such that 𝑑 ≥ 2.
– Each internal 𝑑-node of 𝑇 with children 𝑣1, ⋯ , 𝑣𝑑

stores an ordered set of 𝑑 − 1 key-value entries 
𝑘1, 𝑥1 , ⋯ , 𝑘𝑑−1, 𝑥𝑑−1 , where 𝑘1 < ⋯ < 𝑘𝑑−1.

– Let us conveniently define 𝑘0 = −∞ and 𝑘𝑑 = +∞.
For each entry (𝑘, 𝑥) stored at a node in the subtree
of 𝑣 rooted at 𝑣𝑖 , 𝑖 = 1,⋯ , 𝑑, we have that 𝑘𝑖−1 <
𝑘 < 𝑘𝑖 .
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Definitions (cont’d)

• The external nodes of a multi-way search tree do not 
store any entries and are “dummy” nodes (i.e., our 
trees are extended trees).

• When 𝑚 ≥ 2 is the maximum number of children that 
a node is allowed to have, then we have an 𝒎-way 
search tree (δένδρο αναζήτησης 𝒎 δρόμων).

• A binary search tree is a special case of a multi-way 
search tree, where each internal node stores one entry 
and has two children (i.e., 𝑚 = 2).

• Since no duplicates are allowed by the previous 
definition, multi-way search trees are an appropriate 
data structure for implementing maps.
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Example Multi-Way Search Tree (𝑚 =
3)
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Proposition

• Let 𝑇 be an 𝑚-way search tree with height ℎ,
𝑛 entries and 𝑛𝐸 external nodes. Then, the 
following inequalities hold:

1. ℎ ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ 𝑛

3. 𝑛𝐸 = 𝑛 + 1

• Proof?
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Proof

• We will prove (1) first. 

• The lower bound can be seen by considering 
an 𝑚-way search tree like the one given on 
the next slide where we have one internal 
node and one entry in each node for levels 
0, 1, 2,⋯ , ℎ − 1 and level ℎ contains only 
external nodes.
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Proof (cont’d)
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Proof (cont’d)

• For the upper bound, consider an 𝑚-way search 
tree of height ℎ where each internal node in the 
levels 0 to ℎ − 1 has exactly 𝑚 children (the 
external nodes are at level ℎ ).

• These internal nodes are  σ𝑖=0
ℎ−1𝑚𝑖 =

𝑚ℎ−1

𝑚−1
in 

total. 

• Since each of these nodes has 𝑚 − 1 entries, the 
total number of entries in the internal nodes is 
𝑚ℎ − 1.
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Proof (cont’d)

• To prove the lower bound of (2), rewrite (1) 
and take logarithms in base 𝑚. The upper 
bound in (2) is the same as the lower bound in 
(1).
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Proof (cont’d)

• We will prove (3) by induction on the height 
ℎ of the tree.

• Base case: Let ℎ = 1. Then there is a single 
root node with 𝑛 entries and 𝑛 + 1 external 
nodes and the proposition holds.
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Proof (cont’d)

• Inductive step: Let ℎ > 1. If the root stores 𝑚
entries, then it has 𝑚 + 1 subtrees for which the 
inductive hypothesis holds. Therefore, each such 
subtree 𝑖 has  𝑝𝑖 entries and 𝑝𝑖 + 1 external 
nodes.  

Therefore, the tree has 𝐴 = 𝑚 +(σ𝑖=1
𝑚+1 𝑝𝑖) entries and

𝐵 = σ𝑖=1
𝑚+1(𝑝𝑖+1) = 𝑚 + 1 + (σ𝑖=1

𝑚+1 𝑝𝑖) = 𝐴 + 1
external nodes.
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Searching in a Multi-Way Search Tree

• Let 𝑇 be a multi-way search tree and 𝑘 be a key.
• The algorithm for searching for an entry with key 𝑘 is 

simple.
• We trace a path in 𝑇 starting at the root.
• When we are at a 𝑑-node 𝑣 during the search, we 

compare the key 𝑘 with the keys 𝑘1, ⋯ , 𝑘𝑑−1 stored at 
𝑣. 

• If 𝑘 = 𝑘𝑖, for some 𝑖, the search is successfully 
completed. Otherwise, we continue the search in the 
child 𝑣𝑖 of 𝑣 such that 𝑘𝑖−1 < 𝑘 < 𝑘𝑖 .

• If we reach an external node, then we know that there 
is no entry with key 𝑘 in 𝑇.

Data Structures and Programming 
Techniques

14



Example Multi-Way Search Tree
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Search for Key 12
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Search for Key 24
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Insertion in a Multi-Way Search Tree

• If we want to insert a new pair (𝑘, 𝑥) into a multi-way 
search tree, then we start by searching for this entry.

• If we find the entry, then we do not need to reinsert it 
(no duplicates are allowed).

• If we end up in an external node, then the entry is not 
in the tree. In this case, we return to the parent 𝑣 of 
the external node and attempt to insert the key there.

• If 𝑣 has space for one more key, then we insert the 
entry there. If not, we create a new node, we insert the 
entry in this node and make this node a child of 𝑣 in 
the appropriate position.
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Insert Key 28 (𝑚 = 3)
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Key 28 Inserted
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Insert Key 32
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Key 32 Inserted
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Insert Key 12
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Key 12 Inserted
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Deletion from a Multi-Way Search Tree

• The algorithm for deletion from a multi-way 
search tree is left as an exercise.
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Complexity of Operations

• Let us consider the time to search a 𝑚-way 
search tree for a given key.

• The time spent at a 𝑑-node depends on the 
implementation of the node. If we use a sorted 
array then, using binary search, we can search a 
node in 𝑂(log 𝑑) time.

• Thus, the time for a search operation in the tree 
is 𝑂 ℎ log𝑚 .

• The complexity of insertion and deletion is also 
𝑂 ℎ log𝑚 .
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Efficiency Considerations

• We know that maintaining perfect balance in 
binary search trees yields shortest average search 
paths, but the attempts to maintain perfect 
balance when we insert or delete nodes can incur 
costly rebalancing in which every node of the tree 
needs to be rearranged.

• AVL trees showed us one way to solve this 
problem by abandoning the goal of perfect 
balance and adopt the goal of keeping the trees 
“almost balanced”.
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Efficiency Considerations (cont’d)

• Multi-way search trees give us another way to 
solve this problem.

• The primary efficiency goal for a multi-way search 
tree is to keep the height as small as possible but 
permit the number of keys at each node to vary.

• We want the height of the tree ℎ to be a 
logarithmic function of 𝑛, the total number of 
entries stored in the tree.

• A search tree with logarithmic height is called a 
balanced search tree (ισορροπημένο ή 
ισοζυγισμένο δένδρο αναζήτησης).
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Balanced Multi-way Search Trees

• We will now study the following kinds of 
balanced multi-way search trees:

– (2,4) trees (this lecture)

– Red-black trees (forthcoming lectures)

– (a,b) trees (forthcoming lectures)

– B-trees (forthcoming lectures)
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(2,4) Trees

• A (2,4) tree or 2-3-4 tree is a multi-way search 
tree which has the following two properties:

– Size property: Every internal node contains at 
least one and at most three keys, and has at least 
two and at most four children.

– Depth property: All the external nodes are empty 
trees that have the same depth (lie on a single 
bottom level).
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Example
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Result

• Proposition. The height of a (2,4) tree storing 
𝑛 entries is 𝑂 log 𝑛 .

• Proof: Let ℎ be the height of a (2,4) tree 𝑇
storing 𝑛 entries. We justify the proposition by 
showing that

1

2
log(𝑛 + 1) ≤ ℎ

and 

ℎ ≤ log(𝑛 + 1).
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Result (cont’d)

• Note that by the size property, we have at most 4 
nodes at depth 1, at most 42nodes at depth 2, 
and so on. Thus, the number of external nodes of 
𝑇 is at most 4ℎ. 

• Similarly, by the size property, we have at least 2 
nodes at depth 1, at least 22 nodes at depth 2, 
and so on. Thus, the number of external nodes in 
𝑇 is at least 2ℎ.

• We also know that the number of external nodes 
is 𝑛 + 1.
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Result (cont’d)

• Therefore, we obtain
2ℎ ≤ 𝑛 + 1

and
𝑛 + 1 ≤ 4ℎ.

• Taking the logarithm in base 2 of each of the 
above terms, we get that

ℎ ≤ log(𝑛 + 1)
and

log(𝑛 + 1) ≤ 2ℎ.
• These inequalities prove our claims.
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Search in (2,4) Trees

• The algorithm for searching for an entry with 
key 𝑘 in a (2,4) tree is the same as the 
algorithm we presented for multi-way trees.
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Insertion in (2,4) Trees

• To insert a new entry (𝑘, 𝑥), with key 𝑘, into a 
(2,4) tree 𝑇, we first perform a search for 𝑘.

• Assuming that 𝑇 has no entry with key 𝑘, this 
search terminates unsuccessfully at an 
external node 𝑧. 

• Let 𝑣 be the parent of 𝑧. We insert the new 
entry into node 𝑣 and add a new child (an 
external node) to 𝑣 on the left of 𝑧.
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Insertion (cont’d)

• Our insertion method preserves the depth 
property, since we add a new external node at 
the same level as existing external nodes.

• But it might violate the size property. If a node 𝑣
was previously a 4-node, then it may become a 5-
node after the insertion which causes the tree to 
no longer be a (2,4) tree.

• This type of violation of the size property is called 
an overflow (υπερχείλιση) node at node 𝑣, and it 
must be resolved in order to restore the 
properties of a (2,4) tree.
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Dealing with Overflow Nodes

• Let 𝑣1, ⋯ , 𝑣5 be the children of 𝑣, and let 𝑘1, ⋯ , 𝑘4 be the 
keys stored at 𝑣. To remedy the overflow at node 𝑣, we 
perform a split operation (διαίρεση) on 𝑣 as follows.

• Replace 𝑣 with two nodes 𝑣′ and 𝑣′′, where
– 𝑣′ is a 3-node with children 𝑣1, 𝑣2, 𝑣3 storing keys 𝑘1 and 𝑘2
– 𝑣′′ is a 2-node with children 𝑣4, 𝑣5, storing key 𝑘4.

• If 𝑣 was the root of 𝑇, create a new root node 𝑢. Else, let 𝑢
be the parent of 𝑣.

• Insert key 𝑘3 into 𝑢 and make 𝑣′ and 𝑣′′ children of 𝑢, so 
that if 𝑣 was child 𝑖 of 𝑢, then 𝑣′ and 𝑣′′ become children 𝑖
and 𝑖 + 1 of 𝑢, respectively.
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Overflow at a 5-node
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The third key of 𝑣 inserted into the 
parent node 𝑢
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Node 𝑣 replaced with a 3-node 𝑣′ and 
a 2-node 𝑣′′
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Example

• Let us now see an example of a few insertions 
into an initially empty (2,4) tree.
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Insert 4

Data Structures and Programming 
Techniques

44

4



Insert 6
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Insert 12
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Insert 15 - Overflow
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Creation of New Root Node
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Insert 3
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Insert 5 - Overflow
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5 is Sent to the Parent Node
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Split
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Insert 10
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Insert 8
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Insertion (cont’d)

• Let us now see a more complicated example 
of insertion in a (2,4) tree.
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Initial Tree
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Insert 17 - Overflow
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15 is Sent to the Parent Node
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Overflow at the Root
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Creation of New Root
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Final Tree
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Complexity Analysis of Insertion

• The insertion algorithm consists of a downward phase where we 
find the node of the tree where the new entry will be inserted and, 
possibly, of an upward phase consisting of split operations.

• The downward phase has time complexity 𝑂 ℎ = 𝑂 log 𝑛 .
• A split operation affects a constant number of nodes of the tree 

and a constant number of entries stored at such nodes. Thus, it can 
be implemented in 𝑶(𝟏) time.

• As a consequence of a split operation on node 𝑣, a new overflow 
may arise at the parent 𝑢 of 𝑣. A split operation either eliminates 
the overflow or it propagates it into the parent of the current node. 
Hence, the number of split operations is bounded by the height of 
the tree, which is 𝑂 log 𝑛 .

• Therefore, the total time to perform an insertion is 𝑶 𝒍𝒐𝒈𝒏 .
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Removal in (2,4) Trees

• Let us now consider the removal of an entry with 
key 𝑘 from a (2,4) tree 𝑇.

• The first step of the algorithm is to search for key 
𝑘 as we have done for multi-way search trees.

• If the entry to be removed is found to be the 𝑖-th
entry (𝑘𝑖 , 𝑥𝑖) (where 𝑘𝑖 = 𝑘) in a node 𝑣 with 
only external-node children, we simply remove 
the entry from 𝑣 and remove the 𝑖-th external 
node of 𝑣.
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Removal (cont’d)

• Removing an entry from a node 𝑣 preserves 
the depth property, because we always 
remove an external node child from a node 𝑣
with only external-node children.

• However, we might violate the size property 
at 𝑣.
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Removal (cont’d)

• If 𝑣 was previously a 2-node, then, after the removal, it becomes a 
1-node with no entries.

• This type of violation of the size property is called an underflow
node at 𝑣.

• To remedy an underflow, we check whether an immediate sibling 
of 𝒗 is a 3-node or a 4-node. If we find such a sibling 𝑤, then we 
perform a transfer operation, in which we move a child of 𝑤 to 𝑣, a 
key of 𝑤 to the parent 𝑢 of 𝑣 and 𝑤, and a key of 𝑢 to 𝑣.

• If 𝑣 has only one sibling and this sibling is a 2-node, or if both 
immediate siblings of 𝑣 are 2-nodes, then we perform a fusion
operation, in which we merge 𝑣 with a sibling, creating a new node 
𝑣′, and move a key from the parent 𝑢 of 𝑣 to 𝑣′.

• If an underflow propagates all the way up to the root, then the root 
is deleted.
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Removal (cont’d)

• Suppose now that the entry we wish to remove is stored in the 𝑖-th
entry (𝑘𝑖 , 𝑥𝑖) at a node 𝑧 that has only internal nodes as children.

• Removing such an entry can always be reduced to the case where 
the entry to be removed is stored at a node 𝑣 whose children are 
external nodes.

• In this case, we swap the entry (𝑘𝑖 , 𝑥𝑖) with an appropriate entry 
that is stored at a node 𝑣 with external-node children as follows:
– We find the right-most internal node 𝑣 in the subtree rooted at the 𝑖-

th child of 𝑧, noting that the children of node 𝑣 are all external nodes. 
– We swap the entry (𝑘𝑖 , 𝑥𝑖) at 𝑧 with the last entry of 𝑣 which is 

deleted from 𝑣. The key of this last entry is the predecessor of 𝑘𝑖 in 
the natural ordering of the keys of the tree.

• Then, the algorithm proceeds as in the previous case by doing 
transfer and fusion operations if necessary.
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Example: Remove 12
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Key 11 is Moved to the Place of 12

• We could have also used 13 instead of 11 (namely, the 
successor of 12 in the natural ordering of the keys).
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Examples

• Let us now see some examples of removal 
from a (2,4) tree.
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Initial Tree
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Remove 4
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Transfer

Data Structures and Programming 
Techniques

75

8 11
13    14 17

12

10 15

6

5

𝑣

𝑤

𝑢



After the Transfer
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Remove 12
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Remove 12
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Fusion of 𝑤 and 𝑣
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After the Fusion
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Remove 13
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After the Removal of 13
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Remove the Root
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Complexity of Removal

• The removal of an entry consists of a downward phase for finding 
the entry to be removed and, possibly, of an upward phase of 
transfer and/or fusion operations.

• The downward phase has time complexity 𝑂 ℎ = 𝑂 log 𝑛 .
• A transfer operation is local to three nodes hence it takes 𝑂 1

time.
• A fusion operation at a node 𝑣 may cause a new underflow to occur 

at the parent 𝑢 of 𝑣, which in turn triggers a transfer or fusion at 𝑢.
• Hence, the number of fusion operations is bounded by the height 

of the tree which is 𝑂 log 𝑛 .
• Therefore, a removal operation can take 𝑶 𝒍𝒐𝒈𝒏 time in the 

worst case.
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Readings

• M. T. Goodrich, R. Tamassia and Michael H. 
Goldwasser. Data Structures and Algorithms in 
Java. 6th edition. John Wiley and Sons, 2014.

– Section 11.5

• R. Sedgewick. Αλγόριθμοι σε C. 3η 
Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος.

– Section 13.3
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