
Modularity and Data Abstraction

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Procedural Abstraction

• When programs get large, certain disciplines of structuring
need to be followed rigorously. Otherwise, the programs
become complex, confusing and hard to debug.

• In your first programming course you learned the benefits
of procedural abstraction (διαδικαστική αφαίρεση). When
we organize a sequence of instructions into a function
F(x1, …, xn), we have a named unit of action.

• When we later on use this function F, we only need to
know what the function does, not how it does it.

Data Structures and Programming
Techniques

2

Procedural Abstraction (cont’d)

• Separating the what from the how is an act of
abstraction (αφαίρεση). It provides two
benefits:

– Ease of use

– Ease of modification

Data Structures and Programming
Techniques

3

Information Hiding

• In your first programming course, you have also
learned the benefits of having locally defined
variables.

• This is an instance of information hiding
(απόκρυψη πληροφορίας).

• It has the advantage that local variables do not
interfere with identically named variables outside
the function.

• Abstraction and information hiding in a
programming language are greatly enhanced with
the concept of module (ενότητα).

Data Structures and Programming
Techniques

4

Modules and Abstract Datatypes

• A module is a unit of organization of a software system that
packages together a collection of entities (such as data and
operations) and that carefully controls what external users
of the module can see and use.

• Modules have ways of hiding things inside their boundaries
to prevent external users from accessing them. This is
called information hiding.

• Abstract data types (αφαιρετικοί τύποι δεδομένων, ADTs)
are collections of objects and operations that present well
defined interfaces (διεπαφές) to their users, meanwhile
hiding the way they are represented in terms of lower-level
representations.

• Modules can be used to implement abstract data types.

Data Structures and Programming
Techniques

5

Modules (cont’d)

• Many modern programming languages offer
modules that have the following important
features:
– They provide a way of grouping together related

data and operations.

– They provide clean, well-defined interfaces to
users of their services.

– They hide internal details of operation to prevent
interference.

– They can be separately compiled.

Data Structures and Programming
Techniques

6

Modules (cont’d)

• Modules are an important tool for “dividing
and conquering” a large software task by
combining separate components that interact
cleanly.

• They ease software maintenance (συντήρηση
λογισμικού) by allowing changes to be made
locally.

Data Structures and Programming
Techniques

7

Encapsulation

• When we have features like modules in
programming languages, we use the term
encapsulation (ενθυλάκωση, the hidden local
entities are encapsulated and a module is a
capsule).

Data Structures and Programming
Techniques

8

Modules in C

• By means of careful use of header files, we
can arrange for separately compiled C
program files to have the above four
properties of modules.

• In this way C modules are similar to packages
or modules in other languages such as
Modula-2 and Ada.

Data Structures and Programming
Techniques

9

Modules in C (cont’d)

• A C module M consists of two files MInterface.h
and MImplementation.c that are organized as
follows.

• The file Minterface.h:

/*------<the text for the file MInterface.h starts here>---------- */

(declarations of entities visible to external users of the module)

/*--------------<end of file MInterface.h>-------------------------*/

Data Structures and Programming
Techniques

10

Modules in C (cont’d)

• The file MImplementation.c:

/*-------<the text for the file Mimplementation.c starts here>------*/

#include <stdio.h>

#include “MInterface.h”

(declarations of entities private to the module plus the)

(complete declarations of functions exposed by the module)

/*---------------<end of file MImplementation.c>--------------------*/

Data Structures and Programming
Techniques

11

The Interface file

• MInterface.h is the interface file.

• It declares all the entities in the module that are visible
to (and therefore usable by) the external users of the
module.

• Such visible entities include constants, typedefs,
variables and functions. Only the prototype of each
visible function is given (and only the argument types,
not the argument names).

• The book by Standish recommends that declarations of
functions in the interface file are “extern” declarations.
This is not necessary so we will not follow it.

Data Structures and Programming
Techniques

12

The Implementation File

• MImplementation.c is the implementation
file.

• It contains all the private entities in the module,
that are not visible to the outside.

• It contains the full declarations and
implementations of functions whose prototypes
have been given in the interface file.

• It includes (via #include) the user interface
file.

Data Structures and Programming
Techniques

13

The Main Program

• A main program (client program) that uses two
modules A and B is organized as follows:

#include <stdio.h>

#include “ModuleAInterface.h”

#include “ModuleBInterface.h”

(declarations of entities used by the main program)

int main(void)

{

(statements to execute in the main program)

}

Data Structures and Programming
Techniques

14

Separate Compilation

• We can compile the module and the client
program separately:

gcc -c MImplementation.c -o M.o

gcc -c ClientProgram.c -o ClientProgram.o

gcc M.o ClientProgram.o –o ClientProgram.exe

With the first two commands, we compile the C files
to produce object files. Then, the object files are
linked to produce the final executable.

Data Structures and Programming
Techniques

15

Priority Queues – An Abstract Data
Type

• A priority queue is a container that holds
some prioritized items. For example, a list of
jobs with a deadline for processing each one
of them.

• When we remove an item from a priority
queue, we always get the item with highest
priority.

Data Structures and Programming
Techniques

16

Defining the ADT Priority Queue

• A priority queue is a finite collection of items for
which the following operations are defined:
– Initialize the priority queue, PQ, to the empty priority

queue.

– Determine whether or not the priority queue, PQ, is
empty.

– Determine whether or not the priority queue, PQ, is
full.

– Insert a new item, X, into the priority queue, PQ.

– If PQ is non-empty, remove from PQ an item X of
highest priority in PQ.

Data Structures and Programming
Techniques

17

A Priority Queue Interface File

/* this is the file PQInterface.h */

#include “PQTypes.h”

/* defines types PQItem and PriorityQueue */

void Initialize (PriorityQueue *);

int Empty (PriorityQueue *);

int Full (PriorityQueue *);

void Insert (PQItem, PriorityQueue *);

PQItem Remove (PriorityQueue *);

Data Structures and Programming
Techniques

18

Sorting Using a Priority Queue

• Let us now define an array A to hold ten items of type
PQItem, where PQItems have been defined to be integer
values, such that bigger integers have greater priority than
smaller ones:

typedef int PQItem;

typedef PQItem SortingArray[10];

SortingArray A;

• We can now use a priority queue to sort the array A.
• We can successfully use the ADT priority queue whose

interface was given earlier without having to know any
details of its implementation.

Data Structures and Programming
Techniques

19

Sorting Using a Priority Queue (cont’d)

/* this is the main program */

#include <stdio.h>

#include “PQInterface.h”

typedef PQItem SortingArray[MAXCOUNT];

/* Note: MAXCOUNT is 10 */

void PriorityQueueSort(SortingArray A)

{

int i;

PriorityQueue PQ;

Initialize(&PQ);

for (i=0; i<MAXCOUNT; ++i) Insert(A[i], &PQ);

for (i=MAXCOUNT-1; i>=0; --i) A[i]=Remove(&PQ);

}

Data Structures and Programming
Techniques

20

Sorting Using a Priority Queue (cont’d)

int SquareOf(int x)

{

return x*x;

}

int main(void)

{

int i; SortingArray A;

for (i=0; i<10; ++i){

A[i]=SquareOf(3*i-13);

printf(“%d ”,A[i]);

}

printf(“\n”);

PriorityQueueSort(A);

for (i=0; i<10; ++i) {

printf(“%d ”,A[i]);

}

printf(“\n”);

return 0;

}

Data Structures and Programming
Techniques

21

Implementations of Priority Queues

• We will present two implementations of a
priority queue:

– Using sorted linked lists

– Using unsorted arrays

Data Structures and Programming
Techniques

22

The Priority Queue Data Types

In the sorted linked list case, the file PQTypes.h can be defined as
follows:

#define MAXCOUNT 10

typedef int PQItem;

typedef struct PQNodeTag {

PQItem NodeItem;

struct PQNodeTag *Link;

} PQListNode;

typedef struct {

int Count;

PQListNode *ItemList;

} PriorityQueue;

Data Structures and Programming
Techniques

23

Implementing Priority Queues Using
Sorted Linked Lists

/* This is the file PQImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “PQInterface.h”

/* Now we give all the details of the functions */

/* declared in the interface file together with */

/* local private functions. */

void Initialize(PriorityQueue *PQ)

{

PQ->Count=0;

PQ->ItemList=NULL;

}

Data Structures and Programming
Techniques

24

Implementing Priority Queues Using
Sorted Linked Lists (cont’d)

int Empty(PriorityQueue *PQ)

{

return(PQ->Count==0);

}

int Full(PriorityQueue *PQ)

{

return(PQ->Count==MAXCOUNT);

}

Data Structures and Programming
Techniques

25

Implementing Priority Queues Using
Sorted Linked Lists (cont’d)

PQListNode *SortedInsert(PQItem Item, PQListNode *P)

{

PQListNode *N;

if ((P==NULL)||(Item >=P->NodeItem)){

N=(PQListNode *)malloc(sizeof(PQListNode));

N->NodeItem=Item;

N->Link=P;

return(N);

} else {

P->Link=SortedInsert(Item, P->Link);

return(P);

}

}

Data Structures and Programming
Techniques

26

Implementing Priority Queues Using
Sorted Linked Lists (cont’d)

void Insert(PQItem Item, PriorityQueue *PQ)

{

if (!Full(PQ)){

PQ->Count++;

PQ->ItemList=SortedInsert(Item, PQ->ItemList);

}

}

Data Structures and Programming
Techniques

27

Functions Insert and
SortedInsert

• The function Insert keeps the elements of the list in
decreasing order (the first item has the highest
priority).

• The function Insert calls SortedInsert for doing
the actual insertion.

• SortedInsert has three cases to consider:
– If the ItemList of PQ is empty.
– If the new item has priority greater than or equal the

priority of the first item on ItemList.
– If the new item has priority less than that of the first item

on ItemList. In this case the function is called
recursively on the tail of the list.

Data Structures and Programming
Techniques

28

Implementing Priority Queues Using
Sorted Linked Lists (cont’d)

PQItem Remove(PriorityQueue *PQ)

{

PQItem temp;

if (!Empty(PQ)){

temp=PQ->ItemList->NodeItem;

PQ->ItemList=PQ->ItemList->Link;

PQ->Count--;

return(temp);

}

}

Data Structures and Programming
Techniques

29

Function Remove

• The function Remove simply deletes the item
in the first node of the linked list representing
PQ (this is the item with highest priority) and
returns the value of its field NodeItem.

Data Structures and Programming
Techniques

30

The Priority Queue Data Types

In the unsorted array case, the file PQTypes.h can be
defined as follows:

#define MAXCOUNT 10

typedef int PQItem;

typedef PQItem PQArray[MAXCOUNT];

typedef struct {

int Count;

PQArray ItemArray;

} PriorityQueue;

Data Structures and Programming
Techniques

31

Implementing Priority Queues Using
Unsorted Arrays

/* This is the file PQImplementation.c */

#include <stdio.h>

#include “PQInterface.h”

/* Now we give all the details of the functions */

/* declared in the interface file together with */

/* local private functions. */

void Initialize(PriorityQueue *PQ)

{

PQ->Count=0;

}

Data Structures and Programming
Techniques

32

Implementing Priority Queues Using
Unsorted Arrays (cont’d)

int Empty(PriorityQueue *PQ)

{

return(PQ->Count==0);

}

int Full(PriorityQueue *PQ)

{

return(PQ->Count==MAXCOUNT);

}

Data Structures and Programming
Techniques

33

Implementing Priority Queues Using
Unsorted Arrays (cont’d)

void Insert(PQItem Item, PriorityQueue *PQ)

{

if (!Full(PQ)) {

PQ->ItemArray[PQ->Count]=Item;

PQ->Count++;

}

}

Data Structures and Programming
Techniques

34

Function Insert

• The function Insert simply appends the
new item to the end of array ItemArray of
PQ.

Data Structures and Programming
Techniques

35

Implementing Priority Queues Using
Unsorted Arrays (cont’d)

PQItem Remove(PriorityQueue *PQ)

{

int i;

int MaxIndex;

PQItem MaxItem;

if (!Empty(PQ)){

MaxItem=PQ->ItemArray[0];

MaxIndex=0;

for (i=1; i<PQ->Count; ++i){

if (PQ->ItemArray[i] > MaxItem){

MaxItem=PQ->ItemArray[i];

MaxIndex=i;

}

}

PQ->Count--;

PQ->ItemArray[MaxIndex]=PQ->ItemArray[PQ->Count];

return(MaxItem);

}

}

Data Structures and Programming
Techniques

36

Function Remove

• In the function Remove, we first find the
item with highest priority. Then, we save it in a
temporary variable (MaxItem), we delete it
from the array ItemArray and move the
last item of the array to its position. Then, we
return the item of the highest priority.

Data Structures and Programming
Techniques

37

Interface Header Files

• Note that the module interface header file
PQInterface.h is included in two
important but distinct places:

– At the beginning of the implementation files that
define the hidden representation of the externally
accessed module services.

– At the beginning of programs that need to gain
access to the external module services defined in
the interface file.

Data Structures and Programming
Techniques

38

Separate Compilation

• We can compile the module and the client
program separately:

gcc -c PQImplementation.c -o PQ.o

gcc -c sorting.c -o sorting.o

gcc PQ.o sorting.o –o program.exe

With the first two commands, we compile the C files
to produce object files. Then, the object files are
linked to produce the final executable.

Data Structures and Programming
Techniques

39

Information Hiding Revisited

• Let us revisit the sorting program we wrote earlier and
consider the new printf statement.

#include <stdio.h>

#include “PQInterface.h”

typedef PQItem SortingArray[MAXCOUNT];

/* Note: MAXCOUNT is 10 */

void PriorityQueueSort(SortingArray A)

{

int i;

PriorityQueue PQ;

Initialize(&PQ);

for (i=0; i<MAXCOUNT; ++i) Insert(A[i], &PQ);

printf(“The queue contains %d elements\n”,PQ.Count);

for (i=MAXCOUNT-1; i>=0; --i) A[i]=Remove(&PQ);

}

Data Structures and Programming
Techniques

40

Information Hiding Revisited (cont’d)

• This printf statement accesses the Count
field of the priority queue PQ. Therefore, the
previous module organization has not
achieved information hiding as nicely as we
would want it.

• We can live with that deficiency or try to
address it. How?

Data Structures and Programming
Techniques

41

Another Example: Complex Number
Arithmetic

• A complex number is an expression 𝑎 + 𝑏𝑖
where 𝑎 and 𝑏 are reals.

• 𝑎 is called the real part and 𝑏 the imaginary
part.

• 𝑖 = −1 is the imaginary unit. It follows that
𝑖2 = −1.

• To multiply complex numbers, we follow the
usual algebraic rules.

Data Structures and Programming
Techniques

42

Examples

• 𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖 = 𝑎𝑐 + 𝑏𝑐𝑖 + 𝑎𝑑𝑖 + 𝑏𝑑𝑖2 =
𝑎𝑐 − 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 𝑖

• 1 − 𝑖 1 − 𝑖 = 1 − 𝑖 − 𝑖 + 𝑖2 = −2𝑖

• (1 + 𝑖)4= 4𝑖2 = −4

• (1 + 𝑖)8= 16

• Dividing the two parts of the above equation

by 16 = (2)8, we find that (
1

2
+

𝑖

2
)8= 1.

Data Structures and Programming
Techniques

43

Complex Roots of Unity

• In general, there are many complex numbers that
evaluate to 1 when raised to a power. These are
the complex roots of unity.

• For each 𝑁, there are exactly 𝑁 complex numbers
𝑧 such that 𝑧𝑁 = 1.

• The numbers cos(
2𝜋𝑘

𝑁
) + 𝑖 sin(

2𝜋𝑘

𝑁
) for 𝑘 =

0, 1,⋯ ,𝑁 − 1 can be easily shown to have this
property.

• Let us now write a program that computes and
outputs these numbers for a given 𝑁.

Data Structures and Programming
Techniques

44

An ADT for Complex Numbers: the
Interface

/* This is the file COMPLEX.h */

typedef struct complex *Complex;

Complex COMPLEXinit(float, float);

float Re(Complex);

float Im(Complex);

Complex COMPLEXmult(Complex, Complex);

Data Structures and Programming
Techniques

45

Notes

• The interface on the previous slide provides
clients with handles to complex number
objects but does not give any information
about the representation.

• The representation is a struct that is not
specified except for its tag name.

Data Structures and Programming
Techniques

46

Handles

• We use the term handle to describe a reference
to an abstract object.

• Our goal is to give client programs handles to
abstract objects that can be used in assignment
statements and as arguments and return values
of functions in the same way as built-in data
types, while hiding the representation of objects
from the client program.

Data Structures and Programming
Techniques

47

Complex Numbers ADT
Implementation

/* This is the file CImplementation.c */

#include <stdlib.h>

#include "COMPLEX.h"

struct complex { float Re; float Im; };

Complex COMPLEXinit(float Re, float Im)

{ Complex t = malloc(sizeof *t);

t->Re = Re; t->Im = Im;

return t;

}

float Re(Complex z)

{ return z->Re; }

float Im(Complex z)

{ return z->Im; }

Complex COMPLEXmult(Complex a, Complex b)

{ return COMPLEXinit(Re(a)*Re(b) - Im(a)*Im(b), Re(a)*Im(b) + Im(a)*Re(b));

}

Data Structures and Programming
Techniques

48

Notes

• The implementation of the interface in the
previous program includes the definition of
structure complex (which is hidden from the
clients) as well as the implementation of the
functions provided by the interface.

• Objects are pointers to structures, so we
dereference the pointer to refer to the fields.

Data Structures and Programming
Techniques

49

Client Program

/* Computes the N complex roots of unity for given N */

/* This is file roots-of-unity.c */

#include <stdio.h>

#include <math.h>

#include "COMPLEX.h"

#define PI 3.141592625

main(int argc, char *argv[])

{

int i, j, N = atoi(argv[1]);

Complex t, x;

printf("%dth complex roots of unity\n", N);

for (i = 0; i < N; i++)

{

float r = 2.0*PI*i/N;

t = COMPLEXinit(cos(r), sin(r));

printf("%2d %6.3f %6.3f ", i, Re(t), Im(t));

for (x = t, j = 0; j < N-1; j++)

x = COMPLEXmult(t, x);

printf("%6.3f %6.3f\n", Re(x), Im(x));

}

}

Data Structures and Programming
Techniques

50

Notes

• The client program outputs the powers of
unity one by one, together with a verification
that they are indeed such powers. To verify
this, raising to a power is implemented by
multiplication.

Data Structures and Programming
Techniques

51

Notes

• In this case, we can see that the exact
representation of a complex number is hidden
from the client program.

• The client program can refer to the real and
the imaginary part of a number only by using
the functions Re and Im provided by the
interface.

Data Structures and Programming
Techniques

52

Command Line Arguments

• argc (argument count) is the number of
command line arguments.

• argv (argument vector) is pointer to an array of
character strings that contain the arguments, one
per string.

• By convention, argv[0] is the name by which
the program was invoked so argc is at least 1.

• In the previous program argv[1] contains the
value of N.

Data Structures and Programming
Techniques

53

Separate Compilation

• We compile the module and the client program
separately:

gcc -c CImplementation.c -o CI.o

gcc -c roots-of-unity.c -o roots-of-unity.o

gcc CI.o roots-of-unity.o –o program.exe -lm

With the first two commands we compile the C files to
produce object files. Then the object files are linked to
produce the final executable. Notice that we have to use
the option –lm to link the math library.

Data Structures and Programming
Techniques

54

Exercise

• Revisit the ADT priority queue and define a
better interface and its implementation so
that we have information hiding.

Data Structures and Programming
Techniques

55

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

Chapter 4.

• Robert Sedgewick. Αλγόριθμοι σε C.

Κεφ. 4

Data Structures and Programming
Techniques

56

