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Minimum Spanning Trees
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Minimum Spanning Trees
Spanning subgraph

◼ Subgraph of a graph G
containing all the vertices of G

Spanning tree

◼ Spanning subgraph that is 
itself a (free) tree

Minimum spanning tree (MST)

◼ Spanning tree of a weighted 
graph with minimum total 
edge weight

❑ Applications

◼ Communications networks

◼ Transportation networks
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Cycle Property
Cycle Property:

◼ Let T be a minimum 

spanning tree of a 
weighted graph G

◼ Let e be an edge of G
that is not in T and let C 

be the cycle formed by e
with T

◼ For every edge f of C,

weight(f)  weight(e)

Proof:

◼ By contradiction

◼ If weight(f) > weight(e) we 

can get a spanning tree 
of smaller weight by 
replacing f with e
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U V

Partition Property
Partition Property:

◼ Consider a partition of the vertices of 
G into subsets U and V

◼ Let e be an edge of minimum weight 
across the partition

◼ There is a minimum spanning tree of 
G containing edge e

Proof:

◼ Let T be an MST of G

◼ If T does not contain e, consider the 
cycle C formed by e with T and let  f
be an edge of C across the partition

◼ By the cycle property,
weight(f)  weight(e)

◼ Thus, weight(f) = weight(e)

◼ We obtain another MST by replacing 
f  with e
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Kruskal’s Algorithm
❑ Maintain a partition of the 

vertices into clusters

◼ Initially, single-vertex 
clusters

◼ Keep an MST for each 
cluster

◼ Merge “closest” clusters 
and their MSTs

❑ A priority queue stores the 
edges outside clusters

◼ Key: weight

◼ Element: edge

❑ At the end of the algorithm

◼ One cluster and one MST

Minimum Spanning Trees 5

Algorithm KruskalMST(G)

for each vertex v in G do

Create a cluster consisting of v

let Q be a priority queue.

Insert all edges into Q

T  

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e  Q.removeMin().getValue()

[u, v]  G.endVertices(e)

A  getCluster(u)

B  getCluster(v) 

if A  B then

Add edge e to T

mergeClusters(A, B)

return T
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Example
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Example (contd.)

four steps
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Data Structures for Kruskal’s Algorithm

❑ The graph will be implemented using adjacency lists.

❑ The algorithm maintains a forest of trees.

❑ A priority queue extracts the edges by increasing 
weight. The priority queue is implemented as a min
heap.

❑ An edge is accepted it if connects distinct trees.

❑ We need a data structure that maintains a partition, 
i.e., a collection of disjoint sets, with operations:

◼ makeSet(u): create a set consisting of u

◼ find(u): return the set storing u

◼ union(A, B): replace sets A and B with their union

Minimum Spanning Trees 8
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Recall of Data Structures for 
Disjoint Sets

❑
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Partition-Based Implementation
❑ Partition-based 

version of 
Kruskal’s 
Algorithm 
◼ Cluster merges 

as unions 

◼ Cluster locations 
as finds

Minimum Spanning Trees 10

Algorithm KruskalMST(G)

Initialize a partition P

for each vertex v in G do

P.makeSet(v)

let Q be a priority queue.

Insert all edges into Q

T  

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e  Q.removeMin().getValue()

[u, v]  G.endVertices(e)

A  P.find(u)

B  P.find(v) 

if A  B then

Add edge e to T

P.union(A, B)

return T
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Complexity Analysis

❑ Let n and m denote the number of 

vertices and edges of the input graph 
respectively

❑ PQ operations O(m log m)=O(m log n)

❑ UF operations O(n log n)

❑ Therefore, the running time of the 
algorithm is O((n + m) log n)

Minimum Spanning Trees 11
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Prim-Jarnik’s Algorithm

❑ Similar to Dijkstra’s algorithm

❑ We pick an arbitrary vertex s and we grow the MST as 

a cloud of vertices, starting from s

❑ We store with each vertex v label D(v) representing 

the smallest weight of an edge connecting v to a 

vertex in the cloud 

❑ At each step:

◼ We add to the cloud the vertex u outside the cloud with 

the smallest distance label

◼ We update the labels of the vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)

❑ We will use adjacency lists for the representation of 

the input graph.

❑ We will use a priority queue to store, for each vertex 

v, the pair (v,e) with key D(v) where e is the edge with 

the smallest weight connecting v to the cloud and 

D(v) is that weight.

❑ The priority queue will be implemented as a min 

heap.
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Prim-Jarnik’s Algorithm (cont.)
Algorithm PrimJarnikMST(G)

Pick any vertex v of G
D[v]  0
for each vertex u  v  do

D[u]  +
Initialize T  .
Initialize a priority queue Q with an entry ((u,null),D[u]) for each vertex u,
where (u,null) is the element and D[u] is the key. 
while Q is not empty do

(u,e)  Q.removeMin()

Add vertex u and edge e to T.
for each vertex z adjacent  to u such that z is in Q do

if weight((u,z)) < D[z] then
D[z]  weight((u,z))
Change to (z,(u,z)) the element of vertex z in Q
Change to D[z] the key of vertex z in Q

Return the tree T
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Example
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Example (contd.)
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Complexity Analysis
❑ Let n and m denote the number of vertices and edges 

of the input graph respectively.

❑ Since the priority queue is implemented as a heap, we 
can extract the vertex u in O(log n) time.

❑ We can update each D[z] value in O(log n) time as well 

(how can we augment the priority queue 
implementation to achieve this bound?). This update is 
done at most once for each edge (u,z).

❑ Hence, Prim-Jarnik’s algorithm runs in O((n + m) log n)

time.
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Readings

❑ M. T. Goodrich, R. Tamassia and D. 
Mount. Data Structures and Algorithms 
in C++. 2nd edition. John Wiley. 2011.

◼ Chapter 13
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