
Queues

Manolis Koubarakis

Data Structures and Programming
Techniques

1

The ADT Queue

• A queue Q of items of type T is a sequence of
items of type T on which the following
operations are defined:
– Initialize the queue to the empty queue.

– Determine whether or not the queue is empty.

– Determine whether or not the queue is full.

– Provided Q is not full, insert a new item onto the
rear of the queue.

– Provided Q is nonempty, remove an item from the
front of Q.

Data Structures and Programming
Techniques

2

The ADT Queue (cont’d)

• Queues are also known as FIFO lists (first-in
first-out).

Data Structures and Programming
Techniques

3

Queue Representations

• The ADT queue can be implemented using
either sequential or linked representations.

Data Structures and Programming
Techniques

4

Sequential Queue Representations

• We can use an array as follows:

q1 q2 q3 q4

Departures Arrivals

Direction of travel through memory

Data Structures and Programming
Techniques

5

Sequential Queue Representations
(cont’d)

• This representation is not very handy.

• The positions of the array to the right will be
filled until there is space to do so, while the
positions to the left of the array will be freed
but we will not be able to use that free space.

• The bounded space representation proposed
next is a better one.

Data Structures and Programming
Techniques

6

Circular Queue Representation

Front

Rear q1

q2

q3

q4 q5

q6

Data Structures and Programming
Techniques

7

Circular Queue Representation (cont’d)

• If we have an array Items[0:N-1] and two pointers
Front and Rear as in the previous figure, then we
can use the following assignment statements to
increment the pointers so that they always wrap
around after falling off the high end of the array.

 Front=(Front+1)%N
 Rear=(Rear+1)%N

• The operator % computes the remainder of the division by N

so the values of Front and Rear are always in the range 0
to N-1.

Data Structures and Programming

Techniques
8

Defining the Queue Data Type

/* This is the file QueueTypes.h */

#define MAXQUEUESIZE 100

typedef int ItemType;

/* the item type can be arbitrary */

typedef struct {

 int Count;

 int Front;

 int Rear;

 ItemType Items[MAXQUEUESIZE];

 } Queue;

Data Structures and Programming

Techniques
9

The Interface File

/* This is the file QueueInterface.h */

#include “QueueTypes.h”

void InitializeQueue(Queue *Q);

int Empty(Queue *Q);

int Full(Queue *Q);

void Insert(ItemType R, Queue *Q);

void Remove(Queue *Q, ItemType *F);

Data Structures and Programming
Techniques

10

The Implementation

/* This is the file QueueImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

void InitializeQueue(Queue *Q)

{

 Q->Count=0;

 Q->Front=0;

 Q->Rear=0;

}

Data Structures and Programming

Techniques
11

The Implementation (cont’d)

int Empty(Queue *Q)

{

 return(Q->Count==0);

}

int Full(Queue *Q)

{

 return(Q->Count==MAXQUEUESIZE);

}

Data Structures and Programming

Techniques
12

The Implementation (cont’d)

void Insert(ItemType R, Queue *Q)

{

 if (Q->Count==MAXQUEUESIZE){

 printf(“attempt to insert item into a

full queue”);

 } else {

 Q->Items[Q->Rear]=R;

 Q->Rear=(Q->Rear+1)%MAXQUEUESIZE;

 ++(Q->Count);

 }

}

Data Structures and Programming

Techniques
13

The Implementation (cont’d)

void Remove(Queue *Q, ItemType *F)

{

 if (Q->Count==0){

 printf(“attempt to remove item from

empty queue”);

 } else {

 *F=Q->Items[Q->Front];

 Q->Front=(Q->Front+1)%MAXQUEUESIZE;

 --(Q->Count);

 }

}

Data Structures and Programming

Techniques
14

Linked Queue Representation

• In this implementation, we represent a queue
by a struct containing pointers to the front
and rear of a linked list of nodes.

Item Link Link Item Item Item Link Link

Rear Front

Q:

x1 x2 x3 x4 .

Data Structures and Programming
Techniques

15

Linked Queue Representation (cont’d)

• The empty queue is a special case and it is
represented by a structure whose front and
rear pointers are NULL.

Rear Front

Q: . .

Data Structures and Programming
Techniques

16

Defining the Queue Data Type

/* This is the file QueueTypes.h */

typedef int ItemType;

/* the item type can be arbitrary */

typedef struct QueueNodeTag {

 ItemType Item;

 struct QueueNodeTag *Link;

 } QueueNode;

typedef struct {

 QueueNode *Front;

 QueueNode *Rear;

 } Queue;

Data Structures and Programming
Techniques

17

The Implementation

/* This is the file QueueImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

void InitializeQueue(Queue *Q)

{

 Q->Front=NULL;

 Q->Rear=NULL;

}

Data Structures and Programming
Techniques

18

The Implementation (cont’d)

int Empty(Queue *Q)

{

 return(Q->Front==NULL);

}

int Full(Queue *Q)

{

 return(0);

}

/* We assume an already constructed queue */

/* is not full since it can potentially grow */

/* as a linked structure. */

Data Structures and Programming
Techniques

19

The Implementation (cont’d)

void Insert(ItemType R, Queue *Q)

{

 QueueNode *Temp;

 Temp=(QueueNode *)malloc(sizeOf(QueueNode));

 if (Temp==NULL){

 printf(“System storage is exhausted”);

 } else {

 Temp->Item=R;

 Temp->Link=NULL;

 if (Q->Rear==NULL){

 Q->Front=Temp;

 Q->Rear=Temp;

 } else {

 Q->Rear->Link=Temp;

 Q->Rear=Temp;

 }

 }

}

Data Structures and Programming
Techniques

20

The Implementation (cont’d)

void Remove(Queue *Q, ItemType *F)

{

 QueueNode *Temp;

 if (Q->Front==NULL){

 printf(“attempt to remove item from an empty queue”);

 } else {

 *F=Q->Front->Item;

 Temp=Q->Front;

 Q->Front=Temp->Link;

 free(Temp);

 if (Q->Front==NULL) Q->Rear=NULL;

 }

}

Data Structures and Programming
Techniques

21

Example main program

#include <stdio.h>

#include <stdlib.h>

#include "QueueInterface.h"

int main(void)

{

 int i,j;

 Queue Q;

 InitializeQueue(&Q);

 for(i=1; i<10; ++i){

 Insert(i, &Q);

 }

 while (!Empty(&Q)){

 Remove(&Q, &j);

 printf("Item %d has been removed.\n", j);

 }

 return 0;

}

Data Structures and Programming
Techniques

22

Comparing Linked and Sequential
Queue Representations

• The sequential queue representation is
appropriate when there is a bound on the
number of queue elements at any time.

• The linked representation is appropriate
when we do not know how large the queue
will grow.

Data Structures and Programming
Techniques

23

Information Hiding Revisited

• The previous definitions and implementations of
the ADT queue do not do good information
hiding since client programs can get access to the
queue representation because the file
QueueTypes.h is included in the file
QueueInterface.h.

• We will now give another way to define the ADT
queue that does not have this weakness and also
has all the nice features of the previous code such
as the ability to define multiple queues in a client
program.

Data Structures and Programming
Techniques

24

The Queue ADT Interface

typedef struct queue *QPointer;

QPointer QUEUEinit(int maxN);

int QUEUEempty(QPointer);

void QUEUEput(QPointer, Item);

Item QUEUEget(QPointer);

In this interface the typedef statement defines the type QPointer
which is a handle to a structure for which we only give the name
queue. The details of this structure are given in the implementation
file and, in this way, they are hidden from client programs.

The functions of the interface take arguments of type QPointer.

Data Structures and Programming
Techniques

25

The Implementation of the Interface

• Let us now see how we can implement this
interface using the linked list representation of
a queue that we introduced earlier.

• The front and the rear of the queue are now
accessed using pointer variables head and
tail.

Data Structures and Programming
Techniques

26

The Implementation

#include <stdlib.h>

#include "Item.h"

#include "QUEUE.h"

typedef struct QUEUEnode* link;

struct QUEUEnode { Item item; link next; };

struct queue { link head; link tail; };

link NEW(Item item, link next)

{

 link x = malloc(sizeof *x);

 x->item = item;

 x->next = next;

 return x;

}

QPointer QUEUEinit(int maxN)

{

 QPointer q = malloc(sizeof *q);

 q->head = NULL;

 q->tail = NULL;

 return q;

}

Data Structures and Programming
Techniques

27

The Implementation (cont’d)

int QUEUEempty(QPointer q) { return q->head == NULL; }

void QUEUEput(QPointer q, Item item)

{

 if (q->head == NULL)

 {

 q->tail = NEW(item, q->head);

 q->head = q->tail;

 return;

 }

 q->tail->next = NEW(item, q->tail->next);

 q->tail = q->tail->next;

}

Item QUEUEget(QPointer q)

{

 Item item = q->head->item;

 link t = q->head->next;

 free(q->head);

 q->head = t;

 return item;

}

Data Structures and Programming
Techniques

28

Queue Simulation

• Let us now use the previous queue interface
and implementation in a client program.

• The following client program simulates an
environment with M queues where clients
(queue members) are assigned to one of these
queues randomly.

Data Structures and Programming
Techniques

29

The Client Program

#include <stdio.h>

#include <stdlib.h>

#include "Item.h"

#include "QUEUE.h"

#define M 10

main(int argc, char *argv[])

{

 int i, j, N = atoi(argv[1]);

 QPointer queues[M];

 for (i = 0; i < M; i++) queues[i] = QUEUEinit(N);

 for (i = 0; i < N; i++) QUEUEput(queues[rand() % M], i);

 for (i = 0; i < M; i++, printf("\n"))

 for (j = 0; !QUEUEempty(queues[i]); j++)

 printf("%3d ", QUEUEget(queues[i]));

}

Data Structures and Programming
Techniques

30

Information Hiding Revisited

• Notice that the previous client program
cannot access the structure that represents
the queue because this information is not
revealed by the interface file QUEUE.h.

• The details are hidden in the implementation
which is not accessible to the client.

Data Structures and Programming
Techniques

31

Using Queues

• Queues of jobs are used a lot in operating
systems and networks (e.g., a printer queue).

• Queues are also used in simulation.

• Queuing theory is a branch of mathematics
that studies the behaviour of systems with
queues.

Data Structures and Programming
Techniques

32

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

 Chapter 7.

• R. Sedgewick. Αλγόριθμοι σε C.

 Κεφ. 4.

Data Structures and Programming
Techniques

33

