
UMIACS–TR–89–72.1 July, 1989

CS–TR–2286.1 (Revised June, 1990)

A Skip List Cookbook

William Pugh
Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland, College Park

Abstract

Skip lists are a probabilistic data structure that seem likely to supplant balanced trees as the implementation
method of choice for many applications. Skip list algorithms have the same asymptotic expected time
bounds as balanced trees and are simpler, faster and use less space. The original paper on skip lists only
presented algorithms for search, insertion and deletion. In this paper, we show that skip lists are as versatile
as balanced trees. We describe and analyze algorithms to use search fingers, merge, split and concatenate
skip lists, and implement linear list operations using skip lists. The skip list algorithms for these actions are
faster and simpler than their balanced tree cousins. The merge algorithm for skip lists we describe has
better asymptotic time complexity than any previously described merge algorithm for balanced trees.
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1. Overview
Skip lists [1] are a probabilistic list-based data structure that are a simple and efficient substitute for balanced trees.
Probabilistic balancing also can be used for tree based data structures [2] [3]. Previously, we showed how skip lists
could be used to implement a dictionary abstract data type (i.e., implement search, insertion and deletion). In this
paper, we show that skip lists are as versatile as balanced trees. We describe and analyze algorithms to:

• use search fingers so that searching for an element k away from the last element searched for takes O(log k)
expected time,

• merge, split and concatenate skip lists, and
• implement linear list operations using skip lists (e.g., “insert this after the kth element of the list”).
These operations have been described for balanced trees [4] [5] [6] [7] [8] [9]. However, the skip list versions of

these algorithms are simpler and at least as fast, and often cannot be easily adapted directly from the balanced trees
algorithms. The analysis techniques required for the skip list versions are radically different from the techniques
used to analyze their balanced tree cousins.

The merge algorithm we describe has better asymptotic time complexity than any previously described merge
algorithm (such as Brown and Tarjan’s [7]). This claim may seem ludicrous, since the O(m + m log n/m) upper
bound of Brown and Tarjan was proven to be a lower bound. But that lower bound only holds for the worst-case
input (uniformly distributed merges). Our algorithm is optimal for all inputs. If two data structures simply need to be
concatenated, our algorithm runs in O(log n) expected time, while that of Brown and Tarjan runs in O(m + log n)
time. Of course, there are algorithms that concatenate two balanced trees in O(log n) time. However, our algorithm
optimally handles both uniformly distributed merges and concatenation, as well as everything in between. Our
strategy for merging skip lists can be applied to balanced trees, providing merge algorithms for balanced trees that
are optimal for all inputs (although the algorithms would be prohibitively complicated).

We also describe and analyze variations that noticeably simplify or improve skip list algorithms.

2. A Review of Skip Lists
An understanding of skip lists is crucial to understanding the algorithms presented in this paper. To understand the
analysis of the algorithms presented here, a reader also must be familiar with the probabilistic techniques and termi-
nology developed for the analysis of skip lists. To make this paper self contained, a condensed review of skip lists is
presented in this section. Other papers on skip lists also compare the constant factors of skip lists and balanced trees
[1] and describe simple and efficient methods for performing concurrent maintenance of skip lists [10].
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FIGURE 1 - A Skip List

Each element is represented by a node in a skip list (Figure 1). Each node has a height or level, which
corresponds to the number of forward pointers the node has. A node’s ith forward pointer points to the next node of
level i or higher. When a new element is inserted into the list, a node with a random level is inserted to represent the
element. Random levels are generated with a simple pattern: 50% are level 1, 25% are level 2, 12.5% are level 3 and
so on. It should be fairly clear how to perform efficient searches, insertions and deletions in this data structure.
Insertions or deletions would require only local modifications. Some arrangements of levels would give poor
execution times, but we will see that such arrangements are rare. The expected cost of a search, insertion or deletion
is O(log n). More details and intuitions about skip lists are described elsewhere [Pug89].

2.1. Skip List Algorithms
This section gives algorithms to search for, insert and delete elements in a dictionary or symbol table. The Search
operation returns the contents of the value associated with the desired key or failure if the key is not present. The
Insert operation associates a specified key with a new value (inserting the key if it had not already been present).
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Search(list, searchKey)
x := list→header
-- loop invariant: x→key < searchKey
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

-- x→key < searchKey ≤ x→forward[1]→key
x := x→forward[1]
if x→key = searchKey then return x→value

else return failure

FIGURE 2 - Skip list search algorithm

Insert(list, searchKey, newValue)
local update[1..MaxLevel]
x := list→header
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

update[i] := x
x := x→forward[1]
if x→key = searchKey then x→value := newValue
else

newLevel := randomLevel()
if newLevel > list→level then

for i := list→level + 1 to newLevel do
update[i] := list→header

list→level := newLevel
x := makeNode(newLevel , searchKey, value)
for i := 1 to newLevel do

x→forward[i] := update[i]→forward[i]
update[i]→forward[i] := x

Delete(list, searchKey)
local update[1..MaxLevel]
x := list→header
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

update[i] := x
x := x→forward[1]
if x→key = searchKey then

for i := 1 to list→level do
if update[i]→forward[i] ≠ x then break
update[i]→forward[i] := x→forward[i]

free(x)
while list→level > 1 and

list→header→forward[list→level] = NIL do
list→level := list→level – 1

FIGURE 3 - Insertion and deletion algorithms

The Delete operation deletes the specified key.
Each element is represented by a node, the level of

which is chosen randomly when the node is inserted
without regard for the number of elements in the data
structure. A level i node has i forward pointers, indexed
1 through i. We do not need to store the level of a node
in the node. Levels are capped at some appropriate con-
stant MaxLevel. The level of a list is the maximum level
currently in the list (or 1 if the list is empty). The
header of a list has forward pointers at levels one
through MaxLevel. The forward pointers of the header
at levels higher than the current maximum level of the
list point to NIL.
Initialization
An element NIL is given a key greater than any legal
key. All levels of all skip lists are terminated with NIL.
A new list is initialized so that the level of the list is
equal to 1 and all forward pointers of the list’s header
point to NIL.
Search Algorithm
We search for an element by traversing forward
pointers that do not overshoot the node containing the
element being searched for (Figure 2). When no more
progress can be made at the current level of forward
pointers, the search moves down to the next level.
When we can make no more progress at level 1, we
must be immediately in front of the node that contains
the desired element (if it is in the list).
Insertion and Deletion Algorithms
To insert or delete a node, we simply search and splice.
Figure 3 gives algorithms for insertion and deletion. A
vector update is maintained so that when the search is
complete (and we are ready to perform the splice),
update[ i] contains a pointer to the rightmost node of
level i or higher that is to the left of the location of the
insertion/deletion. If an insertion generates a node with
a level greater than the previous maximum level of the
list, we update the maximum level of the list and
initialize the appropriate portions of the update vector.
After each deletion, we check if we have deleted the
maximum element of the list and if so, decrease the
maximum level of the list.
Generating a Random Level
Initially, we discussed a probability distribution where half of the nodes that have level i pointers also have level i+1
pointers. To get away from magic constants, we say that a fraction p of the nodes with level i pointers also have
level i+1 pointers. (for our original discussion, p = 1/2). Levels are generated randomly by an algorithm equivalent
to the one in Figure 4. Levels are generated without reference to the number of elements in the list.
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randomLevel()
lvl := 1
while random() < p and lvl < MaxLevel do

lvl := lvl + 1
return lvl

FIGURE 4 - Generating a random level

At what level do we start a search? Defining L(n)
In a skip list of 16 elements generated with p = 1/2, we
might happen to have 9 elements of level 1, 3 elements
of level 2, 3 elements of level 3, and 1 element of level
14 (this would be very unlikely, but it could happen).
How should we handle this? Where should we start the
search? Our analysis suggests that ideally we would
start a search at the level L where we expect 1/p nodes. This happens when L = log1/p n. Since we will be referring
frequently to this formula, we will use L(n) to denote log1/p n. If we use the standard algorithm and start our search at
level 14, we will do much useless work. However, the probability that the maximum level in a list of n elements is
significantly larger than L(n) is very small. Starting a search at the maximum level in the list does not add more than
a small constant to the expected search time. This is the approach used in the algorithms described here.
Determining MaxLevel
Since we can safely cap levels at L(n), we should choose MaxLevel = L(N) (where N is an upper bound on the
number of elements in a skip list). If p = 1/2, using MaxLevel = 32 is appropriate for data structures containing up to
232 elements.

2.2 Analysis of Skip List Algorithms
The time required to execute the Search, Delete and Insert operations is dominated by the time required to search for
the appropriate element. The time required to find an element is proportional to the length of a search path, which is
determined by the pattern in which elements with different levels appear as we traverse the list.
Probabilistic Philosophy and Assumptions
We assume an adversarial user does not have access to the levels of elements; otherwise, he could create situations
with worst-case running times by going through a list and deleting all elements that were not level 1. A user without
access to the levels of elements might do this by chance, but as we shall show, the probability of this is small enough
to be ignored. Note that the probabilities of poor running times for successive operations on the same data structure
are NOT independent; two successive searches for the same element will both take exactly the same time.
Probabilistic Analysis
Besides analyzing the expected performance of skip lists, we also can analyze the probabilistic performance of skip
lists. This will allow us to calculate the probability that an operation takes longer than a specified time. This analysis
is based on the same ideas as our analysis of the expected cost, so that analysis should be understood first.

A random variable has a fixed but unpredictable value and a predictable probability distribution and average. If
X
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It is often preferable to find simple upper bounds on values whose exact value is difficult to calculate. To dis-

cuss upper bounds on random variables, we need to define a partial ordering and equality on the probability
distributions of non-negative random variables.

Definitions (=prob and ≤prob). Let X and Y be non-negative independent random variables (typically, X and Y
would denote the time to execute algorithms AX and AY). We define X ≤prob Y to be true if and only if for any
value t, the probability that X exceeds t is less than the probability that Y exceeds t. More formally:

X =prob Y iff ∀ t, Prob{ X > t } = Prob{ Y > t } and

X ≤prob Y iff ∀ t, Prob{ X > t } ≤ Prob{ Y > t }.

We make use of two probability distributions:
Definition (binomial distributions — B(t, p)). Let t be a non-negative integer and p be a probability. The term B(t, p)
denotes a random variable equal to the number of successes seen in a series of t independent random trials where the
probability of a success in a trial is p. The average and variance of B(t, p) are tp and tp(1 – p) respectively.  
Definition (negative binomial distributions — NB(s, p)). Let s be a non-negative integer and p be a probability. The
term NB(s, p) denotes a random variable equal to the number of failures seen before the sth success in a series of
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random independent trials where the probability of a success in a trial is p. The average and variance of NB(s, p) are
s(1–p)/p and s(1–p)/p2 respectively.  
Probabilistic Analysis of Search Times
We analyze the search path in a backward direction, starting at the element immediately to the left of the element
searched for and travelling up and to the left. The length of this path is one less than the number of comparisons we
need to perform. We first examine the number of pointers we have to backtrack to climb from level 1 (of the element
immediately before the element searched for) up to level L(n). We assume we have no knowledge of the levels of
elements in the list, and that we always reach level L(n) before we reach the header of the list (i.e., the list extends
infinitely to the left).

At any particular point in the climb, we are at the ith forward pointer of an element x, and we have no knowledge
about the levels of elements to the left of x or about the level of x, other than that the level of x must be at least i. The
probability that the level of x is greater than i  is p. We can analyze the time to traverse the search path by
considering this backward climb to be a series of random independent trials with a success corresponding to a move
up a level, and a failure corresponding to a move left. The number of leftward movements in the path climbing to
level L(n) is the number of failures seen before seeing the (L(n) – 1)th success in a series of random trials, which is a
negative binomial distribution. The number of upward movements is exactly (L(n) – 1). This gives us:

Cost to climb to level L(n) in an infinite list =prob (L(n) – 1) + NB(L(n) – 1, p)

Our assumption that the list is infinite is a pessimistic assumption. When we bump into the header in our
backward climb, we simply climb up it, without performing any leftward movements. This gives us:

Cost to climb to level L(n) in a list of n elements ≤prob Cost to climb to level L(n) in an infinite list

∴ Cost to climb to level L(n) in a list of n elements ≤prob (L(n) – 1) + NB(L(n) – 1, p)

Once we have climbed to level L(n), the number of leftward movements is bounded by the number of elements
of level L(n) or greater in a list of n elements. The number of elements of level L(n) or greater in a list of n elements
is a random variable of the form B(n

�����
np).

Let M be a random variable corresponding to the maximum level in a list of n elements. The probability that the
level of a node is greater than k is pk, so Prob{ M > k } = 1–(1–pk)n < npk. Since npk = pk-L(n) and Prob{ NB(1, 1–p) +
1 > i} = pi, we get a probabilistic upper bound of M ≤prob L(n) + NB(1, 1 – p) + 1. Note that the average of L(n) +
NB� � ����� p) + 1 is L(n) + 1/(1–p).

This gives a probabilistic upper bound on the cost once we have reached level L(n) of B(n
�����

np) + (L(n) +
NB(1, 1 – p	�
 � 	 � L(n). Combining our results to get a probabilistic upper bound on the total length of the search
path (i.e., cost of the entire search):

cost to climb out of a list of n elements ≤prob L(n) + NB(L(n) – 1, p) + B(n, 1/np) + NB(1, 1 – p)

The number of comparisons is one more than the length of the search path:

number of comparisons ≤prob L(n) + NB(L(n) – 1, p) + B(n, 1/np) + NB(1, 1 – p) + 1

The expected value of our upper bound is equal to L(n)/p + 1/(1–p) + 1, and the variance of our upper bound is (L(n)
– 1)(1–p)/p2 + (1 – 1/np)/p + p/(1–p)2.

2.3. Efficiency
We compared [1] implementations of skip lists against implementations AVL trees, 2-3 trees and splay trees. We
found that skip lists had roughly the same efficiency as highly optimized, non-recursive balanced tree
implementations (insertions and deletions were slightly faster in skip lists), and that skip lists were significantly
faster (by a factor of 2–3) than straightforward, recursive balanced tree implementations or highly optimized splay
tree implementations (for uniform query distributions).
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3. Skip List Extensions
This section describes our new results. We first describe algorithms for using search fingers, merging, splitting and
concatenation. Linear list operations, described next, allow us to implement operations such as “insert this after the
kth element of the list.” The algorithms given allow only linear list operations, but it is easy to combine the linear list
versions with the standard skip list algorithms to provide skip lists that allow operations both by key and by position.

We next return to the original algorithms and look for ways to improve them. We discuss how to reduce the
number of comparisons when comparisons are expensive, mention the changes needed to allow duplicate elements
and examine more precisely the cost to search for the kth element of a skip list containing n elements. We also
describe a new probability distribution for the levels of elements that provides both low space costs and a low search
time variance.

3.1 Using Search Fingers

SearchWithFinger(list, searchKey)
lvl := 2
if list→finger[1]→key < searchKey then

-- move forward, find the largest lvl s.t. list→finger[lvl] →forward[lvl] →key < searchKey
while lvl ≤ list→level and list→finger[lvl]→forward[lvl]→key < searchKey do lvl := lvl + 1
lvl := lvl – 1
x := list→finger[lvl]

else
-- move backward, find the smallest lvl s.t. list→finger[lvl] →key < searchKey
while lvl ≤ list→level and list→finger[lvl]→key ≥ searchKey do lvl := lvl + 1
if lvl > list→level then

lvl := list→level
x := list→header

else x := list→finger[lvl]

for i := lvl downto 1 do
while x→forward[i]→key < searchKey do x := x→forward[i]
list→finger[i] := x

x := x→forward[1]
if x→key = searchKey then return x→value

else return failure

FIGURE 6 – Search using finger

We can maintain a finger into a search structure so that the expected time to search for an element is O(
�������

), where
k is the distance between the previous element searched for and the new element [6] [8] [9]. A finger is associated
with each list and defined so that finger(list)[k] is the rightmost element of level k that is left of the last element
examined. This is identical to the update vector that is used for the insertion and deletion operations, except that the
finger is maintained from one operation to the next. An algorithm to perform a search using search fingers is shown
in Figure 6. The overhead of using fingers could result in an overall slow down if searches do not have a locality of
reference.

Theorem 1. The number of comparisons required to locate an element k away from the location last examined
is bounded by

2L(k) + 2NB(1, 1 – p) + NB(L(k) – 1, p) + B(k, 1/kp) + 3

which has an average of L(k) + L(k)/p + 2p/(1–p) + 4 and a variance of L(k)(1–p)/p2 + (1 – 1/kp)/p + 4p/(1–p)2.
Proof: Determining if we have to move forward or backward requires 1 comparison. Let i be the position of the
tip of the finger (i.e., the position of finger(list)[1]). Let j be the position of the element being searched for. If i <
j, let lvl be the maximum level among elements (i + 1) .. (j – 1). Otherwise (if j ≤ i) let lvl be the maximum level
among elements j..i. The finger search will climb up to level lvl + 1 before starting the decent phase of the
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search. This will require lvl comparisons. Let k = i + 1 – j (i.e., let k be the number of elements lvl is the
maximal level over). The maximum level among those k elements (lvl) is probabilistically bounded by L(k) + 1
+ NB(1, 1 – p). The length of the (backwards) search path is bounded by lvl – 1 upward movements and NB(L(k)
– 1, p) + B(k, 1/kp) leftward movements. 

3.2 Optimal Merging of Skip Lists
The merge algorithm in Figure 7 merges two skip lists. The algorithm moves as many elements as possible from one
input list to the output list, moves as many as possible from the other list and repeats this process until all elements
have been moved to the output list. If an element appears in both lists, the value field from list2 is used. Let k be the
number of elements moved in a single merge step. The number of comparisons required works out to be the same as
is required to search using a search finger. This gives an average of L(k) + L(k)/p + 2p/(1 – p) + 3 comparisons,
which is O(log k).

We need to introduce some new terminology to describe the total cost to perform a merge, which consists of
many merge steps. Let n be the size of list1 and m be the size of list2. Assume w.l.g. that m ≤ n. We use S1...Sj to
describe how elements are taken from list1 and T1...Tk to describe how elements are taken from list2, as shown in
Figure 8. If we first take elements from list1, then we take S1 elements from list1, T1 elements from list2, S2 elements
from list1, and so on. Otherwise, we take T1 elements from list2, S1 elements from list1, T2 elements from list2, and
so on. Note that j and k can differ by at most one, all of S1...Sj and T1...Tk are required to be positive integers, n = S1 +
S2 + ... + Sj and m = T1 + T2 + ... + Tk.

 

S1 T1 S2 T2 S3 T3 S4 T4 S5

list1:

list2:

result:

FIGURE 8 – Example showing how S1...S5 and T1...T4 describe the merge process.

Our merge algorithm runs in expected time

Ο 


 
j 
 ∑

i=1

j ���"0
Si 
 k 
 ∑

i=1

j ���"0
Ti

Brown and Tarjan’s algorithm for merging balanced trees [7] inserts the elements from the smaller list into the larger
list one at a time, using a search finger to reduce the amount of work required. This algorithm runs in time

Ο 


 
j 
 ∑

i=1

j ���"0
Si 
 ∑

i=1

k
Ti  = Ο 


 
j 
 ∑

i=1

j ���"0
Si 
 m

The worst case situation for both of these algorithms is a uniformly distributed merge, in which k = m, all of the
Ti’s are equal to 1 and all of the Si’s are equal to n/m. For this situation, both algorithms run in O(m + m log n/m)
expected time. Brown and Tarjan showed that this is a lower bound, and therefore optimal. But that lower bound
holds only for uniformly distributed merges. Our algorithm is optimal for all inputs. If the data structures simply
need to be concatenated, our algorithm runs in O(log n) expected time, while Brown and Tarjan’s algorithm requires
O(m + log n) time. There are specialized algorithms that concatenate balanced trees in O(log n) time. However, our
algorithm optimally handles both uniformly distributed merges and concatenation, as well as everything in between.
Lower bounds and optimality
If sequences are represented in a way such that moving k elements down the list takes Ω(log k) time and we must
visit each of the locations in the input lists where the merge switches from one input list to the other, as well as the
beginnings and ends of the lists, then the time to merge two sequences is

Ω 

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j 
 ∑

i=1

j ���"0
Si 
 k 
 ∑

i=1

k ���"0
Ti

Since this is the same as the performance of our algorithm, our algorithm is optimal for all inputs.
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Our assumptions seem incontestable. Our attempts to show optimally based on information theoretic terms
failed, since is it possible to tailor a merge algorithm to use very few comparisons on any specific distribution. For
example, it is possible to write a merge algorithm take requires only 2m comparisons for a uniformly distributed
merge of two lists of size m and n (m ≤ n). However, such an algorithm would still require Ω(m log n/m) work using
almost any conceivable implementation and would require many more comparisons for a merge that did not have a
perfectly uniform distribution.
Optimal merging of balanced trees
The strategy we have described for merging skip lists can be applied to merging balanced trees to give the same time
bounds. In a merge step, as many elements as appropriate (k elements) are split off from the appropriate input trees
and concatenated to the right side of the output tree, taking O(log k) time. However, merging balanced trees this way
is considerably more complex than the merge algorithm we have presented for skip lists.
Constant Factor Speed Comparisons

Split(list1, splitKey) -- Remove from list1 all elements with keys ≥ splitKey and return them in a new list
list2 := newList()
list2→level := list1→level
x := list1→header
for i := list1→level downto 1 do

while x→forward[i]→key < splitKey do x := x→forward[i]
list2→header→forward[i] := x→forward[i]
x→forward[i] := NIL

while list1→header→forward[list1→level] = NIL and list1→level > 1 do
list1→level := list1→level – 1

while list2→header→forward[list→level] = NIL and list2→level > 1 do
list2→level := list2→level – 1

return list2

Concatenate(list1, list2) --Appends list2 to the end of list1, assumes last key in list1 ≤ first key in list2
if list1→level < list2→level then

for i := list1→level+1 to list2→level do list1→header→forward[i] := NIL
list1→level := list2→level

x := list1→header
for i := list1→level downto 1 do

while x→forward[i] ≠ NIL do x := x→forward[i]
if i ≤ list2→level then x→forward[i] := list2→header→forward[i]

free(list2)

FIGURE 9– Concatenating and splitting skip lists

Brown and Tarjan [7] presented an analysis of the constant factors for their merge algorithm on a hypothetical
machine [11]. To produce directly comparable results, we designed a new merge algorithm for skip lists that used
the same strategy they used: insert the elements from the smaller list one at a time into the larger list using a search
finger. The resulting algorithm is 26 statements long. We calculated a probabilistic upper bound on the number of
steps taken by our algorithm on a uniformly distributed merge of lists of m and n elements (m ≤ n) , which for p =
0.25 has an average of

m(17 log2 n/m + 42) + 6

steps. Their algorithm (which is over 100 statements long in full detail [12]) runs in

m(15 log2 n/m + 118.5) + 43.5

steps. These results are in line with our expectations: the portion of the algorithms that search for the place to insert
the next element run at similar speeds. However, tree merging incurs a large overhead for set–up and rebalancing
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that makes skip list merging faster for most applications.

3.3 Splitting and Concatenation
The algorithms for splitting and concatenating are shown in Figure 9. They are fast (requiring O(log n) expected
time) and very simple.

SearchByPosition(list, k)
if k < 1 or k > size(list) then return bad-index
x := list→header
pos := 0
-- loop invariant: pos = pos(x)
for i := list→level downto 1 do

while pos + x→fDistance[i] ≤ k do
pos := pos + x→fDistance[i]
x := x→forward[i]

return x→value

FIGURE 11 – Searching for the kth element of a list

3.4 Linear List Operations
We now describe a method for implementing linear list
operations [5] using skip lists (e.g., give me the kth element
of this list). These operations are sometimes refereed to as
rank operations. The search, insertion and deletion algo-
rithms are shown in Figures 10-11. Each element x has an
index pos(x). We use this value in our invariants but do not
store it. The index of the header is zero, the index of the first
element is one and so on. Associated with each forward
pointer is a measurement, fDistance, of the distance
traversed by that pointer:

x→fDistance[i] = pos(x→forward[i]) – pos(x).

Note that the distance traversed by a level 1 pointer is always 1, so some storage economy is possible here at the
cost of a slight increase in the complexity of the algorithms.

3.5 Skip List Variations
In this section, we present some variations on the skip list algorithms and analyses presented previously.

alreadyChecked := NIL
for i := list→level downto 1 do

while x→forward[i] ≠ alreadyChecked
and x→forward[i]→key < searchKey do

x := x→forward[i]
alreadyChecked := x→forward[i]
-- if performing insertion or deletion
update[i] := x

FIGURE 12 – Inner loop optimized for expensive
comparisons

Reducing comparisons
If comparisons are expensive (e.g., involve expensive
comparisons of reals or strings) we can reduce the number
of comparisons by assuring that we never compare the
search key against the key of an element more than once.
This optimization results in an inner loop like that shown in
Figure 13. This optimization saves an average of (L(n) +
p/(1–p)2)p comparisons.

Theorem 2. The number of comparisons required by
the inner loop in Figure 12 is bounded by

B(L(n) + NB� � ����� p), 1 – p) + NB(L(n) – 1, p) + B(n, 1/np) + 1.

Proof: Consider the situation where we find we can make no more progress at the current level and need to
move down from level i to level i – 1 (where i is not the maximum level in the list). Let y be the element who’s
key we just compared against the search key. The level of y is greater than or equal to i. If the level of y is
greater than i, this optimization allows us to avoid comparing keys. The probability that the level of y is more
than i  is p. There are L(n) + NB� � � � � p) + 1 comparisons associated with upwards movements (in the
backwards search path) and we might save a comparison for all except the first. 

Duplicate elements
It is easy to modify skip list algorithms so that they allow duplicate entries. The insertion algorithm simply needs to
be modified so as to always perform the insertion. The search and deletion algorithms are unchanged. With these
changes, the skip lists will react to duplicate elements with a stack-like discipline (e.g., the element found by a
search is the one most recently inserted and a deletion removes the most recently inserted version of an element).
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Precision Analysis
In previous analyses of skip lists, we made worst-case assumptions about the element being searched for. Here, we
more precisely examine the cost to search for the kth element of a skip list containing n elements.

Theorem 3. The number of comparisons required to search for, insert, or delete the kth element of a skip list
containing n elements is bounded by

L(n) + NB(L(k) – 1, p) + B(k, 1/kp) + NB(1, 1–p) + 1

which has an average of L(n) + L(k) (1 – p)/p + 1/(1–p) + 1
Proof: The number of upward movements in the search path is bounded by L(n) + NB(1, 1 – p). The number of
leftward movements to climb out of a list of k elements is NB(L(k	 � � �

p) + B(k, 1/kp). The number of
comparisons is one greater than the length of the search path. 

Non-standard probability distributions

Distribution/strategy p k
Average of
search cost Variance of search cost

Average #
pointers/element

baseline distribution 1/2 0 2 lg n + 3 2 lg n – 4/n 2

old strategy: to reduce space 1/4 0 2 lg n + 7/3 6 lg n – 68/9 – 16/n 1
�

/3
costs, reduce p 1/8 0 2

�

/3 lg n + 15/7 18
�

/3 lg n – 2344/49 – 64/n 1
�

/7

new strategy: to reduce space 1/2 1 2 lg n + 3 2 lg n + 10 – 4/n 1
�

/2

costs, increase k 1/2 2 2 lg n + 5 2 lg n + 52 – 4/n 1
�

/4

mixed strategy: 1/4 1/2 2 lg n + 13/3 6 lg n + 274/9 – 16/n 1
�

/6

Table 2 – Average and variance of search costs and space utilizations using different probability distributions for the levels of
elements

In previous descriptions of skip lists, we assigned a random level to an element using a negative binomial
distribution equal to 1 + NB(1, 1 – p). Consider a probability distribution in which the probability of an element
being level i or greater is pi+k–1 (all elements are at least level 1). The original probability distribution corresponds to
k = 0. This is equivalent to the standard distribution except that the level 2 through k+1 forward pointers have been
removed and all higher level forward pointers have dropped down a level. For this probability distribution, L(n) =
log1/p n – k This distribution requires an average of 1+pk+1/(1–p) pointers per element.

Theorem 4. Using this distribution, the number of comparisons required to perform a search is bounded by

log1/p n – k – 1 + NB(1, pk+1) + NB(log1/p n – k – 2, p) + B(n, 1/np) + NB(1, 1 – p) + 2,

which has an average of (log1/p n – k – 1 + 1/pk)/p and a variance of ((log1/p n – k – 2)(1–p) + p +1/p2k – p/pk +
1/n)/p2.
Proof: The number of leftward movements at level 1 is NB(1, pk+1) (since the probability that an element is at
least level 2 is 1/4). For i such that 2 ≤ i < log1/p n – k, the number of leftward movements at level i is NB(1, p).
All of the other costs are similar to the standard case. 

The motivation for using this distribution is shown in Table 2. Previously, to reduce the space costs of a skip list
we would decrease p. Now that we have added this additional parameter to the probability distribution, increasing k
is often a better way to decrease space costs (particularly if n is large).

4. Conclusions
The algorithms presented here put skip lists on a par with balanced trees for versatility, and in almost all cases the
skip list algorithms are substantially simpler and at least as fast. This is partially because using a list-based structure
to represent an ordered collection seems more natural than using a tree-based structure, and partially because
probabilistic balancing seems simpler and more efficient than strictly enforced balancing.

Several researchers have reported to the author difficulties in developing and analyzing the sorts of extensions
and variations described in this paper. Much of the reason for this difficulty may be that in order to develop and
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analyze these sorts of extensions, you need an intuition about skip lists that is as strong as the intuition that has
developed for balanced tree structures over the past 27 years. A main goal of this paper is to help the research
community develop that intuition.
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-- create a new list containing the elements of list1 and list2 (destroys list1 and list2)
-- if an element appears in both lists, use the value field from list2

merge(list1, list2)

local update[1..levelCap]
unflipped := true -- false if list1 and list2 are interchanged

-- initialize new list
list := newList()
list→level := max(list1→level, list2→level)
for i := 1 to list→level do update[i] := list→header

while list1→header→forward[1] ≠ NIL and list2→header→forward[1] ≠ NIL do

key1, key2 := list1→header→forward[1]→key, list2→header→forward[1]→key

-- assume w.l.g. that key1 ≤ key2 (i.e., if key1 > key2, exchange list1 and list2; key1 and key2)
if key1 > key2 then list1, list2, key1, key2, unflipped := list2, list1, key2, key1, not unflipped

 -- merge step: remove from list1 elements with keys ≤ key2 and put them on the output list

---------- for all lvl s.t. list1→header→forward[lvl] →key ≤ key2, connect output list to list1
lvl := 1
repeat

update[lvl]→forward[lvl] := list1→header→forward[lvl]
lvl := lvl + 1
until lvl > list→level or list1→header→forward[lvl]→key > key2

lvl := lvl – 1

---------- for each level attached to output list, find endpoint at that level (i.e., last element with key ≤ key2)
x := list1→header→forward[lvl]
for i := lvl downto 1 do

while x→forward[i]→key ≤ key2 do x := x→forward[i]
-- x→key ≤ key2 < x→forward[i] →key
update[i] := x
list1→header→forward[i] := x→forward[i]

-- x = last element moved to output list
-- if the element at the front of list2 is a duplicate of an element already moved to output list, eliminate it
if key2 = x→key then

if unflipped then x→value := list2→header→forward[1]→value
y := list2→header→forward[1]
for i := 1 to y→level do list2→header→forward[i]:= y→forward[i]
free(y)

-- end of main while loop

if list2→header→forward[1] = NIL then leftOver := list1 else leftOver := list2
for i = 1 to leftOver→level do update[i]→forward[i] := leftOver→header→forward[i]

-- the following two lines are necessary because we may have eliminated some duplicate elements
for i = leftOver→level + 1 to list→level do update[i]→forward[i] := NIL
while list→header→forward[list→level] = NIL and list→level > 1 do

list→level := list→level – 1

free(list1)
free(list2)

FIGURE 7 – Merge algorithm
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InsertByPosition(list, k, value) -- insert a new element immediately after position k
if k < 0 or k > list→size then bad-index

lvl := randomLevel()
y := makeElement(lvl, value)
 if lvl > list→level then

for i := list→level + 1 to lvl do
list→header→forward[i] := NIL
list→header→fDistance[i] := list→size + 1

list→level := lvl

x := list→header
pos := 0 -- pos = pos(x)
for i := list→level downto 1 do

while pos + x→fDistance[i] ≤ k do
pos := pos + x→fDistance[i]
x := x→forward[i]

if i > lvl then x→fDistance[i] := x→fDistance[i] + 1
else

z := x→forward[i] -- insert y between x and z
y→forward[i] := z
x→forward[i] := y
-- new pos(z) = pos + old x→fDistance[i] + 1
-- new pos(y) = k + 1
y→fDistance[i] := pos + x→fDistance[i] – k -- new y→fDistance = new pos(z) – new pos(y)
x→fDistance[i] := k + 1 – pos -- new x→fDistance = new pos(y) – new pos(x)

list→size := list→size + 1

DeleteByPosition(list, k) -- delete the kth element
local update[1..levelCap]
if k < 1 or k > list→size then bad-index

x := list→header
pos := 0 -- pos = pos(x)
for i := list→level downto 1 do

while pos + x→fDistance[i] < k do
pos := pos + x→fDistance[i]
x := x→forward[i]

update[i] := x

x := x→forward[1]
for i := 1 to list→level do

if update[i]→forward[i] = x then
update[i]→forward[i] := x→forward[i]
update[i]→fDistance[i]:= update[i]→fDistance[i] + x→fDistance[i] – 1

else
update[i]→fDistance[i] := update[i]→fDistance[i] – 1

list→size := list→size – 1
while list→header→forward[list→level] = NIL and list→level > 1 do

list→level := list→level – 1

FIGURE 10 – Insertion and Deletion by position


