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Minimum Spanning Trees

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G

Spanning tree

= Spanning subgraph that is
itself a (free) tree

Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
o Applications
= Communications networks
= Transportation networks

N
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Cycle Property

Cycle Property:

s Let T be a minimum
spanning tree of a
weighted graph G

= Lete be an edge of G
that is not in T and let C
be the cycle formed by e
with T

= For every edge f of C,
weight(f) < weight(e)

Proof:

= By contradiction

= If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by

4

Replacing f with e yields
a better spanning tree

replacing f with e
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Partition Property

L/
Partition Property:
= Consider a partition of the vertices of
G into subsets U and V
= Let e be an edge of minimum weight
across the partition

= There is @ minimum spanning tree of
G containing edge e

N

Proof: Replacing f with e yields
= Let T be an MST of G ﬂ another MST
s If T does not contain e, consider the U V
cycle C formed by e with T and let f 7 -
be an edge of C across the partition B 4
= By the cycle property, 79
weight(f) < weight(e) 3
= Thus, weight(f) = weight(e) S~ 3

= We obtain another MST by replacing
f with e
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Kruskal’s Algorithm

p
4
o Maintain a partition of the | Algorithm KruskalMST(G)
vertices into clusters forceac? VeftleXtV InG 0_|0t_ f
. - reate a cluster consisting of v
i i?dﬂ?e”ré’ single-vertex let Q be a priority queue.
Insert all edges into Q
= Keep an MST for each T &
Cluster {T is the union of the MSTs of the clusters}
= Merge "closest” clusters while T has fewer than n — 1 edges do
and their MSTs e « Q.removeMin().getValue()
a A priority queue stores the [u, v] < G.endVertices(e)
edges outside clusters A <« getCluster(u)
« Key: weight _B <« getCluster(v)
' if A #B then
= Element: edge Add edgeeto T
o At the end of the algorithm mergeClusters(A, B)
= One cluster and one MST return T
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‘Example (contd.)
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Data Structures for Kruskal’s Algorithm

N

L

Q

Q

Q

The graph will be implemented using adjacency lists.
The algorithm maintains a forest of trees.

A priority queue extracts the edges by increasing
weight. The priority queue is implemented as a min
heap.

An edge is accepted it if connects distinct trees.

We need a data structure that maintains a partition,
I.e., a collection of disjoint sets, with operations:

= makeSet(u): create a set consisting of u

= find(u): return the set storing u

= union(A, B): replace sets A and B with their union
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Recall of Data Structures for
Disjoint Sets

2 Each set may be stored as a linked list represented by its first
member.

a Each list element (set member) has a reference to the set
representative.

o Operation find(u) takes O(1) time, and returns the set of
which u is a member.

o In operation union(A,B), we move the elements of the smaller
set to the end of the list of the larger set and update their
references to the set representative.

= The time for operation union(A,B) is min(|A|, |B])

=  Whenever an element is processed, it goes into a set of size at least
double, hence each element is processed at most log n times

N
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N

a Partition-based
version of
Kruskal’s
Algorithm

m Cluster merges
as unions

m Cluster locations
as finds
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Partition-Based Implementation

Algorithm KruskalMST(G)
Initialize a partition P
for each vertex vin G do
P.makeSet(v)
let Q be a priority queue.
Insert all edges into Q
T«
{T is the union of the MSTs of the clusters}
while T has fewer than n — 1 edges do
e <« Q.removeMin().getValue()
[u, v] < G.endVertices(e)
A < P.find(u)
B « P.find(v)
If A #B then
Addedgeeto T
P.union(A, B)
return T
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Complexity Analysis

N

a Let n and m denote the number of
vertices and edges of the input graph
respectively

a PQ operations O(m log m)=0(m log n)
a UF operations O(n log n)

a Therefore, the running time of the
algorithm is O((n + m) log n)
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Prim-Jarnik’s Algorithm

N

a Similar to Dijkstra’s algorithm

o We pick an arbitrary vertex s and we grow the MST as
a cloud of vertices, starting from s

a We store with each vertex v label D(v) representing
the smallest weight of an edge connecting v to a
vertex in the cloud

a At each step:

s We add to the cloud the vertex u outside the cloud with
the smallest distance label

= We update the labels of the vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)

N

a We will use adjacency lists for the representation of
the input graph.

a We will use a priority queue to store, for each vertex
v, the pair (v,e) with key D(v) where e is the edge with
the smallest weight connecting v to the cloud and
D(v) is that weight.

a The priority queue will be implemented as a min
heap.
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Prim-Jarnik’s Algorithm (cont.)

N
\J

Algorithm PrimJarnikMST(G)
Pick any vertex v of G
D[v] « 0
for each vertex u=v do
D[u] « +o
Initialize T « &
Initialize a priority queue Q with an entry ((u,null),D[u]) for each vertex u,

where (u,null) is the element and D[u] is the key.
while Q is not empty do
(u,e) « Q.removeMin()

Add vertex u and edge e to T. o
for each vertex z adjacent to u such thatzisin Q do

if weight((u,z)) < D[z] then
D[z] < weight((u,z))
Change to (z,(u,z)) the element of vertex z in Q

Change to DJ[z] the key of vertex z in Q
Return the tree T
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Example

N
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Example (contd.)

N
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Complexity Analysis

o Let n and m denote the number of vertices and edges
of the input graph respectively.

a Since the priority queue is implemented as a heap, we
can extract the vertex u in O(log n) time.

a We can update each DJ[z] value in O(log n) time as well
(how can we augment the priority queue
implementation to achieve this bound?). This update is
done at most once for each edge (u,z).

a Hence, Prim-Jarnik’s algorithm runs in O((n + m) log n)
time.

N
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Readings

N

a M. T. Goodrich, R. Tamassia and D.

in C++. 2 edition. John Wiley. 2011.
= Chapter 13

© 2010 Goodrich, Tamassia Minimum Spanning Trees

Mount. Data Structures and Algorithms
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