UMIACS-TR-89-72.1 July, 1989
CS-TR-2286.1 (Revised June, 1990)

A Skip List Cookbook

William Pugh
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland, College Park

Abstract

Skip lists are a probabilistic data structure that seem likely to supplant balanced trees as the implementatiol
method of choice for many applications. Skip list algorithms have the same asymptotic expected time
bounds as balanced trees and are simpler, faster and use less space. The original paper on skip lists or
presented algorithms for search, insertion and deletion. In this paper, we show that skip lists are as versatil
as balanced trees. We describe and analyze algorithms to use search fingers, merge, split and concatent
skip lists, and implement linear list operations using skip lists. The skip list algorithms for these actions are
faster and simpler than their balanced tree cousins. The merge algorithm for skip lists we describe has
better asymptotic time complexity than any previously described merge algorithm for balanced trees.

CR Categories and Subject Descriptors: E.1 [Data Structures]: Lists; F.1.2 Models of Computation]:
Probabilistic computation; F.2.Apnnumerical Algorithms and Problems]: Sorting and searching; G.3
[Probability and Statistics] Probabilistic Algorithms.

Limited Distribution Notice: This report has been submitted for publication and will probably be
copyrighted if accepted for publication. It has been issued as a Technical Report for early dissemination of
its contents. In view of the eventual transfer of copyright to the publisher, its distribution should be limited
to peer communications and specific requests.

1. Overview

Skip lists [1] are a probabilistic list-based data structure that are a simple and efficient substitute for balanced 1
Probabilistic balancing also can be used for tree based data structures [2] [3]. Previously, we showed how skif
could be used to implement a dictionary abstract data type (i.e., implement search, insertion and deletion). Ir
paper, we show that skip lists are as versatile as balanced trees. We describe and analyze algorithms to:

* use search fingers so that searching for an elekn@nwhy from the last element searched for taB@sg k)

expected time,

* merge, split and concatenate skip lists, and

« implement linear list operations using skip lists (e.g., “insert this aftéteement of the list”).

These operations have been described for balanced trees [4] [5] [6] [7] [8] [9]. However, the skip list version
these algorithms are simpler and at least as fast, and often cannot be easily adapted directly from the balance
algorithms. The analysis techniques required for the skip list versions are radically different from the technic
used to analyze their balanced tree cousins.

The merge algorithm we describe has better asymptotic time complexity than any previously described m
algorithm (such as Brown and Tarjan’s [7]). This claim may seem ludicrous, sin€rthe m log n/m) upper
bound of Brown and Tarjan was proven to be a lower bound. But that lower bound only holds for the worst-c
input (uniformly distributed merges). Our algorithm is optimaldibinputs. If two data structures simply need to be
concatenated, our algorithm runs@glog n) expected time, while that of Brown and Tarjan run®{m + log n)
time. Of course, there are algorithms that concatenate two balanced @¥kxyin) time. However, our algorithm
optimally handles both uniformly distributed merges and concatenation, as well as everything in between.
strategy for merging skip lists can be applied to balanced trees, providing merge algorithms for balanced tree:
are optimal for all inputs (although the algorithms would be prohibitively complicated).

We also describe and analyze variations that noticeably simplify or improve skip list algorithms.

2. A Review of SKip Lists

An understanding of skip lists is crucial to understanding the algorithms presented in this paper. To understan
analysis of the algorithms presented here, a reader also must be familiar with the probabilistic techniques and 1
nology developed for the analysis of skip lists. To make this paper self contained, a condensed review of skip li
presented in this section. Other papers on skip lists also compare the constant factors of skip lists and balance
[1] and describe simple and efficient methods for performing concurrent maintenance of skip lists [10].

Each element is represented by a node in a skip list (Figure 1). Each node has a height or level, w
corresponds to the number of forward pointers the node has. A i@detsvard pointer points to the next node of
leveli or higher. When a new element is inserted into the list, a node with a random level is inserted to represer
element. Random levels are generated with a simple pattern: 50% are level 1, 25% are level 2, 12.5% are level
so on. It should be fairly clear how to perform efficient searches, insertions and deletions in this data struc
Insertions or deletions would require only local modifications. Some arrangements of levels would give p
execution times, but we will see that such arrangements are rare. The expected cost of a search, insertion or d
is O(log n). More details and intuitions about skip lists are described elsewhere [Pug89].

2.1. Skip List Algorithms

This section gives algorithms to search for, insert and delete elements in a dictionary or symbol t&@gerdte
operation returns the contents of the value associated with the desiredfagyrerif the key is not present. The
Insert operation associates a specified key with a new value (inserting the key if it had not already been pres

6L | NIL

ENEERNEN e E NN ENEEN

FIGURE 1 - A Skip List

A Skip List Cookbook

The Deleteoperation deletes the specified key.

Each element is represented by a node, the lev
which is chosen randomly when the node is inse
without regard for the number of elements in the d
structure. Aleveli node has forward pointers, indexed
1 throughi. We do not need to store the level of an
in the node. Levels are capped at some appropriate
stantMaxLevel Thelevelof a list is the maximum leve
currently in the list (or 1 if the list is empty). Th

ted
ata

pde

|
e

L (ﬁearch(list, searchKey)

con- x :=x-forward[1]

X := list— header
-- loop invariant: x- key < searchKey
fori:=list-level downto 1 do
while x - forward[i] - key < searchKey do
X := X - forward[i]
-- X key < searchKex x- forward[1] - key

if x> key = searchKey then return x- value
else return failure

headerof a list has forward pointers at levels o

ne

FIGURE 2 - Skip list search algorithm

throughMaxLevel The forward pointers of the head
at levels higher than the current maximum level of
list point to NIL.

Initialization

An element NIL is given a key greater than any le
key. All levels of all skip lists are terminated with NI
A new list is initialized so that thkevel of the list is
equal to 1 and all forward pointers of the list's hea
point to NIL.

Search Algorithm

We search for an element by traversing forw
pointers that do not overshoot the node containing
element being searched for (Figure 2). When no m
progress can be made at the current level of fory
pointers, the search moves down to the next le
When we can make no more progress at level 1,
must be immediately in front of the node that conta
the desired element (if it is in the list).
Insertion and Deletion Algorithms

To insert or delete a node, we simply search and sp
Figure 3 gives algorithms for insertion and deletion
vectorupdateis maintained so that when the searct
complete (and we are ready to perform the spli
updatgi] contains a pointer to the rightmost node
leveli or higher that is to the left of the location of t
insertion/deletion. If an insertion generates a node

a level greater than the previous maximum level of
list, we update the maximum level of the list a
initialize the appropriate portions of the update vec

er

pal

der

ard
the
ore
ard
vel.
we

A
is
e),
of
he
vith
the
nd
or.

thdnsert(list, searchKey, newValue)

iNSpelete(list, searchKey)

lice.

local update[1..MaxLevel]
x := list- header
fori:=list-level downto 1 do
while x - forward[i] - key < searchKey do
X := X - forward([i]
update[i] ;== x
X := x - forward[1]
if x- key = searchKey then x - value := newValue
else
newlLevel := randomLevel()
if newLevel > list- level then
for i:=list-level + 1 to newLevel do
update(i] := list— header
list—level := newLevel
x := makeNode(newLevel , searchKey, value)
fori:=1to newLevel do
x - forward[i] := update[i] - forward([i]
update]i] - forward[i] := x

local update[1..MaxLevel]
x := list— header
fori:=list-level downto 1 do
while x - forward[i] - key < searchKey do
X := X - forward][i]
update[i] := x
X := X - forward[1]
if x- key = searchKey then
fori:=1to list-level do
if updatel[i] - forward[i] # x then break
update(i] - forward[i] := x - forward[i]
free(x)
while list-level > 1 and
list— header - forward[list - level] = NIL do
list-level := list—level — 1

After each deletion, we check if we have deleted
maximum element of the list and if so, decrease
maximum level of the list.

Generating a Random L evel

FIEY
(80 1+

the

FIGURE 3 - Insertion and deletion algorithms

Initially, we discussed a probability distribution where half of the nodes that have peieters also have levetl
pointers. To get away from magic constants, we say that a frgctobthe nodes with levélpointers also have
level i+1 pointers. (for our original discussigni= 1/2). Levels are generated randomly by an algorithm equivalen
to the one in Figure 4. Levels are generated without reference to the number of elements in the list.

A Skip List Cookbook

At what level do we start a search? Defining L(n)

In a skip list of 16 elements generated with 1/2, we ranﬁ/cl)r:r;Lfvel()

might happen to have 9 elements of level 1, 3 elemlents while random() < p and Ivl < MaxLevel do
of level 2, 3 elements of level 3, and 1 element of Igvel retd\:L:Tv:VI *1

14 (this would be very unlikely, but it could happen).

How should we handle this? Where should we start the FIGURE 4 - Generating a random level
search? Our analysis suggests that ideally we would

start a search at the lewelwhere we expect fti/nodes. This happens wherr log,, n. Since we will be referring
frequently to this formula, we will udg(n) to denote log, n. If we use the standard algorithm and start our search at
level 14, we will do much useless work. However, the probability that the maximum level in anlistesfients is
significantly larger tha.(n) is very small. Starting a search at the maximum level in the list does not add more th
a small constant to the expected search time. This is the approach used in the algorithms described here.
Determining MaxL evel

Since we can safely cap levelslgdh), we should choosklaxLevel=L(N) (whereN is an upper bound on the
number of elements in a skip list).df= 1/2, usingViaxLevel= 32 is appropriate for data structures containing up to
232¢lements.

2.2 Analysisof Skip List Algorithms

The time required to execute tBearch, Deletandinsertoperations is dominated by the time required to search for
the appropriate element. The time required to find an element is proportional to the length of a search path, whi
determined by the pattern in which elements with different levels appear as we traverse the list.

Probabilistic Philosophy and Assumptions

We assume an adversarial user does not have access to the levels of elements; otherwise, he could create si
with worst-case running times by going through a list and deleting all elements that were not level 1. A user witl
access to the levels of elements might do this by chance, but as we shall show, the probability of this is small er
to be ignored. Note that the probabilities of poor running times for successive operations on the same data strt
areNOT independent; two successive searches for the same element will both take exactly the same time.
Probabilistic Analysis

Besides analyzing the expected performance of skip lists, we also can analyze the probabilistic performance o
lists. This will allow us to calculate the probability that an operation takes longer than a specified time. This anal
is based on the same ideas as our analysis of the expected cost, so that analysis should be understood first.

A random variablehas a fixed but unpredictable value and a predictable probability distribution and average
X is a random variable, Prob{ X = t} denotes the probability that equalst and Prob{X >} denotes the
probability thatX is greater thah For example, iX is the number obtained by throwing an unbiased die, Prob{ X >
3}=1/2.

It is often preferable to find simple upper bounds on values whose exact value is difficult to calculate. To
cuss upper bounds on random variables, we need to define a partial ordering and equality on the probal
distributions of non-negative random variables.

Definitions (=prop and<prop)- LetX andY be non-negative independent random variables (typicélgndyY
would denote the time to execute algorithhgsandAy). We defineX <0, Y to be true if and only if for any
valuet, the probability thaX exceeds is less than the probability thdtexceeds. More formally:

X =prop Y iff O't, Prob{X >t} = Prob{Y>t} and
X <prop Y iff O't, Prob{X >t} < Prob{Y >t[]

We make use of two probability distributions:
Definition (binomial distributions —B(t, p)). Lett be a non-negative integer amthe a probability. The teriB(t, p)
denotes a random variable equal to the number of successes seen in atsadependent random trials where the
probability of a success in a trialgs The average and varianceBff, p) aretp andtp(1 — p) respectivel] |
Definition (negative binomial distributions — N p). Lets be a non-negative integer apdbe a probability. The
term NB(s, p) denotes a random variable equal to the number of failures seen befgfesiinecess in a series of

A Skip List Cookbook

random independent trials where the probability of a success in a pidlhe average and varianceNi(s, p are
S(1-p)/p ands(1—p)/p? respectively |

Probabilistic Analysis of Search Times

We analyze the search path in a backward direction, starting at the element immediately to the left of the ele
searched for and travelling up and to the left. The length of this path is one less than the number of comparisol
need to perform. We first examine the number of pointers we have to backtrack to climb from level 1 (of the eler
immediately before the element searched for) up to lefr§l We assume we have no knowledge of the levels of
elements in the list, and that we always reach Ieg@l before we reach the header of the list (i.e., the list extends
infinitely to the left).

At any particular point in the climb, we are at thdorward pointer of an elemert and we have no knowledge
about the levels of elements to the lefkafr about the level of, other than that the level ®fmust be at least The
probability that the level ok is greater tham is p. We can analyze the time to traverse the search path b
considering this backward climb to be a series of random independent trials with a success corresponding to a
up a level, and a failure corresponding to a move left. The number of leftward movements in the path climbin
level L(n) is the number of failures seen before seeingltf® & 1)" success in a series of random trials, which is a
negative binomial distribution. The number of upward movements is exaftly«1). This gives us:

Cost to climb to level(n) in an infinite list 5,0 (L(N) —1) +NB(L(n) —1, p)

Our assumption that the list is infinite is a pessimistic assumption. When we bump into the header in
backward climb, we simply climb up it, without performing any leftward movements. This gives us:

Cost to climb to level(n) in a list ofn elementss,,, Cost to climb to level(n) in an infinite list
0 Cost to climb to level(n) in a list ofn elementssqp, (L(N) — 1) +NB(L(n) — 1,p)

Once we have climbed to levign), the number of leftward movements is bounded by the number of element
of levelL(n) or greater in a list af elements. The number of elements of ldy@) or greater in a list afi elements
is a random variable of the forB{n, 1/np).

Let M be a random variable corresponding to the maximum level in a ligtleents. The probability that the
level of a node is greater thins pk, so Prob{M > k } = 1-(1-pK¥)"< npK. Sincenpk = g and Prob{NB(1, 1-p) +
1>i} = p', we get a probabilistic upper boundMf<,o, L(n) + NB(1, 1 —p) + 1. Note that the average lofn) +
NB(1, 1 —p) + 1isL(n) + 1/(1-p).

This gives a probabilistic upper bound on the cost once we have reached(fgvafl B(n, 1/np) + (L(n) +
NB(1, 1 —p) + 1) — L(n). Combining our results to get a probabilistic upper bound on the total length of the seal
path (i.e., cost of the entire search):

cost to climb out of a list af elementspo, L(n) + NB(L(n) — 1,p) + B(n, 1/hp) + NB(L, 1 —p)
The number of comparisons is one more than the length of the search path:
number of comparisorgyop L(n) + NB(L(n) — 1,p) + B(n, 1hp) +NB(1, 1 —p) + 1

The expected value of our upper bound is equia(tpp + 1/(1-p) + 1, and the variance of our upper bound.{gX

~ 1)(3-p)/p? + (1 - 1hp)/p + p/(1-p)2.

2.3. Efficiency

We compared [1] implementations of skip lists against implementations AVL trees, 2-3 trees and splay trees.
found that skip lists had roughly the same efficiency as highly optimized, non-recursive balanced t
implementations (insertions and deletions were slightly faster in skip lists), and that skip lists were significar
faster (by a factor of 2-3) than straightforward, recursive balanced tree implementations or highly optimized s
tree implementations (for uniform query distributions).

A Skip List Cookbook

3. SKip List Extensions
This section describes our new results. We first describe algorithms for using search fingers, merging, splitting
concatenation. Linear list operations, described next, allow us to implement operations such as “insert this afte
kh element of the list.” The algorithms given allow only linear list operations, but it is easy to combine the linear
versions with the standard skip list algorithms to provide skip lists that allow operations both by key and by posit
We next return to the original algorithms and look for ways to improve them. We discuss how to reduce
number of comparisons when comparisons are expensive, mention the changes needed to allow duplicate ele
and examine more precisely the cost to search fokfhelement of a skip list containing elements. We also
describe a new probability distribution for the levels of elements that provides both low space costs and a low st
time variance.

3.1 Using Search Fingers
We can maintain fingerinto a search structure so that the expected time to search for an eled{ént i3, where
k is the distance between the previous element searched for and the new element [6] [Bh{@ i8 associated
with each list and defined so thatger(list)[K] is the rightmost element of levklthat is left of the last element
examined. This is identical to thpdatevector that is used for the insertion and deletion operations, except that tt
finger is maintained from one operation to the next. An algorithm to perform a search using search fingers is st
in Figure 6. The overhead of using fingers could result in an overall slow down if searches do not have a locali
reference.

Theorem 1. The number of comparisons required to locate an eleknawhy from the location last examined

is bounded by

2L(K) + 2NB(1, 1 —p) + NB(L(K) — 1,p) + B(k, 1kp) + 3

which has an average bfk) + L(K)/p + 2p/(1-p) + 4 and a variance &fKk)(1-p)/p?+ (1 — 1kp)/p + 4p/(1)2
Proof: Determining if we have to move forward or backward requires 1 comparisonbé&¢he position of the
tip of the finger (i.e., the position &hger(list)[1]). Let j be the position of the element being searched fok If

j, letivl be the maximum level among elements () .. { — 1). Otherwise (if <i) letIvl be the maximum level
among elementg.i. The finger search will climb up to levell + 1 before starting the decent phase of the

SearchWithFinger(list, searchKey)
vl :=2
if list-finger[1] - key < searchKey then
-- move forward, find the largest Ivl s.t. listinger[lvl] - forward[Ivl] —key < searchKey
while Ivl < list-level and list-finger[Ivl] - forward[Ivl] - key < searchKey do Ivl := vl + 1

vl :=Ivl-1
x := list-finger[lvl]
else

-- move backward, find the smallest Ivl s.t.4ifihger[lvl] —key < searchKey
while Ivl < list-level and list-finger[lvl] - key = searchKey do Ivl := vl + 1
if Ivl > list-level then

Ivl := list-level

x := list—header
else x := list-finger[lvl]

fori:=Ivldownto 1 do
while x - forward[i] - key < searchKey do x := x - forward][i]
list-finger(i] := x

X := X -forward[1]
if x-key = searchKey then return x-value
else return failure

FIGURE 6 — Search using finger

A Skip List Cookbook

search. This will requiré/l comparisons. Lelt = 0i + 1 —j0 (i.e., letk be the number of elemeritd is the

maximal level over). The maximum level among thksdementslyl) is probabilistically bounded biy(k) + 1

+ NB(1, 1 —p). The length of the (backwards) search path is boundéd byl upward movements aiB(L (k)

—1,p) + B(k, 1kp) leftward movement]
3.2 Optimal Merging of Skip Lists
The merge algorithm in Figure 7 merges two skip lists. The algorithm moves as many elements as possible fron
input list to the output list, moves as many as possible from the other list and repeats this process until all eler
have been moved to the output list. If an element appears in both lists, the value fidist&@msed. Lek be the
number of elements moved in a single merge step. The number of comparisons required works out to be the se
is required to search using a search finger. This gives an averagid efL(k)/p + 20/(1 —p) + 3 comparisons,
which isO(log k).

We need to introduce some new terminology to describe the total cost to perform a merge, which consis
many merge steps. Latbe the size olistl andm be the size ofist2. Assume w.l.g. thatn < n. We useS;...§ to
describe how elements are taken fripstil andT;...T, to describe how elements are taken fi@t2, as shown in
Figure 8. If we first take elements frdistl, then we také&, elements fronlistl, T, elements frontist2, S, elements
from listl, and so on. Otherwise, we takgelements frontist2, S; elements frontistl, T, elements frontist2, and
so on. Note thgtandk can differ by at most one, all &f...§ andT,...T, are required to be positive integears; S, +
S+--+§andm=Ty+ T+ + T

Our merge algorithm runs in expected time

OD' + ilog S+k+ ilog T 0
0" i U

Brown and Tarjan’s algorithm for merging balanced trees [7] inserts the elements from the smaller list into the la
list one at a time, using a search finger to reduce the amount of work required. This algorithm runs in time

0+ 3 10e8+3 T EOD + 3 o5+l

The worst case situation for both of these algorithms is a uniformly distributed merge, irkwhigtall of the
T,'s are equal to 1 and all of tt8s are equal ta/m. For this situation, both algorithms run @(m + m log n/m)
expected time. Brown and Tarjan showed that this is a lower bound, and therefore optimal. But that lower bc
holds only for uniformly distributed merges. Our algorithm is optimalatbinputs. If the data structures simply
need to be concatenated, our algorithm rur@(iag n) expected time, while Brown and Tarjan’s algorithm requires
O(m + log n) time. There are specialized algorithms that concatenate balanced ks in) time. However, our
algorithm optimally handles both uniformly distributed merges and concatenation, as well as everything in betwe
Lower bounds and optimality
If sequences are represented in a way such that mkaigments down the list tak€glog k) time and we must
visit each of the locations in the input lists where the merge switches from one input list to the other, as well a:
beginnings and ends of the lists, then the time to merge two sequences is

QD' + Izllog S+k+ ilog T, 0
e is U

Since this is the same as the performance of our algorithm, our algorithm is optimal for all inputs.

s | T s | T2 | & | Ts | S T2l S |
listl: [| L] | | | |] |
list2: L] L 1 [1] [1]

result: | I I I I I I L] |

FIGURE 8 — Example showing ho®...S; andT;...T, describe the merge process.

A Skip List Cookbook

Our assumptions seem incontestable. Our attempts to show optimally based on information theoretic t
failed, since is it possible to tailor a merge algorithm to use very few comparisons on any specific distribution.
example, it is possible to write a merge algorithm take requires omlyoEnparisons for a uniformly distributed
merge of two lists of size andn (m < n). However, such an algorithm would still requi2ém log n/m) work using
almost any conceivable implementation and would require many more comparisons for a merge that did not hi
perfectly uniform distribution.

Optimal merging of balanced trees

The strategy we have described for merging skip lists can be applied to merging balanced trees to give the sam
bounds. In a merge step, as many elements as approgrééments) are split off from the appropriate input trees

and concatenated to the right side of the output tree, t&King k) time. However, merging balanced trees this way

is considerably more complex than the merge algorithm we have presented for skip lists.

Constant Factor Speed Comparisons

Brown and Tarjan [7] presented an analysis of the constant factors for their merge algorithm on a hypothe
machine [11]. To produce directly comparable results, we designed a new merge algorithm for skip lists that
the same strategy they used: insert the elements from the smaller list one at a time into the larger list using a ¢
finger. The resulting algorithm is 26 statements long. We calculated a probabilistic upper bound on the numb:
steps taken by our algorithm on a uniformly distributed merge of ligtsasfdn elementsrh < n) , which forp =

0.25 has an average of

m(17 log n/'m + 42) + 6
steps. Their algorithm (which is over 100 statements long in full detail [12]) runs in
m(15 log n/m+ 118.5) + 43.5

steps. These results are in line with our expectations: the portion of the algorithms that search for the place to
the next element run at similar speeds. However, tree merging incurs a large overhead for set—up and rebale

Split(list1, splitkey) -- Remove from listl all elements with keysplitKey and return them in a new list
list2 := newList()
list2 - level := listl - level
x := listl - header
for i :=listl-level downto 1 do
while x - forward[i] - key < splitkey do x := x - forward[i]
list2 - header - forward][i] := x - forward([i]
x - forward[i] := NIL

while listl - header - forward]listl - level] = NIL and listl-level > 1 do
listl-level := listl-level — 1

while list2 - header - forward(list—level] = NIL and list2-level > 1 do
list2 - level := list2 - level — 1

return list2

Concatenate(listl, list2) --Appends list2 to the end of listl, assumes last key irdlifitdt key in list2
if listl-level < list2-level then
for i :=listl-level+1 to list2-level do listl -~ header - forward[i] := NIL
listl-level := list2 - level

X := listl - header
for i :=listl-level downto 1 do

while x-forward[i] # NIL do x := x - forward][i]

if i < list2-level then x-forward[i] := list2 - header - forward][i]
free(list2)

FIGURE 9— Concatenating and splitting skip lists

A Skip List Cookbook

that makes skip list merging faster for most applications.

3.3 Splitting and Concatenation
The algorithms for splitting and concatenating are shown in Figure 9. They are fast (re@(ioong) expected
time) and very simple.

34 Linear List Operations
We now describe a method for implementing linear Jis
operations [5] using skip lists (e.g., give me kHeelement
of this list). These operations are sometimes refereed {o as
rank operations. The search, insertion and deletion algo- ~ loop invariant: pos = pos(x)
rithms are shown in Figures 10-11. Each elemxemas an for i = list level downto 1 do
indexpogx). We use this value in our invariants but do not while pos + x - fDistanceli] < k do
store it. The index of the header is zero, the index of the|first pos := pos + X — fDistance]i]
element is one and so on. Associated with each forward x = x—forward][i]

pointer is a measurementDistance of the distance
traversed by that pointer:

tSearchByPosition(Iist, k)

if k <1 or k> size(list) then return bad-index
X := list—header

pos =0

return x-value

_ . h .
x—fDistancdi] = pos(x forward[i]) — pogx). FIGURE 11 — Searching for thé" element of a list

Note that the distance traversed by a level 1 pointer is always 1, sSo some storage economy is possible here
cost of a slight increase in the complexity of the algorithms.
3.5 SKipList Variations

In this section, we present some variations on the skip list algorithms and analyses presented previously.

Reducing comparisons
If comparisons are expensive.g, involve expensivel alreadyChecked :=NIL

comparisons of reals or strings) we can reduce the numbE" | := list-level downto 1 do

of comparisons by assuring that we never compare| the while x-forward]i] # alreadyChecked

search key against the key of an element more than gnce. . and X%forv.vard[']%key < searchkey do
X := x—forward[i]

Th|s opt|m|zat|.on re§ullts in an inner loop like that showr) in alreadyChecked := x forward[i]
Figure 13. This optimization saves an averageLon)(+ - if performing insertion or deletion
p/(1-p)2)p comparisons. updatefi] := x

Theorem 2. The number of comparisons required by

the inner loop in Figure 12 is bounded by FIGURE 12 — Inner loop optimized for expensive

comparisons

B(L(n) + NB(1, 1 —p), 1 —p) + NB(L(n) — 1,p) + B(n, 1/hp) + 1.

Proof: Consider the situation where we find we can make no more progress at the current level and need
move down from levei to leveli — 1 (whera is not the maximum level in the list). Lgbe the element who's
key we just compared against the search key. The levwelsofreater than or equal iolf the level ofy is
greater than, this optimization allows us to avoid comparing keys. The probability that the leyes$ ofiore
thani isp. There ard_(n) + NB(1, 1 —p) + 1 comparisons associated with upwards movements (in the
backwards search path) and we might save a comparison for all except tl_} first.
Duplicate elements
It is easy to modify skip list algorithms so that they allow duplicate entries. The insertion algorithm simply need:
be modified so as to always perform the insertion. The search and deletion algorithms are unchanged. With
changes, the skip lists will react to duplicate elements with a stack-like discipline (e.g., the element found
search is the one most recently inserted and a deletion removes the most recently inserted version of an elemel

10

A Skip List Cookbook

Precision Analysis
In previous analyses of skip lists, we made worst-case assumptions about the element being searched for. He
more precisely examine the cost to search fokithelement of a skip list containingelements.
Theorem 3. The number of comparisons required to search for, insert, or delet® tlement of a skip list
containingn elements is bounded by

L(n) + NB(L(k) — 1,p) + B(k, 1kp) + NB(1, 1p) + 1

which has an average bfn) + L(k) (1 —p)/p + 1/(1p) + 1

Proof: The number of upward movements in the search path is bounddd)byNB(1, 1 —p). The number of

leftward movements to climb out of a list kfelements iNB(L(k) — 1, p) + B(k, 1kp). The number of

comparisons is one greater than the length of the searct_Jath.
Non-standard probability distributions
In previous descriptions of skip lists, we assigned a random level to an element using a negative bino
distribution equal to 1 NB(1, 1 —p). Consider a probability distribution in which the probability of an element
being level or greater ip'**1 (all elements are at least level 1). The original probability distribution corresponds t
k = 0. This is equivalent to the standard distribution except that the level 2 theeLigbrward pointers have been
removed and all higher level forward pointers have dropped down a level. For this probability distri{ajien,
logy, N —k This distribution requires an average op#(1-p) pointers per element.

Theorem 4. Using this distribution, the number of comparisons required to perform a search is bounded by

logyp N —k—1 +NB(1, pY) + NB(logy, N —k — 2 p) + B(n, 1hp) + NB(1, 1 —p) + 2,

which has an average of (Iggn —k— 1 + 1p*)/p and a variance of ((lag n —k — 2)(1-p) + p +1/p> —p/pk +
1/n)/p2.

Proof: The number of leftward movements at level NB(1, pk*1) (since the probability that an element is at
least level 2 is 1/4). Farsuch that Z i < log,, n —k, the number of leftward movements at levisINB(1, p).

All of the other costs are similar to the standard d_be.

The motivation for using this distribution is shown in Table 2. Previously, to reduce the space costs of a skif
we would decrease Now that we have added this additional parameter to the probability distribution, incteasing
is often a better way to decrease space costs (particulary ifrge).

4. Conclusions
The algorithms presented here put skip lists on a par with balanced trees for versatility, and in almost all case
skip list algorithms are substantially simpler and at least as fast. This is partially because using a list-based strt
to represent an ordered collection seems more natural than using a tree-based structure, and partially be
probabilistic balancing seems simpler and more efficient than strictly enforced balancing.

Several researchers have reported to the author difficulties in developing and analyzing the sorts of exten
and variations described in this paper. Much of the reason for this difficulty may be that in order to develop

Average of Average #

Distribution/strategy p k search cost Variance of search cost pointers/element
baseline distribution 1/2 0 2lgn+3 2lgn—4h 2

old strategy: to reduce space 1/4 0 2lgn+7/3 6 lgn—68/9 — 161 11/4

costs, reduce p 1/8 0 22%3lgn+15/7 182/3lgn—2344/49 — 64/ 11/

new strategy: to reduce space 1/2 1 2lgn+3 2lgn+10-4nh 1,

costs, increase k 1/2 2 2lgn+5 2lgn+52—4nh 114

mixed strategy: /4 1/2 2Ign+13/3 6lgn+274/9 — 164 11/g

Table 2 — Average and variance of search costs and space utilizations using different probability distributions for the level:
elements

11

A Skip List Cookbook

analyze these sorts of extensions, you need an intuition about skip lists that is as strong as the intuition the
developed for balanced tree structures over the past 27 years. A main goal of this paper is to help the res
community develop that intuition.

Refer ences

[1]
(2]

3]
[4]

[5]
[6]

[7]
(8]
9]
[10]

[11]
[12]

William Pugh, Skip Lists: A Probabilistic Alternative to Balanced Tré&sceedings of the Workshop on
Algorithms and Data Structure®ttawa Canada, August 1988 appear in Comm. ACM

William Pugh and Tim Teitelbaum, Incremental Computation via Function CadPR@QC of the 16th ACM
Conf on the Principles of Programming Languaggs315-328

Cecilia Aragon and Raimund Seidel, Randomized Search He€$89, pp 540-545.

Clark A. Cranelinear Lists and priority queues as balanced binary tré&sD. Thesis, STAN-CS-72-259,
Computer Sci. Department, Stanford U., Stanford, CA, Feb. 1972.

Donald Knuth. Sorting and Searchifidhe Art of Computer Programmingol. 3, 1973.

L. Guibas, E. McCreight, M Plass and J. Roberts, A new representation for line@thissCM Symposium
on Theory of Computin@golder CO, 1977, pp 49-60.

Mark Brown and Robert Tarjan, A Fast Merging Algorithinpf the ACMVol. 26, No. 2, April 1979, pp.
211-226.

Mark Brown and Robert Tarjan, Design and Analysis of a Data Structure for Representing Sort&tiANEts,
J. Comput9, 594-614 (1980).

S. Huddleston and Kurt Mehlhorn, A new data structure for represented sortestlistsyformatic 17, 157—
184.

William Pugh,Concurrent Maintenance of Skip ListdR—2222, Dept. of Computer Science, University of
Maryland, College Park, April 1989

Donald Knuth, Structured programming wgbto statementsComputing Surveys, 4 (Dec 1974) 261-301.
Mark Brown and Robert Tarjay Fast Merging Algorithm STAN-CS—77-625, Computer Sci. Dept.,
Stanford U., Stanford, Calif, August 1977

12

A Skip List Cookbook

-- create a new list containing the elements of listl and list2 (destroys listl and list2)
-- if an element appears in both lists, use the value field from list2

merge(listl, list2)

local update[1..levelCap]
unflipped := true -- false if listl and list2 are interchanged

-- initialize new list

list := newList()

list—level := max(listl - level, list2 - level)
fori:=1to list-level do update]i] := list—-header

while listl - header - forward[1] # NIL and list2 - header - forward[1] # NIL do
keyl, key?2 := listl -~ header - forward[1] - key, list2 - header - forward[1] - key

-- assume w.l.g. that keydkey? (i.e., if keyl > key2, exchange listl and list2; keyl and key?2)
if keyl > key2 then listl, list2, keyl, key2, unflipped := list2, list1, key2, key1, not unflipped

-- merge step: remove from listl elements with kdysy? and put them on the output list

---------- for all Ivl s.t. listl~ header- forward[Ivl] - key< key2, connect output list to listl

vl:=1
repeat

update([lvl] - forward[Ivl] := listl - header - forward[IvI]

vl :=1Ivl+1

until Ivl > list-level or listl - header - forward[Ivl] - key > key2
vl :=1Ivl-1

---------- for each level attached to output list, find endpoint at that level (i.e., last element wittkdy3)
x := listl -~ header - forward[IvI]
fori:=Ivldownto 1 do

while x - forward[i] - key < key2 do x := x - forward[i]

-- X-keys< key2 < xforward[i] - key

update[i] := x

listl -~ header - forward][i] := x - forwardl[i]

-- X = last element moved to output list
-- if the element at the front of list2 is a duplicate of an element already moved to output list, eliminate it
if key2 = x-key then
if unflipped then x-value := list2 -~ header - forward[1] - value
y = list2 - header - forward[1]
fori:=1to y-level do list2-header - forward][i]:= y - forward][i]
free(y)
-- end of main while loop

if list2 - header - forward[1] = NIL then leftOver := listl else leftOver := list2
for i =1 to leftOver- level do updatel[i] - forward[i] := leftOver - header - forward][i]

-- the following two lines are necessary because we may have eliminated some duplicate elements
for i = leftOver-level + 1 to list-level do update[i] - forward[i] := NIL
while list-header - forward[list—level] = NIL and list-level > 1 do

list—level :=list-level — 1

free(listl)
free(list2)

FIGURE 7 — Merge algorithm

13

A Skip List Cookbook

InsertByPosition(list, k, value) -- insert a new element immediately after position k
if k<0 or k> list-size then bad-index

Ivl := randomLevel()
y := makeElement(lvl, value)
if Ivl > list-level then
fori:=list-level + 1 to Ivldo
list-header - forward[i] := NIL
list-header - fDistance[i] := list-size + 1
list—level := Ivl

X := list—header
pos := 0 -- pos = pos(x)
fori:=list-level downto 1 do
while pos + x-fDistance[i] < k do
pos := pos + x - fDistance][i]
X := x-forward][i]
if i > lvl then x - fDistance[i] := x- fDistance[i] + 1
else
z :=x-forward][i] -- insert y between x and z
y - forward[i] := z
x-forward[i] :=y
-- new pos(z) = pos + old- fDistance[i] + 1
--new pos(y) =k +1
y - fDistance[i] := pos + x-fDistance[i] — k -- new y-fDistance = new pos(z) — hew pos(y)
x-fDistancel[i] ;= k + 1 — pos -- new x-fDistance =new pos(y) — hew pos(x)
list-size := list-size + 1

DeleteByPosition(list, k) -- delete the R element
local update[1..levelCap]
if k<1 or k> list-size then bad-index

X := list—header
pos := 0 -- pos = pos(x)
fori:=list-level downto 1 do
while pos + x-fDistance[i] < k do
pos := pos + x - fDistance][i]
X := x-forward[i]
update[i] := x

X := x-forward[1]
fori:=1to list-level do
if updatel[i]-forward[i] = x then
update[i] - forward[i] := x - forward][i]
update[i] - fDistanceli]:= update][i] - fDistance]i] + x - fDistance[i] — 1
else
update[i] - fDistanceli] := update][i] - fDistance]i] — 1

list-size := list-size — 1
while list-header - forward[list—level] = NIL and list-level > 1 do
list-level := list-level — 1

FIGURE 10 — Insertion and Deletion by position

14

