
Stacks

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Stacks and Queues

• Linear data structures are collections of
components arranged in a straight line.

• If we restrict the growth of a linear data
structure so that new components can be
added and removed only at one end, we have
a stack.

• If new components can be added at one end
but removal of components must take place at
the opposite end, we have a queue.

Data Structures and Programming

Techniques
2

Examples of Stacks in Real Life

Data Structures and Programming
Techniques

3

Stacks in Computer Science

• Stacks are used in many areas of Computer
Science:

– Parsing algorithms

– Pushdown automata

– Expression evaluation algorithms

– Backtracking algorithms

– Activation records in run-time stack.

Data Structures and Programming
Techniques

4

Stacks

• Stacks are sometimes called LIFO lists where
LIFO stands for “last-in, first-out”.

• When we add a new object to the top of a
stack, this is called “pushing”.

• When we remove an object from the top of a
stack, this is called “popping”.

• Pushing and popping are inverse operations.

Data Structures and Programming
Techniques

5

Sequences

• A finite-length sequence S=(s1, s2, …, sn) is just
an ordered arrangement of finitely many
components s1, s2, …, sn.

• The length of a sequence is the number of its
components.

• There is a special sequence with length 0
called the empty sequence.

Data Structures and Programming
Techniques

6

An Abstract Data Type for Stacks

• A stack S of items of type T is a sequence of
items of type T on which the following
operations can be defined:
1. Initialize the stack S to be the empty stack.

2. Determine whether or not the stack S is empty.

3. Determine whether or not the stack S is full.

4. Push a new item onto the top of stack S.

5. If S is nonempty, pop an item from the top of
stack S.

Data Structures and Programming

Techniques
7

An Interface for Stacks

• Using separately compiled C files, we can
define C modules that specify the underlying
representation for stacks and implement the
abstract stack operations.

Data Structures and Programming
Techniques

8

The Stack ADT Interface

/* This is the file StackInterface.h

*/

#include “StackTypes.h”

void InitializeStack(Stack *S);

int Empty(Stack *S);

int Full(Stack *S);

void Push(ItemType X, Stack *S);

void Pop(Stack *S, ItemType *X);

 Data Structures and Programming
Techniques

9

Using the Stack ADT to Check for
Balanced Parentheses

• The first application of the Stack ADT that we will study
involves determining whether parentheses and
brackets balance properly in algebraic expressions.

• Example:

• This expression contains parentheses, square brackets,
and braces in balanced pairs according to the pattern

)cos()]}[sin(*])()[({ 222 yxyxedcba 

))]}()][()({[(

Data Structures and Programming
Techniques

10

The Algorithm

• We can start with an empty stack and scan a string
representing the algebraic expression from left to right.

• Whenever we encounter a left parenthesis (, a left bracket [
or a left brace {, we push it onto the stack.

• Whenever we encounter a right parenthesis), a right
bracket] or a right brace }, we pop the top item off the
stack and check to see that its type matches the type of
right parenthesis, bracket or brace encountered.

• If the stack is empty by the time we get to the end of the
expression string and if all pairs of matched parentheses
were of the same type, the expression has properly
balanced parentheses. Otherwise, the parentheses are not
balanced properly.

Data Structures and Programming
Techniques

11

The Program

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char *InputExpression;

int Match(char c, char d)

{

 switch (c){

 case ‘(‘ : return d==‘)‘;

 break;

 case ‘[’ : return d==‘]‘;

 break;

 case ‘{‘ : return d==‘}‘;

 break;

 default : return(0);

 break;

 }

}

Data Structures and Programming
Techniques

12

The Program (cont’d)
void ParenMatch(void)

{

 int n, i=0;

 char c, d;

 Stack ParenStack;

 InitializeStack(&ParenStack);

 n=strlen(InputExpression);

 while (i < n){

 d=InputExpression[i];

 if (d==‘(‘ || d==‘[‘ || d==‘{‘){

 Push(d, &ParenStack);

 } else if (d==‘)‘ || d==‘]‘ || d==‘}‘){

 if (Empty(&ParenStack)){

 printf(“More right parentheses than left parentheses\n”);

 return;

 } else {

 Pop(&ParenStack, &c);

 if (!Match(c,d)){

 printf(“Mismatched Parentheses: %c and %c\n”, c, d);

 return;

 }

 }

 }

 ++i;

 }

 if (Empty(&ParenStack)){

 printf(“Parentheses are balanced properly\n”);

 } else {

 printf(“More left parentheses than right parentheses\n”);

 }

}

Data Structures and Programming
Techniques

13

The Program (cont’d)

int main(void)

{

 InputExpression=(char *)malloc(100);

 printf(“Give Input Expression without

blanks:”);

 scanf(“%s”, InputExpression);

 ParenMatch();

 return 0;

}

Data Structures and Programming
Techniques

14

Using the Stack ADT to Evaluate Postfix
Expressions

• Expressions are usually written in infix
notation e.g., (a+b)*2-c. Parentheses are used
to denote the order of operation.

• Postfix expressions are used to specify
algebraic operations using a parentheses free
notation. For example, ab+2*c-.

• The postfix notation L R op corresponds to the
infix notation L op R.

Data Structures and Programming
Techniques

15

Examples

Infix Postfix

(a + b) a b +

(x – y – z) x y – z –

(x – y – z)/(u + v) x y – z – u v + /

(a2 + b2) * (m – n) a 2 ^ b 2 ^ + m n – *

Data Structures and Programming
Techniques

16

Prefix Notation

• There is also prefix (or Polish) notation in
which the operator precedes the operands.

• Example: + 3 * 2 5 is the prefix form of
(2 * 5) + 3

• Prefix and postfix notations do not need
parentheses for denoting the order of
operations.

Data Structures and Programming
Techniques

17

The Algorithm

• To evaluate a postfix expression P, you scan from left to right.
• When you encounter an operand X, you push it onto an evaluation

stack S.
• When you encounter an operator op, you pop the topmost operand

stacked on S into a variable R (which denotes the right operand),
then you pop another topmost operand stacked on S onto a
variable L (which denotes the left operand).

• Finally, you perform the operation op on L and R, getting the value
of the expression L op R, and you push the value back onto the
stack S.

• When you finish scanning P, the value of P is the only item
remaining on the stack S.

Data Structures and Programming
Techniques

18

The Program

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#include <string.h>

#include “StackInterface.h”

Stack EvalStack;

char PostfixString[20];

void InterpretPostfix(void)

{

 float LeftOperand, RightOperand, Result;

 int i;

 char c;

 char s[]=‘x‘;

 InitializeStack(&EvalStack);

Data Structures and Programming
Techniques

19

The Program (cont’d)

 for (i=0; i<strlen(PostfixString); ++i){

 s[0]=c=PostfixString[i];

 if (isdigit(c)){

 Push((float)(atof(s)), &EvalStack);

 } else if (c==‘+‘ || c==‘-‘ || c==‘*‘ || c==‘/‘ || c==‘^‘){

 Pop(&EvalStack, &RightOperand);

 Pop(&EvalStack, &LeftOperand);

 switch (c) {

 case ‘+‘: Push(LeftOperand+RightOperand, &EvalStack);

 break;

 case ‘-‘: Push(LeftOperand-RightOperand, &EvalStack);

 break;

 case ‘*‘: Push(LeftOperand*RightOperand, &EvalStack);

 break;

 case ‘/‘: Push(LeftOperand/RightOperand, &EvalStack);

 break;

 case ‘^‘: Push(pow(LeftOperand, RightOperand), &EvalStack);

 break;

 default: break;

 }

 }

 }

 Pop(&EvalStack, &Result);

 printf(“Value of postfix expression = %f\n”, Result);

}

Data Structures and Programming
Techniques

20

The Program (cont’d)

int main(void) {

 printf("Give input postfix string without

blanks:");

 scanf("%s", PostfixString);

 InterpretPostfix();

 return 0;

}

Data Structures and Programming
Techniques

21

Implementing the Stack ADT

• We will present two implementations of the
stack ADT based on:

– arrays (sequential representation)

– linked lists (linked representation)

• Both implementations can be used to realize
the two applications we presented earlier.

Data Structures and Programming
Techniques

22

The Implementation Based on Arrays

/* This is the file StackTypes.h */

#define MAXSTACKSIZE 100

typedef char ItemType;

/* char is the type for our first application */

/* float is the type for our second application */

typedef struct{

 int Count;

 ItemType Items[MAXSTACKSIZE];

 } Stack;

Data Structures and Programming
Techniques

23

The Implementation Based on Arrays
(cont’d)

/* This is the file StackImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “StackInterface.h”

void InitializeStack(Stack *S)

{

 S->Count=0;

}

int Empty(Stack *S)

{

 return (S->Count == 0);

}

Data Structures and Programming

Techniques
24

The Implementation Based on Arrays
(cont’d)

int Full(Stack *S){

 return(S->Count == MAXSTACKSIZE);

}

void Pop(Stack *S, ItemType *X)

{ if (S->Count ==0){

 printf(“attempt to pop the empty stack”);

 } else {

 --(S->Count);

 *X=S->Items[S->Count];

 }

}

Data Structures and Programming
Techniques

25

The Implementation Based on Arrays
(cont’d)

void Push(ItemType X, Stack *S)

{

 if (S->Count == MAXSTACKSIZE){

 printf(“attempt to push new item on a full

stack”);

 } else {

 S->Items[S->Count]=X;

 ++(S->Count);

 }

}

Data Structures and Programming
Techniques

26

The Implementation Based on Linked
Lists

/* This is the file StackTypes.h */

typedef char ItemType;

/* char is the type for our first application */

/* float is the type for our second application */

typedef struct StackNodeTag {

 ItemType Item;

 struct StackNodeTag *Link;

 } StackNode;

typedef struct {

 StackNode *ItemList;

 } Stack;

 Data Structures and Programming
Techniques

27

The Implementation Based on Linked
Lists (cont’d)

/* This is the file StackImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “StackInterface.h”

void InitializeStack(Stack *S)

{

 S->ItemList=NULL;

}

int Empty(Stack *S)

{

 return (S->ItemList==NULL);

}

int Full(Stack *S)

{

 return 0;

}

/* We assume an already constructed stack is not full since it can potentially */

/* grow as a linked structure */

 Data Structures and Programming

Techniques
28

The Implementation Based on Linked
Lists (cont’d)

void Push(ItemType X, Stack *S)

{

 StackNode *Temp;

 Temp=(StackNode *) malloc(sizeof(StackNode));

 if (Temp==NULL){

 printf(“system storage is exhausted”);

 } else {

 Temp->Link=S->ItemList;

 Temp->Item=X;

 S->ItemList=Temp;

 }

}

Data Structures and Programming
Techniques

29

The Implementation Based on Linked
Lists (cont’d)

void Pop(Stack *S, ItemType *X)

{

 StackNode *Temp;

 if (S->ItemList==NULL){

 printf(“attempt to pop the empty stack”);

 } else {

 Temp=S->ItemList;

 *X=Temp->Item;

 S->ItemList=Temp->Link;

 free(Temp);

 }

}

Data Structures and Programming

Techniques
30

Information Hiding Revisited

• The two previous specifications of the ADT stack
do not hide the details of the representation of
the stack since a client program can access the
array or the list data structure because it includes
StackInterface.h and therefore
StackTypes.h.

• We will now present another specification which
does a better job in hiding the representation of
the stack.

Data Structures and Programming
Techniques

31

The Interface File STACK.h

void STACKinit(int);

int STACKempty();

void STACKpush(Item);

Item STACKpop();

The type Item will be defined in a header file
Item.h which will be included in the
implementation of the interface and the client
programs.

Data Structures and Programming
Techniques

32

The Implementation of the Interface

• As previously, we will consider an array
implementation and a linked list
implementation of the ADT stack.

Data Structures and Programming
Techniques

33

The Array Implementation

#include <stdlib.h>

#include "Item.h"

#include "STACK.h"

static Item *s;

static int N;

void STACKinit(int maxN)

{ s = malloc(maxN*sizeof(Item)); N = 0; }

int STACKempty() { return N == 0; }

void STACKpush(Item item)

{ s[N++] = item; }

Item STACKpop() { return s[--N]; }

Data Structures and Programming
Techniques

34

Notes

• The variable s is a pointer to an item (equivalently, the
name of an array of items defined by Item s[]).

• When there are N items in the stack, the implementation
keeps them in array elements s[0], …, s[N-1].

• The variable N shows the top of the stack (where the next
item to be pushed will go).

• N is defined as a static variable i.e., it retains its value
throughout calls of the various functions that access it.

• The client program passes the maximum number of items
expected on the stack as an argument to STACKinit.

• The previous code does not check for errors such as
pushing onto a full stack or popping an empty one.

Data Structures and Programming
Techniques

35

The Linked List Implementation

#include <stdlib.h>

#include "Item.h"

typedef struct STACKnode* link;

struct STACKnode { Item item; link next; };

static link head;

link NEW(Item item, link next)

{ link x = malloc(sizeof *x);

 x->item = item;

 x->next = next;

 return x;

}

void STACKinit(int maxN) { head = NULL; }

int STACKempty()

{ return head == NULL; }

STACKpush(Item item)

{ head = NEW(item, head); }

Item STACKpop()

{ Item item = head->item;

 link t = head->next;

 free(head);

 head = t;

 return item;

}

Data Structures and Programming
Techniques

36

Notes

• This implementation uses an auxiliary function NEW to
allocate memory for a node, set its fields from the
function arguments, and return a link to the node.

• In this implementation, we keep the stack in the
reverse order of the array implementation; from most
recently inserted elements to least recently inserting
elements.

• Information hiding: For both implementations (with
arrays or linked lists), the data structure for the
representation of the stack (array or linked list) is
defined only in the implementation file thus it is not
accessible to client programs.

Data Structures and Programming
Techniques

37

Translating Infix Expressions to Postfix

• Let us now use the latest implementation of the
stack ADT to implement a translator of fully
parenthesized infix arithmetic expressions to
postfix.

• The algorithm for doing this is as follows. To
convert (A+B) to the postfix form AB+, we ignore
the left parenthesis, convert A to postfix, save the
+ on the stack, convert B to postfix, then, on
encountering the right parenthesis, pop the stack
and output the +.

Data Structures and Programming
Techniques

38

Example

• We want to translate the infix expression
((5*(9+8))+7) into postfix.

• The result will be 5 9 8 + * 7 +.

Data Structures and Programming
Techniques

39

Executing the Algorithm
Input Output Stack

(

(

5 5

* *

(*

9 9 *

+ * +

8 8 * +

) + *

) *

+ +

7 7 +

) +

Data Structures and Programming
Techniques

40

The Client Program

#include <stdio.h>

#include <string.h>

#include "Item.h"

#include "STACK.h"

main(int argc, char *argv[])

{

 char *a = argv[1];

 int i, N = strlen(a);

 STACKinit(N);

 for (i = 0; i < N; i++)

 {

 if (a[i] == ')') printf("%c ", STACKpop());

 if ((a[i] == '+') || (a[i] == '*')) STACKpush(a[i]);

 if ((a[i] >= '0') && (a[i] <= '9')) printf("%c ", a[i]);

 }

 printf("\n");

}

Data Structures and Programming
Techniques

41

The File Item.h

• The file Item.h can only contain a typedef
which defines the type of items in the stack.

• For the previous program, this can be:

 typedef char Item;

Data Structures and Programming
Techniques

42

A Weakness of the 2nd Solution

• The 2nd solution for defining and
implementing a stack ADT is weaker than the
1st one since it allows the construction and
operation of a single stack by a client
program.

• Conversely, the 1st solution allows us to define
many stacks in the client program.

Data Structures and Programming
Techniques

43

Exercise

• Modify the 1st solution so that it does better
information hiding without losing the
capability to be able to define many stacks in
the client program.

Data Structures and Programming
Techniques

44

Question

• Which implementation of a stack ADT should
we prefer?

Data Structures and Programming
Techniques

45

Answer

• It depends on the application.

• In the linked list implementation, push and pop take more time to
allocate and de-allocate memory.

• If we need to do these operations a huge number of times then we
might prefer the array implementation.

• On the other hand, the array implementation uses the amount of
space necessary to hold the maximum number of items expected.
This can be wasteful if the stack is not kept close to full.

• The list implementation uses space proportional to the number of
items but always uses extra space for a link per item.

• Note also that the running time of push and pop in each
implementation is constant.

Data Structures and Programming
Techniques

46

How C Implements Recursive Function
Calls Using Stacks

• When calling an instance of a function
F(a1,a2,…,an) with actual parameters a1,
a2,…,an, C uses a run-time stack.

• A collection of information called a stack
frame or call frame or activation record is
prepared to correspond to the call and it is
placed on top of other previously generated
stack frames on the run-time stack.

Data Structures and Programming
Techniques

47

Stack Frames

• The information in a stack frame consists of:
– Space to hold the value returned by the function.
– A pointer to the base of the previous stack frame in

the stack.
– A return address, which is the address of an

instruction to execute in order to resume the
execution of the caller of the function when the call
has terminated.

– Parameter storage sufficient to hold the actual
parameter values used in the call.

– A set of storage locations sufficient to hold the values
of the variables declared locally in the function.

Data Structures and Programming
Techniques

48

Example - Factorial

int Factorial(int n);

{

 if (n==1) {

 return 1;

 } else {

 return n*Factorial(n-1);

 }

}

Let us consider the call x=Factorial(2).

 Data Structures and Programming
Techniques

49

Stack Frame for Factorial(2)

Address of x

Return value of Factorial(2)

Pointer to previous stack frame base

Return Address

Actual Parameter n=2

Space for locally declared variables

ψ

?

α

2

empty

Space for more stack growth

Data Structures and Programming
Techniques

50

Stack Frame for Factorial(2)and
Factorial(1)

Address of x

Return value of Factorial(2)

Pointer to previous stack frame base

Return Address

Actual Parameter n=2

Space for locally declared variables

ψ

?

α

2

empty

Return value of Factorial(1)

Pointer to previous stack frame base

Return Address

Actual Parameter n=1

Space for locally declared variables empty

1

β

?

Space for more stack growth

Data Structures and Programming
Techniques

51

Stack After Return from

Factorial(1)

Address of x

Return value of Factorial(2)

Pointer to previous stack frame base

Return Address

Actual Parameter n=2

Space for locally declared variables

ψ

?

α

2

empty

Return value of Factorial(1)

Space for more stack growth

1

Data Structures and Programming
Techniques

52

Stack After Return from

Factorial(2)

Address of x

Return value of Factorial(2)

ψ

2

Space for more stack growth

Data Structures and Programming
Techniques

53

More Details

• Stack + Iteration can implement Recursion.

• Run-time stacks are discussed in more details
in a Compilers course.

Data Structures and Programming
Techniques

54

Using Stacks

• Generally speaking, stacks can be used to
implement any kind of nested structure.

• When processing nested structures, we can start
processing the outermost level of the structure,
and if we encounter a nested substructure, we
can interrupt the processing of the outer layer to
begin processing an inner layer by putting a
record of the interrupted status of the outer
layer’s processing on top of a stack.

• In this way the stack contains postponed
obligations that we should resume and complete.

Data Structures and Programming
Techniques

55

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

 Chapter 7.

• R. Sedgewick. Αλγόριθμοι σε C.

 Κεφ. 4

Data Structures and Programming
Techniques

56

