
Multi-Way Search Trees

Manolis Koubarakis

1
Data Structures and Programming

Techniques

Multi-Way Search Trees

• Multi-way trees (δένδρα πολλών δρόμων) are trees
such that each internal node can store more than one
key and can have more than two children.

• As in binary search trees, we assume that the entries
we store in a multi-way search tree are pairs of the
form (𝒌, 𝒙) where 𝑘 is the key and 𝑥 the value
associated with the key.

• Example: Assume we store information about
students. The key can be the student ID while the value
can be information such as name, year of study etc.

Data Structures and Programming
Techniques

2

Definitions

• A tree is ordered (διατεταγμένο) if there is a
linear ordering defined for the children of
each node; that is, we can identify children of
a node as being the first, the second, third and
so on.

• Let 𝑣 be a node of an ordered tree. We say
that 𝑣 is a 𝒅-node if 𝑣 has 𝑑 children.

Data Structures and Programming
Techniques

3

Definitions (cont’d)

• A multi-way search tree (δένδρο αναζήτησης
πολλών δρόμων) is an ordered tree 𝑇 that has
the following properties:
– Each internal node of 𝑇 has at least 2 children. That is,

each internal node is a 𝑑-node such that 𝑑 ≥ 2.
– Each internal 𝑑-node of 𝑇 with children 𝑣1, ⋯ , 𝑣𝑑

stores an ordered set of 𝑑 − 1 key-value entries
𝑘1, 𝑥1 , ⋯ , 𝑘𝑑−1, 𝑥𝑑−1 , where 𝑘1 < ⋯ < 𝑘𝑑−1.

– Let us conveniently define 𝑘0 = −∞ and 𝑘𝑑 = +∞.
For each entry (𝑘, 𝑥) stored at a node in the subtree
of 𝑣 rooted at 𝑣𝑖 , 𝑖 = 1,⋯ , 𝑑, we have that 𝑘𝑖−1 <
𝑘 < 𝑘𝑖 .

Data Structures and Programming
Techniques

4

Definitions (cont’d)

• The external nodes of a multi-way search tree do not
store any entries and are “dummy” nodes (i.e., our
trees are extended trees).

• When 𝑚 ≥ 2 is the maximum number of children that
a node is allowed to have, then we have an 𝒎-way
search tree (δένδρο αναζήτησης 𝒎 δρόμων).

• A binary search tree is a special case of a multi-way
search tree, where each internal node stores one entry
and has two children (i.e., 𝑚 = 2).

• Since no duplicates are allowed by the previous
definition, multi-way search trees are an appropriate
data structure for implementing maps.

Data Structures and Programming
Techniques

5

Example Multi-Way Search Tree (𝑚 =
3)

Data Structures and Programming
Techniques

6

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Proposition

• Let 𝑇 be an 𝑚-way search tree with height ℎ,
𝑛 entries and 𝑛𝐸 external nodes. Then, the
following inequalities hold:

1. ℎ ≤ 𝑛 ≤ 𝑚ℎ − 1

2. log𝑚(𝑛 + 1) ≤ ℎ ≤ 𝑛

3. 𝑛𝐸 = 𝑛 + 1

• Proof?

Data Structures and Programming
Techniques

7

Proof

• We will prove (1) first.

• The lower bound can be seen by considering
an 𝑚-way search tree like the one given on
the next slide where we have one internal
node and one entry in each node for levels
0, 1, 2,⋯ , ℎ − 1 and level ℎ contains only
external nodes.

Data Structures and Programming
Techniques

8

Proof (cont’d)

Data Structures and Programming
Techniques

9

ℎ

ℎ − 1

2

1

0

⋮

Proof (cont’d)

• For the upper bound, consider an 𝑚-way search
tree of height ℎ where each internal node in the
levels 0 to ℎ − 1 has exactly 𝑚 children (the
external nodes are at level ℎ).

• These internal nodes are σ𝑖=0
ℎ−1𝑚𝑖 =

𝑚ℎ−1

𝑚−1
in

total.

• Since each of these nodes has 𝑚 − 1 entries, the
total number of entries in the internal nodes is
𝑚ℎ − 1.

Data Structures and Programming
Techniques

10

Proof (cont’d)

• To prove the lower bound of (2), rewrite (1)
and take logarithms in base 𝑚. The upper
bound in (2) is the same as the lower bound in
(1).

Data Structures and Programming
Techniques

11

Proof (cont’d)

• We will prove (3) by induction on the height
ℎ of the tree.

• Base case: Let ℎ = 1. Then there is a single
root node with 𝑛 entries and 𝑛 + 1 external
nodes and the proposition holds.

Data Structures and Programming
Techniques

12

Proof (cont’d)

• Inductive step: Let ℎ > 1. If the root stores 𝑚
entries, then it has 𝑚 + 1 subtrees for which the
inductive hypothesis holds. Therefore, each such
subtree 𝑖 has 𝑝𝑖 entries and 𝑝𝑖 + 1 external
nodes.

Therefore, the tree has 𝐴 = 𝑚 +(σ𝑖=1
𝑚+1 𝑝𝑖) entries and

𝐵 = σ𝑖=1
𝑚+1(𝑝𝑖+1) = 𝑚 + 1 + (σ𝑖=1

𝑚+1 𝑝𝑖) = 𝐴 + 1
external nodes.

Data Structures and Programming
Techniques

13

Searching in a Multi-Way Search Tree

• Let 𝑇 be a multi-way search tree and 𝑘 be a key.
• The algorithm for searching for an entry with key 𝑘 is

simple.
• We trace a path in 𝑇 starting at the root.
• When we are at a 𝑑-node 𝑣 during the search, we

compare the key 𝑘 with the keys 𝑘1, ⋯ , 𝑘𝑑−1 stored at
𝑣.

• If 𝑘 = 𝑘𝑖, for some 𝑖, the search is successfully
completed. Otherwise, we continue the search in the
child 𝑣𝑖 of 𝑣 such that 𝑘𝑖−1 < 𝑘 < 𝑘𝑖 .

• If we reach an external node, then we know that there
is no entry with key 𝑘 in 𝑇.

Data Structures and Programming
Techniques

14

Example Multi-Way Search Tree

Data Structures and Programming
Techniques

15

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Search for Key 12

Data Structures and Programming
Techniques

16

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Unsuccessful search

Search for Key 24

Data Structures and Programming
Techniques

17

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Successful search

Insertion in a Multi-Way Search Tree

• If we want to insert a new pair (𝑘, 𝑥) into a multi-way
search tree, then we start by searching for this entry.

• If we find the entry, then we do not need to reinsert it
(no duplicates are allowed).

• If we end up in an external node, then the entry is not
in the tree. In this case, we return to the parent 𝑣 of
the external node and attempt to insert the key there.

• If 𝑣 has space for one more key, then we insert the
entry there. If not, we create a new node, we insert the
entry in this node and make this node a child of 𝑣 in
the appropriate position.

Data Structures and Programming
Techniques

18

Insert Key 28 (𝑚 = 3)

Data Structures and Programming
Techniques

19

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Unsuccessful search

Key 28 Inserted

Data Structures and Programming
Techniques

20

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17

Insert Key 32

Data Structures and Programming
Techniques

21

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17

Unsuccessful search

Key 32 Inserted

Data Structures and Programming
Techniques

22

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

Insert Key 12

Data Structures and Programming
Techniques

23

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

Unsuccessful Search

Key 12 Inserted

Data Structures and Programming
Techniques

24

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

12

Deletion from a Multi-Way Search Tree

• The algorithm for deletion from a multi-way
search tree is left as an exercise.

Data Structures and Programming
Techniques

25

Complexity of Operations

• Let us consider the time to search a 𝑚-way
search tree for a given key.

• The time spent at a 𝑑-node depends on the
implementation of the node. If we use a sorted
array then, using binary search, we can search a
node in 𝑂(log 𝑑) time.

• Thus, the time for a search operation in the tree
is 𝑂 ℎ log𝑚 .

• The complexity of insertion and deletion is also
𝑂 ℎ log𝑚 .

Data Structures and Programming
Techniques

26

Efficiency Considerations

• We know that maintaining perfect balance in
binary search trees yields shortest average search
paths, but the attempts to maintain perfect
balance when we insert or delete nodes can incur
costly rebalancing in which every node of the tree
needs to be rearranged.

• AVL trees showed us one way to solve this
problem by abandoning the goal of perfect
balance and adopt the goal of keeping the trees
“almost balanced”.

Data Structures and Programming
Techniques

27

Efficiency Considerations (cont’d)

• Multi-way search trees give us another way to
solve this problem.

• The primary efficiency goal for a multi-way search
tree is to keep the height as small as possible but
permit the number of keys at each node to vary.

• We want the height of the tree ℎ to be a
logarithmic function of 𝑛, the total number of
entries stored in the tree.

• A search tree with logarithmic height is called a
balanced search tree (ισορροπημένο ή
ισοζυγισμένο δένδρο αναζήτησης).

Data Structures and Programming
Techniques

28

Balanced Multi-way Search Trees

• We will now study the following kinds of
balanced multi-way search trees:

– (2,4) trees (this lecture)

– Red-black trees (forthcoming lectures)

– (a,b) trees (forthcoming lectures)

– B-trees (forthcoming lectures)

Data Structures and Programming
Techniques

29

(2,4) Trees

• A (2,4) tree or 2-3-4 tree is a multi-way search
tree which has the following two properties:

– Size property: Every internal node contains at
least one and at most three keys, and has at least
two and at most four children.

– Depth property: All the external nodes are empty
trees that have the same depth (lie on a single
bottom level).

Data Structures and Programming
Techniques

30

Example

Data Structures and Programming
Techniques

31

3 4 6 8 11
13 14 17

12

5 10 15

Example

Data Structures and Programming
Techniques

32

3 4

5 12

156 8 10

Result

• Proposition. The height of a (2,4) tree storing
𝑛 entries is 𝑂 log 𝑛 .

• Proof: Let ℎ be the height of a (2,4) tree 𝑇
storing 𝑛 entries. We justify the proposition by
showing that

1

2
log(𝑛 + 1) ≤ ℎ

and

ℎ ≤ log(𝑛 + 1).

Data Structures and Programming
Techniques

33

Result (cont’d)

• Note that by the size property, we have at most 4
nodes at depth 1, at most 42nodes at depth 2,
and so on. Thus, the number of external nodes of
𝑇 is at most 4ℎ.

• Similarly, by the size property, we have at least 2
nodes at depth 1, at least 22 nodes at depth 2,
and so on. Thus, the number of external nodes in
𝑇 is at least 2ℎ.

• We also know that the number of external nodes
is 𝑛 + 1.

Data Structures and Programming
Techniques

34

Result (cont’d)

• Therefore, we obtain
2ℎ ≤ 𝑛 + 1

and
𝑛 + 1 ≤ 4ℎ.

• Taking the logarithm in base 2 of each of the
above terms, we get that

ℎ ≤ log(𝑛 + 1)
and

log(𝑛 + 1) ≤ 2ℎ.
• These inequalities prove our claims.

Data Structures and Programming
Techniques

35

Search in (2,4) Trees

• The algorithm for searching for an entry with
key 𝑘 in a (2,4) tree is the same as the
algorithm we presented for multi-way trees.

Data Structures and Programming
Techniques

36

Insertion in (2,4) Trees

• To insert a new entry (𝑘, 𝑥), with key 𝑘, into a
(2,4) tree 𝑇, we first perform a search for 𝑘.

• Assuming that 𝑇 has no entry with key 𝑘, this
search terminates unsuccessfully at an
external node 𝑧.

• Let 𝑣 be the parent of 𝑧. We insert the new
entry into node 𝑣 and add a new child (an
external node) to 𝑣 on the left of 𝑧.

Data Structures and Programming
Techniques

37

Insertion (cont’d)

• Our insertion method preserves the depth
property, since we add a new external node at
the same level as existing external nodes.

• But it might violate the size property. If a node 𝑣
was previously a 4-node, then it may become a 5-
node after the insertion which causes the tree to
no longer be a (2,4) tree.

• This type of violation of the size property is called
an overflow (υπερχείλιση) node at node 𝑣, and it
must be resolved in order to restore the
properties of a (2,4) tree.

Data Structures and Programming
Techniques

38

Dealing with Overflow Nodes

• Let 𝑣1, ⋯ , 𝑣5 be the children of 𝑣, and let 𝑘1, ⋯ , 𝑘4 be the
keys stored at 𝑣. To remedy the overflow at node 𝑣, we
perform a split operation (διαίρεση) on 𝑣 as follows.

• Replace 𝑣 with two nodes 𝑣′ and 𝑣′′, where
– 𝑣′ is a 3-node with children 𝑣1, 𝑣2, 𝑣3 storing keys 𝑘1 and 𝑘2
– 𝑣′′ is a 2-node with children 𝑣4, 𝑣5, storing key 𝑘4.

• If 𝑣 was the root of 𝑇, create a new root node 𝑢. Else, let 𝑢
be the parent of 𝑣.

• Insert key 𝑘3 into 𝑢 and make 𝑣′ and 𝑣′′ children of 𝑢, so
that if 𝑣 was child 𝑖 of 𝑢, then 𝑣′ and 𝑣′′ become children 𝑖
and 𝑖 + 1 of 𝑢, respectively.

Data Structures and Programming
Techniques

39

Overflow at a 5-node

Data Structures and Programming
Techniques

40

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑘1 𝑘2 𝑘3 𝑘4

ℎ1 ℎ2 𝑢

𝑣 = 𝑢2
𝑢3𝑢1

The third key of 𝑣 inserted into the
parent node 𝑢

Data Structures and Programming
Techniques

41

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑘1 𝑘2 𝑘4

ℎ1 ℎ2 𝑢

𝑣 = 𝑢2
𝑘3

𝑢1 𝑢3

Node 𝑣 replaced with a 3-node 𝑣′ and
a 2-node 𝑣′′

Data Structures and Programming
Techniques

42

𝑣1 𝑣2 𝑣3 𝑣4
𝑣5

ℎ1 𝑘3 ℎ2 𝑢

𝑢1 𝑢4
𝑘1 𝑘2 𝑘4

𝑣′ = 𝑢2 𝑣′′ = 𝑢3

Example

• Let us now see an example of a few insertions
into an initially empty (2,4) tree.

Data Structures and Programming
Techniques

43

Insert 4

Data Structures and Programming
Techniques

44

4

Insert 6

Data Structures and Programming
Techniques

45

4 6

Insert 12

Data Structures and Programming
Techniques

46

4 6 12

Insert 15 - Overflow

Data Structures and Programming
Techniques

47

4 6 12 15

Creation of New Root Node

Data Structures and Programming
Techniques

48

4 6 15

12

Split

Data Structures and Programming
Techniques

49

4 6

12

15

Insert 3

Data Structures and Programming
Techniques

50

3 4 6

12

15

Insert 5 - Overflow

Data Structures and Programming
Techniques

51

3 4 5 6

12

15

5 is Sent to the Parent Node

Data Structures and Programming
Techniques

52

3 4 6

12

15

5

Split

Data Structures and Programming
Techniques

53

3 4

5 12

156

Insert 10

Data Structures and Programming
Techniques

54

3 4

5 12

156 10

Insert 8

Data Structures and Programming
Techniques

55

3 4

5 12

156 8 10

Insertion (cont’d)

• Let us now see a more complicated example
of insertion in a (2,4) tree.

Data Structures and Programming
Techniques

56

Initial Tree

Data Structures and Programming
Techniques

57

3 4

5 10 12

6 8 11 13 14 15

Insert 17 - Overflow

Data Structures and Programming
Techniques

58

3 4

5 10 12

6 8 11
13 14 15 17

15 is Sent to the Parent Node

Data Structures and Programming
Techniques

59

3 4

5 10 12

6 8 11
13 14 17

15

Split

Data Structures and Programming
Techniques

60

3 4

5 10 12 15

6 8 11
13 14 17

Overflow at the Root

Data Structures and Programming
Techniques

61

3 4

5 10 12 15

6 8 11
13 14 17

Creation of New Root

Data Structures and Programming
Techniques

62

3 4

5 10 15

6 8 11
13 14 17

12

Split

Data Structures and Programming
Techniques

63

3 4 6 8 11
13 14 17

12

5 10 15

Final Tree

Data Structures and Programming
Techniques

64

3 4 6 8 11
13 14 17

12

5 10 15

Complexity Analysis of Insertion

• The insertion algorithm consists of a downward phase where we
find the node of the tree where the new entry will be inserted and,
possibly, of an upward phase consisting of split operations.

• The downward phase has time complexity 𝑂 ℎ = 𝑂 log 𝑛 .
• A split operation affects a constant number of nodes of the tree

and a constant number of entries stored at such nodes. Thus, it can
be implemented in 𝑶(𝟏) time.

• As a consequence of a split operation on node 𝑣, a new overflow
may arise at the parent 𝑢 of 𝑣. A split operation either eliminates
the overflow or it propagates it into the parent of the current node.
Hence, the number of split operations is bounded by the height of
the tree, which is 𝑂 log 𝑛 .

• Therefore, the total time to perform an insertion is 𝑶 𝒍𝒐𝒈𝒏 .

Data Structures and Programming
Techniques

65

Removal in (2,4) Trees

• Let us now consider the removal of an entry with
key 𝑘 from a (2,4) tree 𝑇.

• The first step of the algorithm is to search for key
𝑘 as we have done for multi-way search trees.

• If the entry to be removed is found to be the 𝑖-th
entry (𝑘𝑖 , 𝑥𝑖) (where 𝑘𝑖 = 𝑘) in a node 𝑣 with
only external-node children, we simply remove
the entry from 𝑣 and remove the 𝑖-th external
node of 𝑣.

Data Structures and Programming
Techniques

66

Removal (cont’d)

• Removing an entry from a node 𝑣 preserves
the depth property, because we always
remove an external node child from a node 𝑣
with only external-node children.

• However, we might violate the size property
at 𝑣.

Data Structures and Programming
Techniques

67

Removal (cont’d)

• If 𝑣 was previously a 2-node, then, after the removal, it becomes a
1-node with no entries.

• This type of violation of the size property is called an underflow
node at 𝑣.

• To remedy an underflow, we check whether an immediate sibling
of 𝒗 is a 3-node or a 4-node. If we find such a sibling 𝑤, then we
perform a transfer operation, in which we move a child of 𝑤 to 𝑣, a
key of 𝑤 to the parent 𝑢 of 𝑣 and 𝑤, and a key of 𝑢 to 𝑣.

• If 𝑣 has only one sibling and this sibling is a 2-node, or if both
immediate siblings of 𝑣 are 2-nodes, then we perform a fusion
operation, in which we merge 𝑣 with a sibling, creating a new node
𝑣′, and move a key from the parent 𝑢 of 𝑣 to 𝑣′.

• If an underflow propagates all the way up to the root, then the root
is deleted.

Data Structures and Programming
Techniques

68

Removal (cont’d)

• Suppose now that the entry we wish to remove is stored in the 𝑖-th
entry (𝑘𝑖 , 𝑥𝑖) at a node 𝑧 that has only internal nodes as children.

• Removing such an entry can always be reduced to the case where
the entry to be removed is stored at a node 𝑣 whose children are
external nodes.

• In this case, we swap the entry (𝑘𝑖 , 𝑥𝑖) with an appropriate entry
that is stored at a node 𝑣 with external-node children as follows:
– We find the right-most internal node 𝑣 in the subtree rooted at the 𝑖-

th child of 𝑧, noting that the children of node 𝑣 are all external nodes.
– We swap the entry (𝑘𝑖 , 𝑥𝑖) at 𝑧 with the last entry of 𝑣 which is

deleted from 𝑣. The key of this last entry is the predecessor of 𝑘𝑖 in
the natural ordering of the keys of the tree.

• Then, the algorithm proceeds as in the previous case by doing
transfer and fusion operations if necessary.

Data Structures and Programming
Techniques

69

Example: Remove 12

Data Structures and Programming
Techniques

70

8 11
13 14 17

12

6 10 15

5𝑣

𝑤

𝑢

Key 11 is Moved to the Place of 12

• We could have also used 13 instead of 11 (namely, the
successor of 12 in the natural ordering of the keys).

Data Structures and Programming
Techniques

71

8

11

13 14 17

12

6 10 15

5𝑣

𝑤

Examples

• Let us now see some examples of removal
from a (2,4) tree.

Data Structures and Programming
Techniques

72

Initial Tree

Data Structures and Programming
Techniques

73

4 6 8 11
13 14 17

12

5 10 15

Remove 4

Data Structures and Programming
Techniques

74

4

6 8 11
13 14 17

12

5 10 15

𝑣

Transfer

Data Structures and Programming
Techniques

75

8 11
13 14 17

12

10 15

6

5

𝑣

𝑤

𝑢

After the Transfer

Data Structures and Programming
Techniques

76

8 11
13 14 17

12

6 10 15

5𝑣

𝑤

𝑢

Remove 12

Data Structures and Programming
Techniques

77

8 11
13 14 17

12

6 10 15

5𝑣

𝑤

𝑢

Remove 12

Data Structures and Programming
Techniques

78

8

11

13 14 17

12

6 10 15

5𝑣

𝑤

Fusion of 𝑤 and 𝑣

Data Structures and Programming
Techniques

79

8 13 14 17

6 15

5𝑣

𝑤

11

𝑣

10

𝑢

After the Fusion

Data Structures and Programming
Techniques

80

8 10 13 14 17

6 15

5

11

Remove 13

Data Structures and Programming
Techniques

81

8 10 14 17

6 15

5

11

13

After the Removal of 13

Data Structures and Programming
Techniques

82

8 10 14 17

6 15

5

11

Remove 14 - Underflow

Data Structures and Programming
Techniques

83

8 10

14

17

6 15

5

11

Fusion

Data Structures and Programming
Techniques

84

8 10 17

6

15

5

𝑣

11

𝑢

Underflow at 𝑢

Data Structures and Programming
Techniques

85

8 10 15 17

6

5

11

𝑢

Fusion

Data Structures and Programming
Techniques

86

8 10 15 17

6

5

11 𝑢

Remove the Root

Data Structures and Programming
Techniques

87

8 10 15 17

6 11

5

Final Tree

Data Structures and Programming
Techniques

88

8 10 15 17

6 11

5

Complexity of Removal

• The removal of an entry consists of a downward phase for finding
the entry to be removed and, possibly, of an upward phase of
transfer and/or fusion operations.

• The downward phase has time complexity 𝑂 ℎ = 𝑂 log 𝑛 .
• A transfer operation is local to three nodes hence it takes 𝑂 1

time.
• A fusion operation at a node 𝑣 may cause a new underflow to occur

at the parent 𝑢 of 𝑣, which in turn triggers a transfer or fusion at 𝑢.
• Hence, the number of fusion operations is bounded by the height

of the tree which is 𝑂 log 𝑛 .
• Therefore, a removal operation can take 𝑶 𝒍𝒐𝒈𝒏 time in the

worst case.

Data Structures and Programming
Techniques

89

Readings

• M. T. Goodrich, R. Tamassia and Michael H.
Goldwasser. Data Structures and Algorithms in
Java. 6th edition. John Wiley and Sons, 2014.

– Section 11.5

• R. Sedgewick. Αλγόριθμοι σε C. 3η
Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος.

– Section 13.3

Data Structures and Programming
Techniques

90

	Slide 1: Multi-Way Search Trees
	Slide 2: Multi-Way Search Trees
	Slide 3: Definitions
	Slide 4: Definitions (cont’d)
	Slide 5: Definitions (cont’d)
	Slide 6: Example Multi-Way Search Tree (m equals 3)
	Slide 7: Proposition
	Slide 8: Proof
	Slide 9: Proof (cont’d)
	Slide 10: Proof (cont’d)
	Slide 11: Proof (cont’d)
	Slide 12: Proof (cont’d)
	Slide 13: Proof (cont’d)
	Slide 14: Searching in a Multi-Way Search Tree
	Slide 15: Example Multi-Way Search Tree
	Slide 16: Search for Key 12
	Slide 17: Search for Key 24
	Slide 18: Insertion in a Multi-Way Search Tree
	Slide 19: Insert Key 28 (m equals 3)
	Slide 20: Key 28 Inserted
	Slide 21: Insert Key 32
	Slide 22: Key 32 Inserted
	Slide 23: Insert Key 12
	Slide 24: Key 12 Inserted
	Slide 25: Deletion from a Multi-Way Search Tree
	Slide 26: Complexity of Operations
	Slide 27: Efficiency Considerations
	Slide 28: Efficiency Considerations (cont’d)
	Slide 29: Balanced Multi-way Search Trees
	Slide 30: (2,4) Trees
	Slide 31: Example
	Slide 32: Example
	Slide 33: Result
	Slide 34: Result (cont’d)
	Slide 35: Result (cont’d)
	Slide 36: Search in (2,4) Trees
	Slide 37: Insertion in (2,4) Trees
	Slide 38: Insertion (cont’d)
	Slide 39: Dealing with Overflow Nodes
	Slide 40: Overflow at a 5-node
	Slide 41: The third key of v inserted into the parent node u
	Slide 42: Node v replaced with a 3-node, v prime and a 2-node v prime prime
	Slide 43: Example
	Slide 44: Insert 4
	Slide 45: Insert 6
	Slide 46: Insert 12
	Slide 47: Insert 15 - Overflow
	Slide 48: Creation of New Root Node
	Slide 49: Split
	Slide 50: Insert 3
	Slide 51: Insert 5 - Overflow
	Slide 52: 5 is Sent to the Parent Node
	Slide 53: Split
	Slide 54: Insert 10
	Slide 55: Insert 8
	Slide 56: Insertion (cont’d)
	Slide 57: Initial Tree
	Slide 58: Insert 17 - Overflow
	Slide 59: 15 is Sent to the Parent Node
	Slide 60: Split
	Slide 61: Overflow at the Root
	Slide 62: Creation of New Root
	Slide 63: Split
	Slide 64: Final Tree
	Slide 65: Complexity Analysis of Insertion
	Slide 66: Removal in (2,4) Trees
	Slide 67: Removal (cont’d)
	Slide 68: Removal (cont’d)
	Slide 69: Removal (cont’d)
	Slide 70: Example: Remove 12
	Slide 71: Key 11 is Moved to the Place of 12
	Slide 72: Examples
	Slide 73: Initial Tree
	Slide 74: Remove 4
	Slide 75: Transfer
	Slide 76: After the Transfer
	Slide 77: Remove 12
	Slide 78: Remove 12
	Slide 79: Fusion of w and v
	Slide 80: After the Fusion
	Slide 81: Remove 13
	Slide 82: After the Removal of 13
	Slide 83: Remove 14 - Underflow
	Slide 84: Fusion
	Slide 85: Underflow at u
	Slide 86: Fusion
	Slide 87: Remove the Root
	Slide 88: Final Tree
	Slide 89: Complexity of Removal
	Slide 90: Readings

