
Trees

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Trees

• Trees (δένδρα) are one of the most important data
structures in Computer Science.

• Examples of trees:
– Directory structure
– Search trees (for stored information associated with search

keys e.g., in relational databases)
– Parse trees (in compilers)
– Search trees (for problem solving in Artificial Intelligence)
– Game trees (in Artificial Intelligence)
– Decision trees (in Artificial Intelligence)
– Heaps (for implementing priority queues)

Data Structures and Programming
Techniques

2

Example

Z

R

S T

U V WX

Y

Data Structures and Programming
Techniques

3

Formal Definition of Tree

• A (rooted) tree 𝑇 is a set of nodes storing
elements in a parent-child relationship with
the following properties:

– If 𝑇 is nonempty, it has a special node, called the
root of 𝑇, that has no parent.

– Each node 𝑣 of T different from the root has a
unique parent node 𝑤; every node with parent 𝑤
is a child of 𝑤.

• The empty tree is one which has no nodes.

Data Structures and Programming
Techniques

4

Terminology

• An edge of tree 𝑇 is a pair of nodes (𝑢, 𝑣) such that 𝑢 is a parent of 𝑣, or vice
versa.

• A sequence of nodes that are connected by edges is called a path. The length of a
path is the number of its edges.

• If we travel downwards along the edges that start at a node e.g., R, we arrive at R’s
two children S and T.

• Two nodes that are children of the same parent are called siblings.
• The descendants of a node consist of the nodes that can be reached by travelling

downwards along any path starting at the node.
• If we travel upwards from node e.g., S, we find the node R which is the parent of S.
• The ancestors of a node consist of the nodes that can be reached by travelling

upwards along paths towards the root.
• If a node has no children, it is called a leaf or external node.
• If a node has children, then it is called an internal node.
• The root is an internal or external node depending on whether it has children.

Data Structures and Programming
Techniques

5

Terminology (cont’d)

• The nodes of a tree can be arranged in levels.
• The root is at level 0. The children of the root are at level 1,

their children are at level 2 and so on.
• We often say depth instead of level.
• In a tree, there is exactly one path from the root R to each

descendant of R.
• The length of the path from the root to a node is equal to

the level or depth of the node.
• The largest depth of any node in a tree is called the height

of the tree.
• We can use spatial terminology to refer to parts of a tree.

For example, left child or right child or middle child.

Data Structures and Programming
Techniques

6

Terminology (cont’d)

• The subtree of 𝑇 rooted at a node 𝑣 is the tree
consisting of all descendants of 𝑣 including 𝑣
itself.

• A tree is ordered if there is a linear ordering
defined for the children of each node; that is, we
can identify children of a node as being the first,
the second and so on.

• Ordered trees are usually drawn with siblings
arranged from left to right, corresponding to their
linear relationship.

Data Structures and Programming
Techniques

7

Proposition

• Let 𝑇 be a tree with 𝑛 nodes, and let 𝑐𝑝
denote the number of children of a node 𝑝 of
𝑇. Then σ𝑝 𝑐𝑝 = 𝑛 − 1.

• Proof?

Data Structures and Programming
Techniques

8

Proof

• Each node of 𝑇 with the exception of the root
is a child of another node, and thus
contributes one unit to the above sum.

Data Structures and Programming
Techniques

9

Binary Trees

• A binary tree (δυαδικό δένδρο) is a tree in which:
– Each node has at most two children and stores an item.
– Each child node is labelled as being either a left child or a

right child.
– A left child precedes a right child in the ordering of

children of a node.

• Recursive definition: A binary tree is either the empty
tree or consists of:
– A node 𝑟, called the root of 𝑇 and storing an item.
– A binary tree, called the left subtree of 𝑇 .
– A binary tree, called the right subtree of 𝑇 .

Data Structures and Programming
Techniques

10

Example: a Binary Tree

R

S T

YX

Z

U V

W

Data Structures and Programming
Techniques

11

Example: a Different Binary Tree

R

S T

YX

Z

U V

W

Data Structures and Programming
Techniques

12

Whether a child is left or right matters. Now node W is the right
child of node V.

Complete Binary Trees

• A binary tree with height ℎ is a complete binary tree
(πλήρες δυαδικό δένδρο) if levels 0,1, 2, … , ℎ −
1 have the maximum number of nodes possible
(namely, level 𝑖 has 2𝑖 nodes, for 0 ≤ 𝑖 ≤ ℎ − 1) and
the nodes at level ℎ fill this level from left to right.

• In other words, in a complete binary tree, leaves are on
either a single level or on two adjacent levels such that
the leaves on the bottommost level are placed as far
left as possible. Additionally, all levels except possibly
the bottommost one are completely filled with nodes.

Data Structures and Programming
Techniques

13

Example: complete binary tree

Data Structures and Programming
Techniques

14

Example: not complete binary tree

Data Structures and Programming
Techniques

15

Example: not complete binary tree

Data Structures and Programming
Techniques

16

Proper Binary Trees

• A binary tree is called proper or full (γνήσιο) if
each node has either zero or two children.

• A binary tree that is not proper is called
improper.

• In a proper binary tree, each internal node has
exactly two children.

Data Structures and Programming
Techniques

17

Example: proper binary tree

Data Structures and Programming
Techniques

18

Example: improper binary tree

Data Structures and Programming
Techniques

19

Extended Binary Trees

• Often, we view a binary tree as a non-empty proper binary
tree. In this case, we draw each internal node of a binary
tree as having exactly two children. Each external node is
special: it has no children and it is represented by a square
symbol.

• In the literature, the term extended (επεκταμένο) binary
tree is also used for this case.

• This view of binary trees simplifies the programming of
search and update functions (in a linked representation of
the tree external nodes are represented by null links), and
also the statement of relevant theoretical results.

• This view of binary trees also clarifies cases where a node
has one child regarding whether it is a left or a right one.

Data Structures and Programming
Techniques

20

Example

R

S T

YX

Z

U V

W

Data Structures and Programming
Techniques

21

Level Order of Nodes in a Tree

• If we number the nodes of a tree level-by-
level and, in each level, going from left to
right, we have the level order (διάταξη
επιπέδου) of the nodes of the tree.

Data Structures and Programming
Techniques

22

Example

A C E G I

H

D

B F J L

K

1

2 3

4 5 6 7

8 9 10 11 12

Data Structures and Programming
Techniques

23

Nodes of a Complete Binary Tree

• Question: How many nodes does a complete
binary tree have at each level?

Data Structures and Programming
Techniques

24

Nodes of a Complete Binary Tree

• Answer: At most

– 20 = 1 at level 0.

– 21 = 2 at level 1.

– 22 = 4 at level 2.

– …

– 2𝑘 at level 𝑘.

Data Structures and Programming
Techniques

25

Properties of Binary Trees

• Let 𝑇 be a non-empty binary tree, and let
𝑛, 𝑛𝐼 , 𝑛𝐸 and ℎ denote the number of nodes,
number of internal nodes, number of external
nodes, and height of the tree, respectively.
Then 𝑇 has the following properties:
1. ℎ + 1 ≤ 𝑛 ≤ 2ℎ+1 − 1

2. 1 ≤ 𝑛𝐸 ≤ 2ℎ

3. ℎ ≤ 𝑛𝐼 ≤ 2ℎ − 1

4. log(𝑛 + 1) − 1 ≤ ℎ ≤ 𝑛 − 1

Data Structures and Programming
Techniques

26

Proof

• Let us prove (2) first. The lower bound is easy
to see since the simplest non-empty binary
tree has a single node, the root. The upper
bound is reached when we have each node at
each level of the tree having exactly two
children.

Data Structures and Programming
Techniques

27

Proof (cont’d)

• Let us now prove (3). The case that gives us the lower bound
is a tree like the following where the internal nodes are ℎ in
number:

Data Structures and Programming
Techniques

28

⋱
ℎ

Proof (cont’d)

• The tree that gives us the upper bound is
when we have each node at each level of the
tree having exactly two children. In this case,
the number of internal nodes is:

1 + 2 + 22 +⋯+ 2ℎ−1 = ෍

𝑖=0

ℎ−1

2𝑖 =
2ℎ − 1

2 − 1

= 2ℎ − 1

Data Structures and Programming
Techniques

29

Proof (cont’d)

• To prove (1) simply add up the inequalities of
(2) and (3).

• To prove (4), rewrite (1) and then take
logarithms of each term.

Data Structures and Programming
Techniques

30

Properties of Binary Trees (cont’d)

• Also, if 𝑇 is proper, then it has the following
properties:

1. 2ℎ + 1 ≤ 𝑛 ≤ 2ℎ+1 − 1

2. ℎ + 1 ≤ 𝑛𝐸 ≤ 2ℎ

3. ℎ ≤ 𝑛𝐼 ≤ 2ℎ − 1

4. log(𝑛 + 1) − 1 ≤ ℎ ≤
𝑛−1

2

5. 𝑛𝐸 = 𝑛𝐼 + 1

Data Structures and Programming
Techniques

31

Proof

• The lower bounds of (2) and (3) can be seen from the
following tree which has ℎ internal nodes and ℎ + 1 external
nodes:

Data Structures and Programming
Techniques

32

⋱
ℎ

Proof (cont’d)

• The upper bounds for (2) and (3) can be seen
from the previous proposition since the trees
used in the proofs there are proper.

• (1) and (4) can then be proved as in the
previous proposition.

Data Structures and Programming
Techniques

33

Proof (cont’d)

• We can prove (5) using induction. For the base case,
consider a tree consisting of a single root node. In this
case we have 1 external node and 0 internal nodes so
the relationship holds.

• If, on the other hand, we have a tree with two or more
nodes, then the root has two subtrees. Since these
subtrees are smaller than the original tree, we may
assume they satisfy the relationship. Thus each subtree
has one more external node than internal nodes.
Between the two of these subtrees, there are two
more external nodes than internal nodes. But the root
is an internal node. So in total we have one more
external node than internal nodes.

Data Structures and Programming
Techniques

34

How Do We Represent a Binary Tree?

A C E G I

H

D

B F J L

K

1

2 3

4 5 6 7

8 9 10 11 12

Data Structures and Programming
Techniques

35

A Sequential Binary Tree
Representation

• If a complete binary tree has n nodes then its
contiguous sequential representation is an array
A[0:n] as follows (for the previous example n=12). Note
that the array stores the information on the tree nodes
using level order.

IGECAJFBKDH LA:

1 63 4 52 7 8 9 10 11 12

Data Structures and Programming
Techniques

36

How to Find Nodes

To Find: Use: Provided:

The left child of 𝐴[𝑖] 𝐴[2𝑖] 2𝑖 ≤ 𝑛

The right child of 𝐴[𝑖] 𝐴[2𝑖 + 1] 2𝑖 + 1 ≤ 𝑛

The parent of 𝐴[𝑖] 𝐴[𝑖/2] 𝑖 > 1

The root 𝐴[1] A is nonempty

Whether 𝐴 𝑖 is a leaf True 2𝑖 > 𝑛

Data Structures and Programming
Techniques

37

Sequential Representation (cont’d)

• The sequential representation can also be
used in the case that a binary tree is not
complete.

• In this case there will be empty cells in the
respective array so such a representation can
be wasteful.

Data Structures and Programming
Techniques

38

Heaps

• A heap (σωρός) is a complete binary tree with
values stored in its nodes such that no child has a
value bigger than the value of its parent (i.e., the
value of the parent of each node is greater than
or equal the value of the node itself).

• Some authors call this a max-heap (σωρός
μεγίστων).

• We can also define a min-heap (σωρός
ελαχίστων) when the relationship between the
value of a parent and the value of its child is “less
than or equal”.

Data Structures and Programming
Techniques

39

Example

10

9 8

2567

1 4 3

Data Structures and Programming
Techniques

40

Heaps and Priority Queues

• A heap provides a representation for a priority
queue.

• Reminder: A priority queue is an ADT having the
property that items are removed in the order of
highest-to-lowest priority regardless of the order
in which they were inserted.

• If a heap is used to represent a priority queue, it
is easy to find the item of highest priority, since
it sits at the root of the tree.

• If we remove the value at the root, we have to
restructure the tree to be a heap again.

Data Structures and Programming
Techniques

41

Restructuring the Tree

• The algorithm for restructuring the tree is as
follows:

1. We delete the rightmost leaf on the bottom row
(this is the last leaf in level order).

2. We place the deleted node’s value into the root
node.

3. We restore the heap property of the tree by starting
at the root node and repeatedly exchanging its value
with the larger of the values of its children, until no
more exchanges are possible.

Data Structures and Programming
Techniques

42

Example

9 8

2567

1 4 3

Let us restore the heap property in the above tree.
Data Structures and Programming

Techniques
43

Restructuring the Tree

9 8

2567

1 4 3

Delete the node with value 3 and insert this value into the root.

Data Structures and Programming
Techniques

44

Restructuring the Tree (cont’d)

9 8

2567

1 4

3

Interchange 3 with 9.

Data Structures and Programming
Techniques

45

Restructuring the Tree (cont’d)

9

8

2567

1 4

3

Interchange 3 with 7.

Data Structures and Programming
Techniques

46

Restructuring the Tree (cont’d)

9

8

256

7

1 4

3

Interchange 3 with 4.

Data Structures and Programming
Techniques

47

Restructuring the Tree (cont’d)

9

8

256

7

1

4

3

The above tree has the heap property restored.

Data Structures and Programming
Techniques

48

Heapifying a Complete Binary Tree

• To organize the values in the nodes of an
initially unorganized complete binary tree H
into a heap, apply the following steps (the
heapification algorithm) to each of the
internal nodes of H in reverse level order.
– Let N be such a node with value V. If N has no

children then do nothing. If N has children then
select the child M with the highest value V1. If 𝑉 ≥
𝑉1, do nothing. Otherwise, interchange V1 with V.

– Repeat the same process with node M.

Data Structures and Programming
Techniques

49

Example

9

8

2

5

6

7 10

4

3

Let us heapify the above tree.

1

Data Structures and Programming
Techniques

50

Heapifying the Tree

9

8

2

5

6

7 10

4

3

The internal nodes in reverse level order are 3, 7, 5, 4 and 2.

1

Data Structures and Programming
Techniques

51

Heapifying the Tree

9

8

2

5

6

7 10

4

3

We start with the node with value 3. Exchange 3 with 6.

1

Data Structures and Programming
Techniques

52

Heapifying the Tree (cont’d)

9

8

2

5

67 10

4

3

Since the node with value 3 has no children, we have nothing more to
do in this subtree.

1

Data Structures and Programming
Techniques

53

Heapifying the Tree (cont’d)

9

8

2

5

67 10

4

31

We continue with the subtree rooted at 7. We exchange 7 with 9.

Data Structures and Programming
Techniques

54

Heapifying the Tree (cont’d)

9 8

2

5

6

7

10

4

31

There is nothing more to do in this subtree.

Data Structures and Programming
Techniques

55

Heapifying the Tree (cont’d)

9 8

2

5

6

7

10

4

3

We continue with the subtree rooted at 5. We exchange 5 with 10.

1

Data Structures and Programming
Techniques

56

Heapifying the Tree (cont’d)

9 8

2

56

7

104

3

We have nothing more to do in this subtree. We continue with the
subtree rooted at 4. We exchange 4 with 9.

1

Data Structures and Programming
Techniques

57

Heapifying the Tree (cont’d)

9

8

2

56

7

10

4

3

We now exchange 4 with 7.

1

Data Structures and Programming
Techniques

58

Heapifying the Tree (cont’d)

9

8

2

567

10

4 3

We have nothing more to do in this subtree. We now consider the root
having value 2.

1

Data Structures and Programming
Techniques

59

Heapifying the Tree (cont’d)

9

8

2

567

10

4 3

We exchange 2 with 10.

1

Data Structures and Programming
Techniques

60

Heapifying the Tree (cont’d)

9

8

2

567

10

4 3

We exchange 2 with 8.

1

Data Structures and Programming
Techniques

61

Heapifying the Tree (cont’d)

9 8

2567

10

4 3

There is nothing more to do in this subtree. The tree has now been
turned into a heap.

1

Data Structures and Programming
Techniques

62

Heapifying the Tree (cont’d)

• The order the nodes are processed guarantees
that subtrees rooted at the children of node 𝒊
are heaps before the algorithm of
heapification runs at that node.

Data Structures and Programming
Techniques

63

Insertion of a New Element in a Heap

• Let us now see how to add a new element to a
heap.

• We start by adding a new empty node as a
leaf at the first available place on the bottom
level.

• Then, we reheapify the tree starting at the
parent of this empty node trying to find the
correct place of the new element.

Data Structures and Programming
Techniques

64

Example Insertion

9 8

2567

10

4 3

Let us insert the new element 15 in the heap.

1

Data Structures and Programming
Techniques

65

Example Insertion (cont’d)

9 8

2567

10

4 3

A new leaf is added to the tree at the first available position at the
bottom level.

1

Data Structures and Programming
Techniques

66

Example Insertion (cont’d)

9 8

2567

10

4 3

Values on the path from the new leaf node to the root are copied down
until a place for the key 15 is found.

1

Data Structures and Programming
Techniques

67

Example Insertion (cont’d)

9 8

25

6

7

10

4 3

6 is copied down.

1

Data Structures and Programming
Techniques

68

Example Insertion (cont’d)

9

8

25

6

7

10

4 3

9 is copied down.

1

Data Structures and Programming
Techniques

69

Example Insertion (cont’d)

9

8

25

6

7

10

4 3

10 is copied down. Now a place for 15 has been found.

1

Data Structures and Programming
Techniques

70

Example Insertion (cont’d)

9

8

25

6

7

10

4 31

Data Structures and Programming
Techniques

71

15

Example Insertion

9

8

25

6

7

10

4 31

Data Structures and Programming
Techniques

72

15

Let us now insert the key 12 in the heap.

Example Insertion (cont’d)

9

8

25

6

7

10

4 31

Data Structures and Programming
Techniques

73

15

A new empty leaf is added to the tree at the first available place in the bottom level.

Example Insertion (cont’d)

9

8

2

56

7

10

4 31

Data Structures and Programming
Techniques

74

15

5 is copied down.

Example Insertion (cont’d)

9 8 2

56

7

10

4 31

Data Structures and Programming
Techniques

75

15

8 is copied down.

Example Insertion (cont’d)

9 8 2

56

7

10

4 31

Data Structures and Programming
Techniques

76

15

Now a place for 12 has been found.

12

Implementation of Priority Queues
Using Heaps

• Let us now develop a third implementation of
the Priority Queue ADT using heaps
implemented by the sequential representation
of binary trees.

Data Structures and Programming
Techniques

77

The Priority Queue ADT

• A priority queue is a finite collection of items for
which the following operations are defined:
– Initialize the priority queue, PQ, to the empty priority

queue.

– Determine whether or not the priority queue, PQ, is
empty.

– Determine whether or not the priority queue, PQ, is
full.

– Insert a new item, X, into the priority queue, PQ.

– If PQ is non-empty, remove from PQ an item X of
highest priority in PQ.

Data Structures and Programming
Techniques

78

The Priority Queue Data Types

/* This is the file “PQTypes.h” */

#define MAXCOUNT 10

typedef int PQItem;

typedef PQItem PQArray[MAXCOUNT+1];

typedef struct {

int Count;

PQArray ItemArray;

} PriorityQueue;

Data Structures and Programming
Techniques

79

The Priority Queue Interface File

/* this is the file “PQInterface.h” */

#include “PQTypes.h”

/* defines types PQItem and PriorityQueue */

void Initialize (PriorityQueue *);

int Empty (PriorityQueue *);

int Full (PriorityQueue *);

void Insert (PQItem, PriorityQueue *);

PQItem Remove (PriorityQueue *);

Data Structures and Programming
Techniques

80

The Priority Queue Implementation
File

/* This is the file “PQImplementation.c” */

#include “PQInterface.h”

void Initialize(PriorityQueue *PQ)

{

PQ->Count=0;

}

int Empty(PriorityQueue *PQ)

{

return(PQ->Count==0);

}

int Full(PriorityQueue *PQ)

{

return(PQ->Count==MAXCOUNT);

}

Data Structures and Programming
Techniques

81

The Priority Queue Implementation
File (cont’d)

void Insert(PQItem Item, PriorityQueue *PQ)

{

int ChildLoc;

int ParentLoc;

(PQ->Count)++;

ChildLoc=PQ->Count;

ParentLoc=ChildLoc/2;

while (ParentLoc != 0){

if (Item <= PQ->ItemArray[ParentLoc]){

PQ->ItemArray[ChildLoc]=Item;

return;

} else {

PQ->ItemArray[ChildLoc]=PQ->ItemArray[ParentLoc];

ChildLoc=ParentLoc;

ParentLoc=ParentLoc/2;

}

}

PQ->ItemArray[ChildLoc]=Item;

}

Data Structures and Programming
Techniques

82

Notes

• The previous algorithm first introduces a new
empty node in the first available position in
the complete binary tree.

• Then, it propagates this empty node upwards
on the path towards the root, until the correct
location is found where the new value can be
inserted without violating the heap property.

Data Structures and Programming
Techniques

83

The Priority Queue Implementation
File (cont’d)

PQItem Remove(PriorityQueue *PQ)

{

int CurrentLoc;

int ChildLoc;

PQItem ItemToPlace;

PQItem ItemToReturn;

if(Empty(PQ)) return;

ItemToReturn=PQ->ItemArray[1];

ItemtoPlace=PQ->ItemArray[PQ->Count];

(PQ->Count)--;

CurrentLoc=1;

ChildLoc=2*CurrentLoc;

Data Structures and Programming
Techniques

84

The Priority Queue Implementation
File (cont’d)

while (ChildLoc <= PQ->Count){

if (ChildLoc < PQ->Count){

if (PQ->ItemArray[ChildLoc+1] > PQ->ItemArray[ChildLoc]){

ChildLoc++;

}

}

if (PQ->ItemArray[ChildLoc] <= ItemToPlace){

PQ->ItemArray[CurrentLoc]=ItemToPlace;

return(ItemToReturn);

} else {

PQ->ItemArray[CurrentLoc]=PQ->ItemArray[ChildLoc];

CurrentLoc=ChildLoc;

ChildLoc=2*CurrentLoc;

}

}

PQ->ItemArray[CurrentLoc]=ItemToPlace;

return(ItemToReturn);

}

Data Structures and Programming
Techniques

85

Comments on the Remove Function

9 8

2567

1 4 3

The Remove function optimizes our earlier method by moving 9, 7 and
4 upward to make a hole where 3 will come to be inserted.

Data Structures and Programming
Techniques

86

Complexity of Removing an Item from
a Heap

• To remove an item from a heap H, we must delete the last leaf L in
level order, and then reheapify the tree that results from replacing
the root’s value with L’s value V.

• During reheapification, we repeatedly exchange the value V with
the larger values of the children nodes on some path from the root
downward toward V’s final resting place.

• The longest possible path for these pairwise exchanges is a path
from the root to some leaf on the bottommost row of H.

• The longest path from the root to a bottom leaf is the height of H
(equivalently, the level number of the bottom row in H).

• For a complete binary tree with 𝑛 items, the height is given by
𝐥𝐨𝐠𝟐 𝒏 i.e., the largest integer smaller than or equal to 𝐥𝐨𝐠𝟐 𝒏 .

• Therefore, removal of an item from a heap takes 𝑶(𝐥𝐨𝐠𝒏) time.

Data Structures and Programming
Techniques

87

Proposition

• A heap 𝑇 storing 𝑛 entries has height ℎ =
⌊log 𝑛⌋.

• Proof?

Data Structures and Programming
Techniques

88

Proof

• From the fact that 𝑇 is a complete binary tree,
we know that there are 2𝑖 nodes in level 𝑖, for
0 ≤ 𝑖 ≤ ℎ − 1, and level ℎ has at least 1 node.

• Thus, the number of nodes of 𝑇 is at least

1 + 2 + 4 +⋯+ 2ℎ−1 + 1 = 2ℎ − 1 + 1

= 2ℎ

Data Structures and Programming
Techniques

89

Proof (cont’d)

• Level ℎ has at most 2ℎ nodes, and thus the
number of nodes of 𝑇 is at most

1 + 2 + 4 +⋯+ 2ℎ−1 + 2ℎ = 2ℎ+1 − 1.

• Since the number of nodes is equal to the
number of entries 𝑛, we obtain 2ℎ ≤ 𝑛 and
𝑛 ≤ 2ℎ+1 − 1.

Data Structures and Programming
Techniques

90

Proof (cont’d)

• Thus, by taking logarithms of both sides of
these two inequalities, we see that ℎ ≤ log 𝑛
and log 𝑛 + 1 − 1 ≤ ℎ.

• Since ℎ is an integer, the two inequalities
above imply that ℎ = ⌊log 𝑛⌋.

Data Structures and Programming
Techniques

91

Complexity of Inserting an Item in a
Heap

• Similarly, an insertion can cause pairwise
exchanges of node values to occur along a
path from a leaf in the bottom row upward all
the way to the root.

• Thinking in a similar way, we can see that
insertion can also be done in 𝑶(𝐥𝐨𝐠𝒏) time.

Data Structures and Programming
Techniques

92

Complexity of Making a Heap

Data Structures and Programming
Techniques

93

.

. . .

. . .

1

2 3

74 5 6

2𝑙 2𝑙 + 1 2𝑙+1 − 2 2𝑙+1 − 1

Level 0

Level 𝑙

Level 1

Level 2

Complexity of Making a Heap (cont’d)

• Suppose the tree we are considering is like the
one on the previous slide and has 𝑙 levels.

• An item at level 𝑖 could be exchanged with
children along any downward path at most (𝑙 −
𝑖) times before coming to rest.

• The tree contains 2𝑖 nodes on level 𝑖.
• Since each of the 2𝑖 nodes on level 𝑖 could be

exchanged downward at most (𝑙 − 𝑖) times, the
cost of processing the nodes on level 𝑖 is 𝑙 − 𝑖 ∗
2𝑖 .

Data Structures and Programming
Techniques

94

Complexity of Making a Heap (cont’d)

• Therefore, the total number of exchanges needed
to apply the heapifying process to all nodes on all
levels except the bottom level could not exceed
the sum 𝑆 below:

𝑆 = ෍

𝑖=0

(𝑙−1)

𝑙 − 𝑖 ∗ 2𝑖

• 𝑆 can be shown to be less than 2𝑛 (exercise!).

• Therefore the heapifying process has complexity
𝑶 𝒏 .

Data Structures and Programming
Techniques

95

Comparing Running Times of Priority
Queue Operations for the Three

Representations

Priority Queue
Operation

Heap
Representation

Sorted List
Representation

Unsorted Array
Representation

Organize a priority
queue

𝑂(𝑛) 𝑂(𝑛2) 𝑂(1)

Remove highest
priority item

𝑂(log 𝑛) 𝑂(1) 𝑂(𝑛)

Insert a new item 𝑂(log 𝑛) 𝑂(𝑛) 𝑂(1)

Data Structures and Programming
Techniques

96

Heapsort

• If we use the PriorityQueue ADT
implementation developed here to sort an
array (as we have done in the past with the
other two representations), then we have a
version of the sorting algorithm heapsort.

• While sorting using the other representations
of priority queues takes time 𝑂(𝑛2), heapsort
can be shown to take time 𝑶(𝒏𝐥𝐨𝐠𝒏).

Data Structures and Programming
Techniques

97

Expression Trees

• Expression trees (δένδρα εκφράσεων) are
binary trees used to represent algebraic
expressions formed with binary operators.

• Example: the tree on the next slide is an
expression tree for the following algebraic
expression: (𝑏2 − 4 ∗ 𝑎 ∗ 𝑐)/(2 ∗ 𝑎)

Data Structures and Programming
Techniques

98

Example (cont’d)

/

− *

2 a^

b 2

*

* c

4 a
Data Structures and Programming

Techniques
99

Parse Trees

• Compilers parse algebraic expressions (and, in
general, program statements) and build parse
trees (δένδρα συντακτικής ανάλυσης) such as
the expression tree of the previous example.

• Parse trees are then traversed by code
generators to produce assembly code.

Data Structures and Programming
Techniques

100

Traversing Binary Trees

• A traversal of a tree is a process that visits
each node in the tree exactly once in some
particular order.

• Three popular traversal orders for binary trees
are preorder, inorder and postorder
(προδιατεταγμένη, ενδοδιατεταγμένη και
μεταδιατεταγμένη διάταξη).

Data Structures and Programming
Techniques

101

Traversal Orders for Binary Trees

PreOrder InOrder PostOrder

Visit the root Traverse left subtree in
InOrder

Traverse left subtree in
PostOrder

Traverse left subtree in
PreOrder

Visit the root Traverse right subtree in
PostOrder

Traverse right subtree in
PreOrder

Traverse right subtree in
InOrder

Visit the root

Data Structures and Programming
Techniques

102

Example

• If, when we visit a node, we print the character
contained in the node, then, for the above
example tree, we have:
– PreOrder: +a b
– InOrder: a+b
– PostOrder: ab+

+

a b

Data Structures and Programming
Techniques

103

Example

/

− *

2 a^

b 2

*

* c

4 a
Data Structures and Programming

Techniques
104

Example (cont’d)

• PreOrder: / – ^ b 2 * * 4 a c * 2 a
• InOrder: b ^ 2 – 4 * a * c / 2 * a
• PostOrder: b 2 ^ 4 a * c * – 2 a * /

• The preorder traversal of an expression tree gives the
prefix (προθεματική) representation of the expression.

• The postorder traversal of an expression tree gives the
postfix (μεταθεματική) representation of the expression.

• The inorder traversal of an expression tree gives the
infix(ενδοθεματική) representation of the expression
without parentheses.

Data Structures and Programming
Techniques

105

Prefix Representation

• The prefix expression for a single operand
A is A itself.

• The prefix expression for (𝐸1) 𝜃 (𝐸2) is 𝜃𝑃1𝑃2
where 𝑃1 and 𝑃2 are the prefix expressions for 𝐸1
and 𝐸2 respectively.

• Note that no parentheses are necessary in the
prefix expression, since we can scan the prefix
expression 𝜃𝑃1𝑃2 and uniquely identify 𝑃1 as the
shortest (and only) prefix of 𝑃1𝑃2 that is a legal
prefix expression.

Data Structures and Programming
Techniques

106

Postfix Representation

• The postfix expression for a single operand
A is A itself.

• The postfix expression for (𝐸1) 𝜃 (𝐸2) is 𝑃1𝑃2 𝜃
where 𝑃1 and 𝑃2 are the postfix expressions for
𝐸1 and 𝐸2 respectively.

• Note that no parentheses are necessary in the
postfix expression, since we can deduce what
𝑃2 is by looking for the shorter suffix of 𝑃1𝑃2 that
is a legal postfix expression.

Data Structures and Programming
Techniques

107

Infix Representation

• Question: What is the algorithm for producing
an infix representation with parentheses of a
given arithmetic expression represented by an
expression tree?

Data Structures and Programming
Techniques

108

Traversals Using the Linked
Representation of Binary Trees

• We can declare the type for tree nodes to use
in the linked representation as follows:

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;

Data Structures and Programming
Techniques

109

Example Expression Tree

x y

−

+

z

Data Structures and Programming
Techniques

110

Its Linked Representation

LLink RLink

LLink

LLink LLink

LLinkRLink RLink

RLink RLink

SymbolSymbol

Symbol Symbol

Symbol

..

....

z

+

x y

Data Structures and Programming
Techniques

111

−

The Linked Representation

• The linked representation of binary trees
presented in the previous example can also be
used when we consider non-empty proper
binary trees (extended trees).

• In this case, NULL links represent the special
external nodes we denote by a square.

• In the next lecture we will also see the alternative
representation where external nodes are
represented by a special dummy node.

Data Structures and Programming
Techniques

112

Traversals Using the Linked
Representation (cont’d)

• Let us define the folowing enumeration type:

typedef enum {PreOrder, InOrder, PostOrder} OrderOfTraversal;

• We can now write a general recursive function
to perform traversals in the various traversal
orders.

Data Structures and Programming
Techniques

113

Generalized Recursive Traversal
Function

void Traverse(TreeNode *T, OrderOfTraversal TraversalOrder)

{

if (T!=NULL){

if (TraversalOrder==PreOrder){

Visit(T);

Traverse(T->LLink, PreOrder);

Traverse(T->RLink, PreOrder);

} else if (TraversalOrder==InOrder){

Traverse(T->LLink, InOrder);

Visit(T);

Traverse(T->RLink, InOrder);

} else if (TraversalOrder==PostOrder){

Traverse(T->LLink, PostOrder);

Traverse(T->RLink, PostOrder);

Visit(T);

}

}

}

Data Structures and Programming
Techniques

114

Generalized Recursive Traversal
Function (cont’d)

void Visit(TreeNode *T)

{

printf("%c\n", T->Symbol);

}

Data Structures and Programming
Techniques

115

The Main Program

#include <stdio.h>

#include <stdlib.h>

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;

typedef enum {PreOrder, InOrder, PostOrder} OrderOfTraversal;

/* code for Visit */

/* code for Traverse */

int main(void)

{

TreeNode *T;

/* code to construct a binary tree to which T points */

Traverse(T, PreOrder);

}

Data Structures and Programming
Techniques

116

Using a Stack

• We can use the linked representation of
binary trees and the stack ADT to write non-
recursive traversal functions.

• A stack is used to hold pointers to subtrees
awaiting further traversal.

Data Structures and Programming
Techniques

117

PreOrder Traversal of an Expression
Tree Using a Stack

#include <stdio.h>

#include “StackInterface.h”

void PreOrderTraversal(TreeNode *T)

{

Stack S;

TreeNode *N;

InitializeStack(&S);

Push(T,&S);

while (!Empty(&S)){

Pop(&S, &N);

if (N!=NULL){

printf(“%c\n”, N->Symbol);

Push(N->RLink, &S);

Push(N->LLink, &S);

}

}

}

Data Structures and Programming
Techniques

118

Comments

• Note that the stack in the previous function
contains pointers to TreeNode.

• Therefore, to have a working program with
our earlier stack implementations, we need to
change the file “StackTypes.h” as we
show on the next slide.

Data Structures and Programming
Techniques

119

The Stack Data Types

/* This is the new file StackTypes.h */

#define MAXSTACKSIZE 100

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;

typedef TreeNode *ItemType;

typedef struct{

int Count;

ItemType Items[MAXSTACKSIZE];

} Stack;

Data Structures and Programming
Techniques

120

The Main Program

#include <stdio.h>

#include <stdlib.h>

#include “StackInterface.h”

/* code for PreOrderTraversal */

int main(void)

{

TreeNode *T;

/* code to construct a binary tree to which T points*/

PreOrderTraversal(T);

}

Data Structures and Programming
Techniques

121

Using a Queue

• We can use the linked representation of
binary trees and the ADT Queue to write a
non-recursive function that prints the nodes
of the tree in level order.

Data Structures and Programming
Techniques

122

Level Order Binary Tree Traversal Using
Queues

#include <stdio.h>

#include “QueueInterface.h”

void LevelOrderTraversal(TreeNode *T)

{

Queue Q;

TreeNode *N;

InitializeQueue(&Q);

Insert(T, &Q);

while (!Empty(&Q)){

Remove(&Q, &N);

if (N!=NULL){

printf(“%c\n”, N->Symbol);

Insert(N->LLink, &Q);

Insert(N->RLink, &Q);

}

}

}

Data Structures and Programming
Techniques

123

Comments

• Note that the queue in the previous function
contains pointers to TreeNode.

• Therefore, to have a working program with
our earlier queue implementations, we need
to change the file “QueueTypes.h” as we
show on the next slide.

Data Structures and Programming
Techniques

124

The Queue Data Types

/* This is the new file QueueTypes.h */

#define MAXQUEUESIZE 100

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;

typedef TreeNode *ItemType;

typedef struct {

int Count;

int Front;

int Rear;

ItemType Items[MAXQUEUESIZE];

} Queue;

Data Structures and Programming
Techniques

125

The Main Program

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

/* code for LevelOrderTraversal */

int main(void)

{

TreeNode *T;

/* code to construct a binary tree to which T points*/

LevelOrderTraversal(T);

}

Data Structures and Programming
Techniques

126

The Abstract Data Type Binary Tree

• We can now define the ADT Binary Tree with the following
operations:
– Create: create an empty binary tree.
– IsEmpty: return true if the tree is empty, otherwise return false.
– MakeTree(Root, Left, Right): create a binary tree with Root as

the root element and Left (resp. Right) as the left (resp. right)
subtree.

– Delete: delete the tree by freeing all its nodes.
– PreOrder, InOrder, PostOrder, LevelOrder: traverse the tree

and visit its nodes in the respective order.
– Print: print the tree using an intuitive representation
– Height: return the height of the tree.
– Size: return the number of elements in the tree.

Data Structures and Programming
Techniques

127

The ADT Binary Tree (cont’d)

• For some of the operations, we have already
shown how to implement them.

• The implementation of the remaining
operations is left as an exercise.

Data Structures and Programming
Techniques

128

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.
– Chapter 9. Sections 9.1 to 9.6.

• R. Sedgewick. Αλγόριθμοι σε C.

Κεφ. 5 και 9.

• The formal propositions we have seen appear in
the following book:
– M. T. Goodrich, R. Tamassia and D. Mount. Data

Structures and Algorithms in C++. 2nd edition. John
Wiley and Sons, 2011.

Data Structures and Programming
Techniques

129

