Minimum Spanning Trees

Minimum Spanning Trees

Spanning subgraph

Subgraph of a graph G
 containing all the vertices of G

Spanning tree

 Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

- Spanning tree of a weighted graph with minimum total edge weight
- Applications
 - Communications networks
 - Transportation networks

Cycle Property

Cycle Property:

- Let T be a minimum spanning tree of a weighted graph G
- Let e be an edge of G that is not in T and let C be the cycle formed by e with T
- For every edge f of C, $weight(f) \le weight(e)$

Proof:

- By contradiction
- If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing f with e

Replacing f with e yields a better spanning tree

Partition Property

Partition Property:

- Consider a partition of the vertices of
 G into subsets U and V
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of
 G containing edge e

Proof:

- Let T be an MST of G
- If *T* does not contain *e*, consider the cycle *C* formed by *e* with *T* and let *f* be an edge of *C* across the partition
- By the cycle property, weight(f) ≤ weight(e)
- Thus, weight(f) = weight(e)
- We obtain another MST by replacing f with e

Replacing f with e yields another MST

Kruskal's Algorithm

- Maintain a partition of the vertices into clusters
 - Initially, single-vertex clusters
 - Keep an MST for each cluster
 - Merge "closest" clusters and their MSTs
- A priority queue stores the edges outside clusters
 - Key: weight
 - Element: edge
- At the end of the algorithm
 - One cluster and one MST

```
Algorithm KruskalMST(G)
 for each vertex v in G do
   Create a cluster consisting of v
let Q be a priority queue.
 Insert all edges into Q
T \leftarrow \emptyset
 { T is the union of the MSTs of the clusters }
 while T has fewer than n-1 edges do
   e \leftarrow Q.removeMin().getValue()
   [u, v] \leftarrow G.endVertices(e)
   A \leftarrow getCluster(u)
    B \leftarrow getCluster(v)
   if A \neq B then
      Add edge e to T
      mergeClusters(A, B)
 return T
```

Example

Example (contd.)

Data Structures for Kruskal's Algorithm

- The graph will be implemented using adjacency lists.
- The algorithm maintains a forest of trees.
- A priority queue extracts the edges by increasing weight. The priority queue is implemented as a min heap.
- An edge is accepted it if connects distinct trees.
- We need a data structure that maintains a partition,
 i.e., a collection of disjoint sets, with operations:
 - makeSet(u): create a set consisting of u
 - find(u): return the set storing u
 - union(A, B): replace sets A and B with their union

Recall of Data Structures for Disjoint Sets

- Each set may be stored as a linked list represented by its first member.
- Each list element (set member) has a reference to the set representative.
- Operation find(u) takes O(1) time, and returns the set of which u is a member.
- In operation union(A,B), we move the elements of the smaller set to the end of the list of the larger set and update their references to the set representative.
 - The time for operation union(A,B) is min(|A|, |B|)
 - Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times

Partition-Based Implementation

- Partition-based version of Kruskal's Algorithm
 - Cluster merges as unions
 - Cluster locations as finds

```
Algorithm KruskalMST(G)
Initialize a partition P
for each vertex v in G do
    P.makeSet(v)
let Q be a priority queue.
Insert all edges into Q
T \leftarrow \varnothing
 { T is the union of the MSTs of the clusters }
while T has fewer than n-1 edges do
e \leftarrow Q.removeMin().getValue()
   [u, v] \leftarrow G.endVertices(e)
   A \leftarrow P.find(u)
   B \leftarrow P.find(v)
   if A \neq B then
      Add edge e to T
      P.union(A, B)
return T
```

Complexity Analysis

- Let n and m denote the number of vertices and edges of the input graph respectively
- \square PQ operations $O(m \log m) = O(m \log n)$
- \Box UF operations $O(n \log n)$
- □ Therefore, the running time of the algorithm is $O((n + m) \log n)$

Prim-Jarnik's Algorithm

- Similar to Dijkstra's algorithm
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- floor We store with each vertex v label D(v) representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label
 - lacktriangle We **update the labels** of the vertices adjacent to u

Prim-Jarnik's Algorithm (cont.)

- We will use adjacency lists for the representation of the input graph.
- We will use a priority queue to store, for each vertex v, the pair (v,e) with key D(v) where e is the edge with the smallest weight connecting v to the cloud and D(v) is that weight.
- The priority queue will be implemented as a min heap.

Prim-Jarnik's Algorithm (cont.)

```
Algorithm PrimJarnikMST(G)
Pick any vertex v of G
D[v] \leftarrow 0
for each vertex u \neq v do
   D[u] \leftarrow +\infty
 Initialize T \leftarrow \emptyset.
 Initialize a priority queue Q with an entry ((u,null),D[u]) for each vertex u,
 where (u,null) is the element and D[u] is the key.
 while Q is not empty do
   (u,e) \leftarrow Q.removeMin()
   Add vertex u and edge e to T.
   for each vertex z adjacent to u such that z is in Q do
      if weight((u,z)) < D[z] then
         D[z] \leftarrow weight((u,z))
         Change to (z,(u,z)) the element of vertex z in Q
         Change to D[z] the key of vertex z in Q
Return the tree T
```

Example

15

Example (contd.)

Complexity Analysis

- \Box Let n and m denote the number of vertices and edges of the input graph respectively.
- □ Since the priority queue is implemented as a heap, we can extract the vertex u in $O(\log n)$ time.
- We can update each D[z] value in $O(\log n)$ time as well (how can we augment the priority queue implementation to achieve this bound?). This update is done at most once for each edge (u,z).
- □ Hence, Prim-Jarnik's algorithm runs in $O((n + m) \log n)$ time.

Readings

- M. T. Goodrich, R. Tamassia and D.
 Mount. Data Structures and Algorithms in C++. 2nd edition. John Wiley. 2011.
 - Chapter 13