Graphs (fpadot)

Manolis Koubarakis

Data Structures and Programming
Techniques

Graphs

e Graphs are collections of nodes in which various
pairs are connected by line segments. The nodes
are usually called vertices (kopudéc) and the line
segments edges (otkHEC).

* Graphs are more general than trees. Graphs are
allowed to have cycles and can have more than
onhe connected component.

* Some authors use the terms nodes (koppot) and
arcs (to€a) instead of vertices and edges.

Example of Graphs (Directed)

Data Structures and Programming
Techniques

Example of Graphs (Undirected)

Data Structures and Programming
Techniques

Examples of Graphs

* Transportation networks

* Interesting problem: What is the path with
one or more stops of shortest overall distance

connecting a starting city and a destination
city? =

Examples (cont’d)

* A network of oil pipelines

Interesting problem: What is the maximum
possible overall flow of oil from the source to

the destination?

------ traq’s Oil & Gas
mfrastructure

GGGGGGG

4
KKKKKK

Operational Refinery

nnnnnnnnnnnnnnn

Guir

Data Structures and Programming

Techniques

Examples (cont’d)

e The Internet

* Interesting problem: Deliver an e-mail from
user A to user B

Data Structures and Programming
Techniques

Examples (cont’d)

e The Web

* Interesting problem: What is the PageRank of
a Web site?

PageRank ©

Data Structures and Programming
Techniques

Examples (cont’d)

* The Facebook social network

* Interesting problem: Are John and Mary
connected? What interesting clusters exist?

Data Structures and Programming
Techniques

Formal Definitions

A graph G = (V, E) consists of a set of vertices Vand a set of edges
E, where the edges in £are formed from pairs of distinct vertices in
V.

If the edges have directions then we have a directed graph
(kateuBuvopevo ypado) or digraph. In this case edges are ordered
pairs of vertices e.g., (u, v) and are called directed. If (u, v) is a
directed edge then u is called its origin and v is called its
destination.

If the edges do not have directions then we have an undirected
graph (un-katevBuvopevoc ypado). In this case edges are
unordered pairs of vertices e.g., {v, u} and are called undirected.

For simplicity, we will use the directed pair notation noting that in
the undirected case (u, v) is the same as (v, u).

When we say simply graph, we will mean an undirected graph.

Example of a Directed Graph

G=(V,E)
V=1{1,2345,6,7,8791011}
E ={(1,2),(1,3),(2,5),(34),
(5,4), (5,6),(6,7),(8,9),(8,10), (10,11)}

Data Structures and Programming

11
Techniques

Example of an Undirected Graph

3 4 6

G=(V,E)
V=1{1,2345,6,7,8791011}
E ={(1,2),(1,3),(2,5),(34),
(5,4), (5,6),(6,7),(8,9),(8,10), (10,11)}

Data Structures and Programming

12
Techniques

More Definitions

Two different vertices v; and v; ina graph ¢ = (V,E) are
said to be adjacent (yewtovikec) if there exists an edge

e € E such that e = (vi, vj).

An edge is said to be incident (mpoomnintovoa) on a vertex
if the vertex is one of the edge’s endpoints.

A path (povonati) p in a graph G = (V, E) is a sequence of
vertices of IV of the form p = v, v, ... v, (n = 2) in which
each vertex v; is adjacent to the next one v;, ¢ (for1 < i <
n —1).

The length of a path is the number of edges in it.

A path is simple if each vertex in the path is distinct.

A cycle is a path p = v, v, ... v, of length greater than one
that begins and ends at the same vertex (i.e., v = vy,).

Definitions (cont’d)

* Adirected path is a path such that all edges

are directed and are traversed along their
direction.

* Adirected cycle is similarly defined.

Definitions (cont’d)

* Asimple cycle is a path that travels through
three or more distinct vertices and connects
them into a loop.

* Formally, if p is a path of the form p =
V1V, ... Uy, then p is a simple cycle if and only
ifn > 3,v; = v, and v; # v; for distinct i and
jintherangel <i,j <n-—1.

* Simple cycles do not repeat edges.

Example

Four simple cycles: (1,2,3,1) (4,5,6,7,4) (4,5,6,4) (4,6,7,4)

Data Structures and Programming
Techniques

16

Example (cont’d)

Two non-simple cycles: (1,2,1) (4,5,6,4,7,6,4)

Data Structures and Programming
Techniques

17

Example (cont’d)

A path that is not a cycle: (1,2,4,6,8)

Data Structures and Programming
Techniques

18

Connectivity and Components

* Two vertices in a graph G = (V, E) are said to
be connected (cuvdebepcvec) if there is a
path from the first to the second in G.

* Formally,ifx € Vandy € V, wherex # v,
then x and y are connected if there exists a
path p = v,v, ...V, in G such that x = v; and
Y = Vn.

Connectivity and Components (cont’d)

* Inthe graph ¢ = (V,E), a connected component
(ouvektiki cuvictwoa) is a subset S of the vertices IV
that are all connected to one another.

* A connected component S of G is a maximal
connected component (LEyLoTn OCUVEKTIKA
ocuvictwoa) provided there is no bigger subset T of
vertices in I/ such that T properly contains S and such
that T itself is a connected component of G.

 An undirected graph G can always be separated into
maximal connected components 54, S5, ..., S5, such that

5;NS; = @ wheneveri # j.

Example of Undirected Graph and its Separation
into Two Maximal Connected Components

Data Structures and Programming

21
Techniques

Connectivity and Components in
Directed Graphs

* Asubset S of vertices in a directed graph G is
strongly connected (toxupa cuvektiko) if for
each pair of distinct vertices (v;, v;) in S, v; is
connected to v; and v; is connected to v; .

* Asubset S of vertices in a directed graph G is
weakly connected (ao0evwc¢ ocuvektiko) if for
each pair of distinct vertices (v;, v;) in §, v; is
connected to v; or v; is connected to v; .

Example: A Strongly Connected
Digraph

Data Structures and Programming
Techniques

23

Example: A Weakly Connected Digraph

Data Structures and Programming

24
Techniques

Degree in Undirected Graphs

* In an undirected graph G the degree (Ba®nog)
of vertex x is the number of edges e in which

x is one of the endpoints of e.
* The degree of a vertex x is denoted by

deg(x).

Example

The degree of node 1 is 2. The degree of node 4 is 4. The degree of node 8 is 1.

Data Structures and Programming
Techniques

26

Predecessors and Successors in
Directed Graphs

* If x isavertexin adirected graph ¢ = (V,E)
then the set of predecessors (mponyoupevwv)
of x denoted by Pred(x) is the set of all
vertices y € V such that (y,x) € E.

* Similarly the set of successors (emopevwv) of
x denoted by Succ(x) is the set of all vertices
y € V such that (x,y) € E.

In-Degree and Out-Degree in Directed
Graphs

The in-degree of a vertex x is the number of
predecessors of x.

The out-degree of a vertex x is the number of
successors of x.

We can also define the in-degree and the out-

degree by referring to the incoming and outgoing
edges of a vertex.

The in-degree and out-degree of a vertex x are
denoted by indeg(x) and outdeg (x)
respectively.

Example

The in-degree of node 4 is 2. The out-degree of node 4 is 1.

Data Structures and Programming
Techniques

29

Proposition

* |If G is an undirected graph with m edges, then

Z deg(v) = 2m.

ving
* Proof?

Proof

* An edge (u, v) is counted twice in the
summation above; once by its endpoint u and
one by its endpoint v. Thus, the total
contribution of the edges to the degrees of
the vertices is twice the number of edges.

Proposition

* |If G is a directed graph with m edges, then

Z inde g(v) = Z outdeg(v) = m.

vinGg vinGg
 Proof?

Proof

* In a directed graph, an edge (u, v) contributes
one unit to the out-degree of its origin vertex
u and one unit to the in-degree of its
destination v. Thus, the total contribution of
the edges to the out-degrees of the vertices is
equal to the number of edges, and similarly
for the out-degrees.

Proposition

* Let G be a graph with n vertices and m edges.
n(n—-1) : :
,and if G is

If G is undirected, then m <
directed, thenm < n(n — 1).
 Proof?

Proof

e |f G is undirected then the maximum degree
of a vertex isn — 1. Therefore, from the
previous proposition about the sum of the
degrees, we have 2m < n(n — 1).

e |f G is directed then the maximum in-degree
of a vertexisn — 1. Therefore, from the
previous proposition about the sum of the in-
degrees, we have m < n(n — 1).

More definitions

A subgraph (unoypadocg) of a graph G is a graph H
whose vertices and edges are subsets of the vertices
and edges of G respectively.

A spanning subgraph (unoypadoc emkaAuvync) of ¢
is a subgraph of G that contains all the vertices of G.

A forest (6acoc) is a graph without cycles.

A free tree (eAe00Bepo 6£vOPO) is a connected forest
i.e., a connected graph without cycles. The trees that
we studied in earlier lectures are rooted trees (6Evépa
HE pila) and they are different than free trees.

A spanning tree (6évépo ermukaAuvyng) of a graph is a
spanning subgraph that is a free tree.

Example

The thick green lines define a spanning tree of the graph.

Data Structures and Programming
Techniques

37

T o b

The thick green lines define a forest
which consists of two free trees.

Data Structures and Programming

Techniques 38

Graph Representations: Adjacency
Matrices

* LetG = (V,E) be agraph. Suppose we
number the vertices in IV as v, v, ..., Uy,.

* The adjacency matrix (mivakog yewtviaong) T
corresponding to G is an n X n matrix such
that T|[i,j] = 1 if there is an edge (vi, vj) €EE,
and T[i,j] = 0 if there is no such edge in E.

Example

1 2 3 4
1 0 1 0 O
2 0 0 1 1
31 0 O 1
41 0 0 O

The adjacency matrix for graph G

Data Structures and Programming
Techniques

40

Adjacency Matrices

* The adjacency matrix of an undirected graph
G is a symmetric matrixi.e., T|i,j]| = T|j,]
foralliandjintherangel <i,j < n.

* The adjacency matrix for a directed graph
need not be symmetric.

Adjacency Matrices

* The diagonal entries in an adjacency matrix
(of a directed or undirected graph) are zero,
since graphs as we have defined them are not
permitted to have looping self-referential
edges that connect a vertex to itself.

An undirected graph G

Example

A W N PP
N e =
N =
© L B B N

R O R R

The adjacency matrix for graph G

Data Structures and Programming
Techniques

43

Adjacency Matrices in C

#fdefine MAXVERTEX 10
typedef enum {FALSE, TRUE} Boolean

typedef Boolean
AdjacencyMatrix [MAXVERTEX] [MAXVERTEX]

typedef struct graph {
int n /*number of vertices in graph */
AdjacencyMatrix A;

} Graph;

Adjacency Sets

* Another way to define a graph G = (V,E) isto
specify adjacency sets (cUvoAa yettviaonc) for
each vertex in V.

* Let I/, stand for the set of all vertices adjacent to
x in an undirected graph G or the set of all
vertices that are successors of x in a directed
graph G.

* If we give both the vertex set V and the
collection 4 = {V,.|x € V} of adjacency sets for
each vertex in IV then we have given enough
information to define the graph G.

Graph Representations: Adjacency
Lists

* Another family of representations for a graph
uses adjacency lists (Aloteg yettviaoncg) to

represent the adjacency set V, for each vertex
X in the graph.

Example Directed Graph

Vertex out b Ad |'
Number OutDegree Adjacency list
1 2 2 3

2 3 345

4 0

A directed graph G

The sequential adjacency lists for graph
G. Notice that vertices are listed in their
natural order.

Data Structures and Programming

. 47
Techniques

Example Directed Graph

1:| * 1 2 | e { 3| e
2I. o] 3 | e 4 | e »| 5
3.1 e =4‘o
4:| e

5 5:-| ¢ 1 | e

A directed graph G

The linked adjacency lists for graph G.
Notice that vertices in a list are organized

according to their natural order.

Data Structures and Programming 48

Techniques

Example Undirected Graph

Vertex . :
Degree Adjacency list

1/ \3 Number
1 3 235
4 1345
3 124
2 2 4
5 4 2 12

An undirected graph G

u B~ W DN

The sequential adjacency lists for graph G

Data Structures and Programming

: 49
Techniques

Sequential Adjacency Lists in C
typedef int AdjacencyList [MAXVERTEX];

typedef struct graph{
int n; /*number of vertices in graph */
int degree [MAXVERTEX];
AdjacencyList A[MAXVERTEX];

} Graph;

Linked Adjacency Lists in C

typedef 1nt Vertex;

typedef struct edge {
Vertex endpoint;
struct edge *nextedge;
} Edge;

typedef struct graph{
int n; /*number of vertices in graph */
Edge *filrstedge [MAXVERTEX];

} Graph;

Linked Adjacency Lists in C (cont’d)

* The previous representation used an array for

the vertices and linked lists for the adjacency
lists.

e \We can use linked lists for the vertices as well
as follows.

Linked Adjacency Lists in C (cont’d)

typedef struct vertex Vertex;
typedef struct edge Edge;

struct vertex {
Edge *firstedge;
Vertex *nextvertex;

}

struct edge {
Vertex *endpoint;
Edge *nextedge;
I

typedef Vertex *Graph;

Graph Searching

* To search a graph G, we need to visit all
vertices of G in some systematic order.

e Let us define an enumeration

typedef enum {FALSE, TRUE} Boolean;

 Each vertex v can be a structure with a
Boolean valued member v.Visited
which is initially FALSE for all vertices of G.
When we visit v, we will set it to TRUE.

An Algorithm for Graph Searching

void GraphSearch (G, v)
{
Let G=(V,E) be a graph.
Let C be an empty container.

for (each vertex x in V) {
x.Visited=FALSE;

Put v into C;
while (C is non-empty) {
Remove a vertex x from container C;
if (! (x.Visited)) {
Visit (x);
x.Visited=TRUE;
for (each vertex w in V) {
if (!'(w.Visited)) Put w into C;

Graph Searching (cont’d)

e Let us consider what happens when the
container C is a stack.

Example

What is the order vertices are visited?

Data Structures and Programming
Techniques

57

Example (cont’d)

The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6 and 5.

Data Structures and Programming
Techniques

58

Depth-First Search (DFS)

* When C is a stack, the tree in the previous
example is searched in depth-first order.

* Depth-first search (avalintnon npwta Katd
BaBoc) at a vertex always goes down (by

visiting unvisited children) before going across
(by visiting unvisited brothers and sisters).

* Depth-first search of a graph is analogous to a
pre-order traversal of an ordered tree.

Graph Searching (cont’d)

e Let us consider what happens when the
container C is a queue.

Example

What is the order vertices are visited?

Data Structures and Programming
Techniques

61

Example (cont’d)

The vertices are visited in the order 1, 2, 3,4, 5, 6, 7 and 8.

Data Structures and Programming
Techniques

62

Breadth-First Search (BFS)

When C is a queue, the tree in the previous example is
searched in breadth-first order.

Breadth-first search (avaintnon npwta katda nAdtoc)
at a vertex always goes broad before going deep.

Breadth-first traversal of a graph is analogous to a
traversal of an ordered tree that visits the nodes of the
tree in level-order.

BFS subdivides the vertices of a graph in levels. The
starting vertex is at level O, then we have the vertices
adjacent to the starting vertex at level 1, then the
vertices adjacent to these vertices at level 2 etc.

Example

What is the order of visiting vertices for DFS?

Data Structures and Programming
Techniques

64

Example (cont’d)

Data Structures and Programming
Techniques

65

Example (cont’d)

What is the order of visit for BFS?

Data Structures and Programming
Techniques

66

Example (cont’d)

Breadth-first search visits the vertices in the order 1, 2, 3,4, 5, 6, 7 and 8.

Data Structures and Programming
Techniques

67

Exhaustive Search

e Either the stack version or the queue version
of the algorithm GraphSearch will visit
every vertex in a graph G provided that G
consists of a single strongly connected
component.

e If this is not the case, then we can enumerate
all the vertices of G and run GraphSearch
starting from each one of them in order to
visit all the vertices of G.

Exhaustive Search (cont’d)

volid ExhaustiveGraphSearch (G)

{
Let G=(V,E) be a graph.

for (each vertex v 1in G){

GraphSearch (G, V)

Theseus in the Labyrinth

* DFS and BFS can be simulated using a string
and a can of paint for painting the vertices
i.e., using a version of the algorithm that
Theseus might have used in the labyrinth of

the Minotaur!

Implementing DFS in C

* We will now show how to implement depth-
first search in C.

 We will use the linked adjacency lists
representation of a graph.

* We will write a function DepthFirst which
calls the recursive function Traverse.

Implementing DFS in C (cont’d)

/* global variable visited */
Boolean visited[MAXVERTEX];

/* DepthFirst: depth-first traversal of a graph
Pre: The graph G has been created.
Post: The function Visit has been performed at each vertex of G in

depth-first order
Uses: Function Traverse produces the recursive depth-first order */

void DepthFirst (Graph G, void (*Visit) (Vertex x))
{

Vertex v;

for (v=0; v < G.n; v++)
visited[v]=FALSE;
for (v=0; v < G.n; v++)
if (!visited[v]) Traverse (G, v, Visit);

Implementing DFS in C (cont’d)

/* Traverse: recursive traversal of a graph

Pre: v is a vertex of graph G
Post: The depth first traversal, using function Visit, has been
completed for v and for all vertices adjacent to v.

Uses: Traverse recursively, Visit */

void Traverse (Graph G, Vertex v, void (*Visit) (Vertex x))

{

Vertex w;

Edge *curedge;

visited[v]=TRUE;
Visit (v);

curedge=G.firstedge[Vv]; /* curedge is a pointer to the first edge (v,) of V */
while (curedge) {
w=curedge->endpoint; /* w is a successor of v and (v,w) is the current edge */
if (!visited([w]) Traverse (G, w, Visit);
curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,) of V */

Data Structures and Programming

. 73
Techniques

Example of Recursive DFS

What is the order vertices are visited?

Data Structures and Programming
Techniques

74

Example (cont’d)

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is
different than the order we got when using a stack!

Data Structures and Programming
Techniques

75

Complexity of DFS

DFS as implemented above (with adjacency lists) on a graph
with e edges and n vertices has complexity O(n + e).

To see why observe that on no vertex is Traverse called
more than once, because as soon as we call Traverse
with parameter v, we mark v visited and we never call
Traverse on a vertex that has previously been marked as

visited.

Thus, the total time spent going down the adjacency lists is
proportional to the lengths of those lists, that is O(e).

The initialization steps in DepthFirst have complexity
O(n).
Thus, the total complexity is O(n + e).

Complexity of DFS (cont’d)

If DES is implemented using an adjacency matrix,
then its complexity will be 0(n?).

If the graph is dense (mtukvoc), that is, it has close
to O(nz) edges the difference of the two
implementations is minor as they would both run
in 0(n?) time.

If the graph is sparse (apaioc), that is, it has close
to O(n) edges, then the adjacency matrix

approach would be much slower than the
adjacency list approach.

Implementing BFS in C

* Let us now show how to implement breadth-
first search in C.

* The algorithm BreadthFirst makes use of

a queue which can be implemented using any
of the implementations we presented in an

earlier lecture.

Implementing BFS in C (cont’d)

/* BreadthFirst: breadth-first traversal of a graph
Pre: The graph G has been created
Post: The function visit has been performed at each vertex of G, where the vertices
are chosen in breadth-first order.
Uses: Queue functions */

void BreadthFirst (Graph G, void (*Visit) (Vertex))
{

Queue Q;

Boolean visited[MAXVERTEX];

Vertex v, w;

Edge *curedge;

for (v=0; v < G.n; v++)
visited[v]=FALSE;

InitializeQueue (&Q) ;

for (v=0; v < G.n; v++)

if (!visited[v]) {
Insert (v, &Q);
do {

Remove (&Q, &v);;
if (!visited[v]) {
visited[v]=TRUE;

Visit (v);
}
curedge=G.firstedge([v]; /* curedge is a pointer to the first edge (v,) of V */
while (curedge) {
w=curedge->endpoint; /* w is a successor of v and (v,w) is the current edge */
if (!visited[w]) Insert(w, &Q);
curedge=curedge->nextedge; /*curedge is a pointer to the next edge (v,) of V */

}
} while (!Empty(&Q));

Data Structures and Programming
Techniques

Complexity of BFS

* BFS as implemented above (with adjacency

lists) has the same complexity as DFS i.e.,
O(n+e).

DFS Traversal of a Directed Graph

During a depth-first traversal of a directed graph, certain edges,
when traversed, lead to unvisited vertices. The edges leading to
new vertices are called tree edges (akpég 6€vépou) and they form
a depth-first spanning forest (mpwta katd Babo¢ daococ
erukaAvync) for the given digraph.

There are also edges called back edges (akpéc omieBoxwpnong)
that go from a vertex to one of its ancestors in the spanning forest.

There also edges that do not belong to the spanning forest and go
from a vertex to a proper descendant. These are called forward
edges (akpéc mpowOnonc).

Finally, there are edges that go from a vertex to another vertex that

is neither an ancestor nor a descendant that are called cross edges
(eykaporeg akpec).

Example

Data Structures and Programming
Techniques

82

Example (cont’d)

»
»

Tree edges

Cross edges >

Back edges s

There are no forward edges

Data Structures and Programming

Techniques 8

Classification of Edges

 How do we distinguish among the four types of edges?

* Tree edges are easy to find since they lead to an unvisited vertex
during DFS.

e Let us number the vertices of the digraph in the order in which we
first mark them as visited during a depth first search. For this we
can use an array df number and add the code

dfnumber [v]=count;

count++;
in the function Traverse, immediately after the
statement marking a vertex as visited.

e Let us call this the depth-first numbering (mpwta kotd Babog
opibunon) of a digraph.

Classification of Edges (cont’d)

e All descendants of a vertex v are assigned depth-first
search numbers greater than or equal to the number
assigned to v. In fact, w is a descendant of v if and
only if dfnumber(v) < dfnumber(w) <
dfnumber(v) + number of descendants of v.

* Thus, we have the following:

— Forward edges go from low-numbered vertices to high-
numbered vertices.

— Back edges go from high-numbered vertices to low-
numbered vertices.

— Cross edges go from high-numbered vertices to low-
numbered vertices.

DES of an Undirected Graph

* During a depth-first search of an undirected
graph G, all edges become either tree edges or
back edges.

* Tree edges are those edges (v, w) such that
Traverse with parameter v directly calls
Traverse with parameter w or vice versa.

* Back edges are those edges (v, w) such that
Traverse with parameter v inspects vertex w
but does not call Traverse because w has
already been visited.

Example

Data Structures and Programming
Techniques

87

Example (cont’d)

Tree edges

Back edges

Data Structures and Programming
Techniques

88

DES of an Undirected Graph

* During a DFS of an undirected graph G, tree
edges form a depth-first spanning forest of (.

BFS of an Undirected Graph

* We can build a spanning forest when we perform
a breadth-first search as well. We call this the
breadth-first spanning forest of the graph.

* We consider edge (v, w) to be a tree edge if
vertex w is first visited from vertex v in the inner
while loop of function BreadthFirst.

* Every edge that is not a tree edge is a cross edge,
that is, it connects two vertices neither of which
is an ancestor of the other.

Example

Let us execute BFS with start node A.

Data Structures and Programming
Techniques

91

Example (cont’d)

Tree edges

Cross edges

Data Structures and Programming
Techniques

92

BFS of Directed Graphs

BFS can also work on directed graphs.

The algorithm visits vertices level by level and
partitions the edges into two sets: tree edges and non-
tree edges.

Tree edges define a breadth-first spanning forest.

Non-tree edges are of two kinds: back edges and cross
edges.

Back edges connect a vertex to one of its ancestors.
Cross edges connect a vertex to another vertex that is
neither its ancestor nor its descendant.

There are no forward edges.

Directed Acyclic Graphs

* Let G'be adirected graph with no cycles. Such
a graph is called acyclic. We abbreviate the

term directed acyclic graph to dag.

* Dags are more general than trees but less
general than arbitrary directed graphs.

Example Tree

Data Structures and Programming
Techniques

95

Example Dag

Data Structures and Programming
Techniques

96

Example Dag

Data Structures and Programming
Techniques

97

Applications of Dags

* Dags are useful in representing the syntactic
structure of arithmetic expressions with
common subexpressions.

 Example: Consider the following arithmetic
expression

(@+b)xc+(@+b)+e)«(e+f))
* ((a+b) *c)

The Dag for the Example

Data Structures and Programming
Techniques

99

Applications of Dags

* Dags are also useful for representing partial
orders.

* A partial order R on aset S is a binary relation
such that

— Forallain S, a R a is false (irreflexivity)
— Foralla,b,cinS,ifaRbandb R cthenaRc
(transitivity)
* Two natural examples of partial orders are the
“less than” relation (<) on integers, and the
relation of proper containment (C) on sets.

Example

e LetS ={1,2,3}and let P(S) be the power set
of S, that is, the set of all subsets of S. The
relation C is a partial order on S.

The Dag of the Example

{1,2,3}

|

{1,2} {1,3} {2,3}

<K

1} {2} 3}

~J17

?

Data Structures and Programming
Techniques

102

Test for Acyclicity

Suppose we are given a digraph G and we
wish to determine whether G is acyclic.

DFS can be used to answer this question.

If a back edge is encountered during a DFS
then clearly the graph has a cycle.

Conversely, if the graph has a cycle then a
back edge will be encountered in any DFS of
the graph. Proof?

Proof

e Suppose G is cyclic. If we do a DFS of G, there
will be one vertex v having the lowest DFS
number of any vertex on a cycle. Consider an
edge (u, v) on some cycle containing v. Since
u is on the cycle, u must be a descendant of v
in the depth-first spanning forest. Thus, (u, v)
cannot be a cross edge. Since the DFS number
of u is greater than the DFS number of v,

(u, v) cannot be a tree edge or a forward
edge. Hence, (u, v) is a back edge.

Topological Ordering of a DAG

* A topological ordering (tomoAoytkn
taélvopnon) of the vertices of adag ¢ is a
sequential list L of the vertices of ¢ (a linear
ordering) such that if there is a directed path
from vertex A to vertex Bin G, then A comes
before Fin the list L.

Example

* ('might be a graph in which the vertices
represent university courses to take and in
which an edge is directed from the vertex for
course A to the vertex for course Bif course 4

IS a prerequisite of 5.

 Then a topological ordering of the vertices of
(G gives us a possible way to organize one’s

studies.

Example

099@

A Topological Ordering

Data Structures and Programming

1
Techniques o7

Computing a Topological Ordering

We will compute a list of vertices L that contains the vertices
of G in topological order.

We will use an array D such that D[v] gives the number of
predecessors p of vertex v in graph G such that p is not in L.

We will use a queue Q of vertices from where we will take
vertices to process (from the front of the queue).

The vertices of G in Q will be processed in breadth-first order.

Initially Q will contain all the vertices of G with no
predecessors.

When we find a vertex w of G such that D[w]==0, we see
that w has all its predecessors in list . so we add w to the
rear of queue Q so it can be processed.

Algorithm for Topological Ordering

vold BreadthTopSort (Graph G, List *L)
{
Let G=(V,E) be the 1nput graph.
Let L be a list of wvertices.
Let Q be a gqueue of vertices.
Let D[V] be an array of vertices indexed by vertices
in V.

/* Compute the in-degrees D[x] of the vertices x
in G */
for (each vertex x in V) D[x]=0;
for (each vertex x in V) {
for (each successor w in Succ(x)) D[w]++;

Algorithm for Topological Ordering
(cont’d)

/* Initialize the queue Q to contain all
vertices having zero in-degrees */

Initialize (&Q) ;
for (each vertex x 1n V) {

1f (D[x]==0) Insert(x, &Q):

Algorithm for Topological Ordering
(cont’d)

/* Initialize the list L to be the empty list */
Initializelist (&L) ;

/* Process vertices in the queue Q until the queue becomes
empty */
while (!Empty (&Q)) {
Remove (&Q, x) ;
AddToList (x, &L) ;
for (each successor w 1n Succ (x)) {
Dlw]-=;
if (D[w]==0) Insert(w, &Q);

}

/* The list L now contains the vertices of G in
topological order */

Implementing Topological Sort in C

* We first need to define a new type for an array
that will be used to store the vertices of a
graph in topological order:

typedef Vertex Toporder [MAXVERTEX];

 We will also use the functions for the ADT
gueue that we have defined in a previous
lecture.

Topological Sort in C (cont’d)

/* BreadthTopSort: generates breadth-first topological ordering
Pre: G is a directed graph with no cycles implemented with a contiguous list of vertices
and linked adjacency lists.
Post: The function makes a breadth-first traversal of G and generates the resulting
topological order in T

Uses: Queue functions */

void BreadthTopSort (Graph G, Toporder T)
{

int predecessorcount [MAXVERTEX] ; /* number of predecessors of each vertex */

Queue Q;

Vertex v, succ;
Edge *curedge;
int place;

/* initialize all the predecessor counts to 0 */
for (v=0; v < G.n; v++)

predecessorcount [v]=0;

/* increase the predecessor count for each vertex that is a successor of another one */
for (v=0; v < G.n; v++)
for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge)
predecessorcount [curedge->endpoint]++;

Data Structures and Programming

. 113
Techniques

Topological Sort in C (cont’d)

/* initialize a queue */
InitializeQueue (&Q) ;

/* place all vertices with no predecessors into the queue */
for (v=0; v < G.n; v++)
if (predecessorcount[v]==0)
Insert (v, &Q);

/* start the breadth-first traversal */
place=-1;
while (!Empty(&Q)) {
/* visit v by placing it into the topological order */
Remove (&Q, &v);
place++;
T[placel=v;

/* traverse the list of successors of v */
for (curedge=G.firstedge[v]; curedge; curedge=curedge->nextedge) {
/* reduce the predecessor count for each successor */
succ=curedge->endpoint;
predecessorcount [succ]--;
if (predecessorcount[succ]==0)
/* succ has no further predecessors, so it is ready to process */
Insert (succ, &Q);

Data Structures and Programming

114
Techniques

Complexity of Topological Sort

 The complexity of topological sort is again
Oo(n+e).

Strongly Connected Components

* A strongly connected component (Loxupa cuveKktiki
ocuvictwoa) of a directed graph is a maximal set of vertices
in which there is a path from any one vertex in the set to
any other vertex.

* More formally, let G = (V, E) be a directed graph. We can
partition V into equivalence classes I/;, 1 < i < r, such that
vertices v and w are equivalent if and only if there is a path
fromvtowandapathfromwtov.LetE;,1 <i <r,be
the set of edges with endpoints in V;. The graphs G; =
(V;, E;) are called the strongly connected components or
just strong components (Loxupec cuviotwoec) of G.

* Adirected graph with only one strong component is said to
be strongly connected (toxupd cuvdedepévog).

Example Directed Graph

Data Structures and Programming
Techniques

117

The Strong Components of the Digraph

Data Structures and Programming
Techniques

118

Strong Components (cont’d)

Every vertex of a directed graph G is in some strong
component, but certain edges may not be in any
component.

Such edges, called cross-component edges, go from
one vertex in one component to a vertex in another.

We can represent the interconnections among
components by constructing a reduced graph
(eAattwpévo ypado) for G. There is an edge from
vertex C to vertex C’ of the reduced graph if there is an
edge in G from some vertex in the component C to
some vertex in the component C'.

The reduced graph is always a dag.

Example Directed Graph G

Data Structures and Programming
Techniques

120

Example Reduced Graph for G

Data Structures and Programming

121
Techniques

Algorithm for Computing Strong
Components

 We can use DFS to compute the strong components of
a given directed graph G as follows:

1. Perform a DFS of G and number the vertices in order of
completion of the recursive calls.

2. Construct a new directed graph G,- by reversing the
direction of each edge in G.

3. Perform a DFS of G,, starting the search from the highest
numbered vertex according to the numbering assigned in
Step 1. If the DFS does not reach all vertices, start the
next DFS from the highest-numbered remaining vertex.

4. Each tree in the resulting spanning forest is a strongly
connected component of G.

Example Directed Graph G

Data Structures and Programming
Techniques

123

After Step 1

Tree edges

Forward edges

Back edges

Data Structures and Programming

. 124
Techniques

The DAG G,

Data Structures and Programming

. 125
Techniques

Depth-first Spanning Forest for G..

Tree edges

Cross edges

Back edges

Data Structures and Programming

126
Techniques

The Strong Components of G

Data Structures and Programming
Techniques

127

Complexity of Algorithm for
Computing Strong Components

 The complexity of the algorithm we presented

for computing strong components is again
O(n+e).

Readings

T. A. Standish. Data Structures , Algorithms and
Software Principles in C.

— Chapter 10

R. Kruse and C.L. Tondo and B. Leung. Data Structures
and Program Design in C. 2"d edition.

— Chapter 11

A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data
Structures and Algorithms.

— Chapters 6 and 7

M. T. Goodrich, R. Tamassia and D. Mount. Data
Structures and Algorithms in C++. 2" edition.

— Chapter 13

