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Trees

• Trees (δένδρα) are one of the most important data 
structures in Computer Science.

• Examples of trees:
– Directory structure
– Search trees (for stored information associated with search 

keys e.g., in relational databases)
– Parse trees (in compilers)
– Search trees (for problem solving in Artificial Intelligence)
– Game trees (in Artificial Intelligence)
– Decision trees (in Artificial Intelligence)
– Heaps (for implementing priority queues)
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Formal Definition of Tree

• A (rooted) tree 𝑇 is a set of nodes storing 
elements in a parent-child relationship with 
the following properties:

– If 𝑇 is nonempty, it has a special node, called the 
root of 𝑇, that has no parent.

– Each node 𝑣 of T different from the root has a 
unique parent node 𝑤; every node with parent 𝑤
is a child of 𝑤.

• The empty tree is one which has no nodes.
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Terminology

• An edge of tree 𝑇 is a pair of nodes (𝑢, 𝑣) such that 𝑢 is a parent of 𝑣, or vice 
versa.

• A sequence of nodes that are connected by edges is called a path. The length of a 
path is the number of its edges.

• If we travel downwards along the edges that start at a node e.g., R, we arrive at R’s 
two children S and T.

• Two nodes that are children of the same parent are called siblings.
• The descendants of a node consist of the nodes that can be reached by travelling 

downwards along any path starting at the node.
• If we travel upwards from node e.g., S, we find the node R which is the parent of S.
• The ancestors of a node consist of the nodes that can be reached by travelling 

upwards along paths towards the root.
• If a node has no children, it is called a leaf or external node.
• If a node has children, then it is called an internal node. 
• The root is an internal  or external node depending on whether it has children.
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Terminology (cont’d)

• The nodes of a tree can be arranged in levels.
• The root is at level 0. The children of the root are at level 1, 

their children are at level 2 and so on.
• We often say depth instead of level.
• In a tree, there is exactly one path from the root R to each 

descendant of R.
• The length of the path from the root to a node is equal to 

the level or depth of the node.
• The largest depth of any node in a tree is called the height

of the tree.
• We can use spatial terminology to refer to parts of a tree. 

For example, left child or right child or middle child.
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Terminology (cont’d)

• The subtree of 𝑇 rooted at a node 𝑣 is the tree 
consisting of all descendants of 𝑣 including 𝑣
itself.

• A tree is ordered if there is a linear ordering 
defined for the children of each node; that is, we 
can identify children of a node as being the first, 
the second and so on.

• Ordered trees are usually drawn with siblings 
arranged from left to right, corresponding to their 
linear relationship.
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Proposition

• Let 𝑇 be a tree with 𝑛 nodes, and let 𝑐𝑝
denote the number of children of a node 𝑝 of 
𝑇. Then σ𝑝 𝑐𝑝 = 𝑛 − 1.

• Proof?
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Proof

• Each node of 𝑇 with the exception of the root 
is a child of another node, and thus 
contributes one unit to the above sum.
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Binary Trees

• A binary tree (δυαδικό δένδρο) is a tree in which:
– Each node has at most two children and stores an item.
– Each child node is labelled as being either a left child or a 

right child.
– A left child precedes a right child in the ordering of 

children of a node.

• Recursive definition: A binary tree is either the empty 
tree or consists of:
– A node 𝑟, called the root of 𝑇 and storing an item.
– A binary tree, called the left subtree of 𝑇 .
– A binary tree, called the right subtree of 𝑇 .
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Example: a Binary Tree
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Example: a Different Binary Tree
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Complete Binary Trees

• A binary tree with height ℎ is a complete binary tree
(πλήρες δυαδικό δένδρο) if levels 0,1, 2, … , ℎ −
1 have the maximum number of nodes possible 
(namely, level 𝑖 has 2𝑖 nodes, for 0 ≤ 𝑖 ≤ ℎ − 1) and 
the nodes at level ℎ fill this level from left to right.

• In other words, in a complete binary tree, leaves are on 
either a single level or on two adjacent levels such that 
the leaves on the bottommost level are placed as far 
left as possible. Additionally, all levels except possibly 
the bottommost one are completely filled with nodes.
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Example: complete binary tree
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Example: not complete binary tree
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Example: not complete binary tree
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Proper Binary Trees

• A binary tree is called proper or full (γνήσιο) if 
each node has either zero or two children.

• A binary tree that is not proper is called 
improper.

• In a proper binary tree, each internal node has 
exactly two children.
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Example: proper binary tree
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Example: improper binary tree
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Extended Binary Trees

• Often, we view a binary tree as a non-empty proper binary 
tree. In this case, we draw each internal node of a binary 
tree as having exactly two children. Each external node is 
special: it has no children and it is represented by a square 
symbol.

• In the literature, the term extended (επεκταμένο) binary 
tree is also used for this case.

• This view of binary trees simplifies the programming of 
search and update functions (in a linked representation of 
the tree external nodes are represented by null links), and 
also the statement of relevant theoretical results.

• This view of binary trees also clarifies cases where a node 
has one child regarding whether it is a left or a right one.

Data Structures and Programming 
Techniques

20



Example
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Level Order of Nodes in a Tree

• If we number the nodes of a tree level-by-
level and, in each level, going from left to 
right, we have the level order (διάταξη 
επιπέδου) of the nodes of the tree.
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Example
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Nodes of a Complete Binary Tree

• Question: How many nodes does a complete 
binary tree have at each level?
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Nodes of a Complete Binary Tree

• Answer: At most

– 20 = 1 at level 0.

– 21 = 2 at level 1.

– 22 = 4 at level 2.

– …

– 2𝑘 at level 𝑘.
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Properties of Binary Trees

• Let 𝑇 be a non-empty binary tree, and let 
𝑛, 𝑛𝐼 , 𝑛𝐸 and ℎ denote the number of nodes, 
number of internal nodes, number of external 
nodes, and height of the tree, respectively. 
Then 𝑇 has the following properties:
1. ℎ + 1 ≤ 𝑛 ≤ 2ℎ+1 − 1

2. 1 ≤ 𝑛𝐸 ≤ 2ℎ

3. ℎ ≤ 𝑛𝐼 ≤ 2ℎ − 1

4. log(𝑛 + 1) − 1 ≤ ℎ ≤ 𝑛 − 1
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Proof

• Let us prove (2) first. The lower bound is easy 
to see since the simplest non-empty binary 
tree has a single node, the root. The upper 
bound is reached when we have each node at 
each level of the tree having exactly two 
children.
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Proof (cont’d)

• Let us now prove (3). The case that gives us the lower bound 
is a tree like the following where the internal nodes are ℎ in 
number:
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Proof (cont’d)

• The tree that gives us the upper bound is 
when we have each node at each level of the 
tree having exactly two children. In this case, 
the number of internal nodes is:

1 + 2 + 22 +⋯+ 2ℎ−1 = ෍

𝑖=0

ℎ−1

2𝑖 =
2ℎ − 1

2 − 1

= 2ℎ − 1
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Proof (cont’d)

• To prove (1) simply add up the inequalities of 
(2) and (3).

• To prove (4), rewrite (1) and then take 
logarithms of each term.
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Properties of Binary Trees (cont’d)

• Also, if 𝑇 is proper, then it has the following 
properties:

1. 2ℎ + 1 ≤ 𝑛 ≤ 2ℎ+1 − 1

2. ℎ + 1 ≤ 𝑛𝐸 ≤ 2ℎ

3. ℎ ≤ 𝑛𝐼 ≤ 2ℎ − 1

4. log(𝑛 + 1) − 1 ≤ ℎ ≤
𝑛−1

2

5. 𝑛𝐸 = 𝑛𝐼 + 1
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Proof

• The lower bounds of (2) and (3) can be seen from the 
following tree which has ℎ internal nodes and ℎ + 1 external 
nodes:
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Proof (cont’d)

• The upper bounds for (2) and (3) can be seen 
from the previous proposition since the trees 
used in the proofs there are proper.

• (1) and (4) can then be proved as in the 
previous proposition.
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Proof (cont’d)

• We can prove (5) using induction. For the base case, 
consider a tree consisting of a single root node. In this 
case we have 1 external node and 0 internal nodes so 
the relationship holds.

• If, on the other hand, we have a tree with two or more 
nodes, then the root has two subtrees. Since these 
subtrees are smaller than the original tree, we may 
assume they satisfy the relationship. Thus each subtree
has one more external node than internal nodes. 
Between the two of these subtrees, there are two 
more external nodes than internal nodes. But the root 
is an internal node. So in total we have one more 
external node than internal nodes.
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How Do We Represent a Binary Tree?
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A Sequential Binary Tree 
Representation

• If a complete binary tree has n nodes then its 
contiguous sequential representation is an array 
A[0:n] as follows (for the previous example n=12). Note 
that the array stores the information on the tree nodes 
using level order.

IGECAJFBKDH LA:

1 63 4 52 7 8 9 10 11 12
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How to Find Nodes

To Find: Use: Provided:

The left child of 𝐴[𝑖] 𝐴[2𝑖] 2𝑖 ≤ 𝑛

The right child of 𝐴[𝑖] 𝐴[2𝑖 + 1] 2𝑖 + 1 ≤ 𝑛

The parent of 𝐴[𝑖] 𝐴[𝑖/2] 𝑖 > 1

The root 𝐴[1] A is nonempty

Whether 𝐴 𝑖 is a leaf True 2𝑖 > 𝑛
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Sequential Representation (cont’d)

• The sequential representation can also be 
used in the case that a binary tree is not 
complete.

• In this case there will be empty cells in the 
respective array so such a representation can 
be wasteful.
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Heaps

• A heap (σωρός) is a complete binary tree with 
values stored in its nodes such that no child has a 
value bigger than the value of its parent (i.e., the 
value of the parent of each node is greater than 
or equal the value of the node itself).

• Some authors call this a max-heap (σωρός
μεγίστων).

• We can also define a min-heap (σωρός 
ελαχίστων) when the relationship between the 
value of a parent and the value of its child is “less 
than or equal”.
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Example
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Heaps and Priority Queues

• A heap provides a representation for a priority 
queue.

• Reminder: A priority queue is an ADT having the 
property that items are removed in the order of 
highest-to-lowest priority regardless of the order 
in which they were inserted.

• If a heap is used to represent a priority queue, it 
is easy to find the item of highest priority, since 
it sits at the root of the tree.

• If we remove the value at the root, we have to 
restructure the tree to be a heap again.
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Restructuring the Tree

• The algorithm for restructuring the tree is as 
follows:

1. We delete the rightmost leaf on the bottom row 
(this is the last leaf in level order).

2. We place the deleted node’s value into the root 
node.

3. We restore the heap property of the tree by starting 
at the root node and repeatedly exchanging its value 
with the larger of the values of its children, until no 
more exchanges are possible.
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Example

9 8

2567

1 4 3

Let us restore the heap property  in the above tree.
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Restructuring the Tree

9 8

2567

1 4 3

Delete the node with value 3 and insert this value into the root.
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Restructuring the Tree  (cont’d)

9 8

2567

1 4

3

Interchange 3 with 9.
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Restructuring the Tree (cont’d)
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Interchange 3 with 7.
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Restructuring the Tree (cont’d)

9
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Interchange 3 with 4.
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Restructuring the Tree (cont’d)

9

8

256

7

1

4

3

The above  tree has the heap property restored.
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Heapifying a Complete Binary Tree

• To organize the values in the nodes of an 
initially unorganized complete binary tree H 
into a heap, apply the following steps (the 
heapification algorithm) to each of the 
internal nodes of H in reverse level order.
– Let N be such a node with value V. If N has no 

children then do nothing. If N has children then 
select the child M with the highest value V1. If 𝑉 ≥
𝑉1, do nothing. Otherwise, interchange V1 with V.

– Repeat the same process with node M.

Data Structures and Programming 
Techniques

49



Example

9
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Let us heapify the above tree.
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Heapifying the Tree

9

8
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The internal nodes in reverse level order are 3, 7, 5, 4 and 2. 

1
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Heapifying the Tree

9
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We start with the node with value 3. Exchange 3 with 6.

1
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Heapifying the Tree (cont’d)

9

8

2

5
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Since the node with value 3 has no children, we have nothing more to 
do in this subtree.
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Heapifying the Tree (cont’d)

9
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31

We continue with the subtree rooted at 7. We exchange 7 with 9.
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Heapifying the Tree (cont’d)

9 8

2

5

6

7

10

4

31

There is nothing more to do in this subtree.
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Heapifying the Tree (cont’d)

9 8
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We continue with the subtree rooted at 5. We exchange 5 with 10.

1
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Heapifying the Tree (cont’d)

9 8

2

56

7

104

3

We have nothing more to do in this subtree. We continue with the 
subtree rooted at 4. We exchange 4 with 9.

1
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Heapifying the Tree (cont’d)

9
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We now exchange 4 with 7.
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Heapifying the Tree (cont’d)

9

8

2

567

10

4 3

We have nothing more to do in this subtree. We now consider the root 
having value 2.
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Heapifying the Tree (cont’d)

9
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We exchange 2 with 10.
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Heapifying the Tree (cont’d)

9

8

2
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10

4 3

We exchange 2 with 8.

1
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Heapifying the Tree (cont’d)

9 8

2567

10

4 3

There is nothing more to do in this subtree. The tree has now been 
turned into a heap.

1
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Heapifying the Tree (cont’d)

• The order the nodes are processed guarantees 
that subtrees rooted at the children of node 𝒊
are heaps before the algorithm of 
heapification runs at that node.
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Insertion of a New Element in a Heap

• Let us now see how to add a new element to a 
heap.

• We start by adding a new empty node as a 
leaf at the first available place on the bottom 
level.

• Then, we reheapify the tree starting at the 
parent of this empty node trying to find the 
correct place of the new element.

Data Structures and Programming 
Techniques

64



Example Insertion

9 8

2567

10

4 3

Let us insert the new element 15 in the heap.

1
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Example Insertion (cont’d)

9 8

2567

10

4 3

A new leaf is added to the tree at the first available position at the 
bottom level.

1
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Example Insertion (cont’d)

9 8

2567

10

4 3

Values on the path from the new leaf node to the root are copied down 
until a place for the key 15 is found.

1
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Example Insertion (cont’d)

9 8

25
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4 3

6 is copied down.

1
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Example Insertion (cont’d)
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9 is copied down.

1
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Example Insertion (cont’d)
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10 is copied down. Now a place for 15 has been found.

1
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Example Insertion (cont’d)
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4 31
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Example Insertion
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Example Insertion (cont’d)
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A new empty leaf is added to the tree at the first available place in the bottom level.



Example Insertion (cont’d)

9

8

2

56

7
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4 31
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Example Insertion (cont’d)

9 8 2

56

7
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4 31
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Example Insertion (cont’d)

9 8 2

56

7

10

4 31
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Now a place for 12 has been found.
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Implementation of Priority Queues 
Using Heaps

• Let us now develop a third implementation of 
the Priority Queue ADT using heaps 
implemented by the sequential representation 
of binary trees.
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The Priority Queue ADT

• A priority queue is a finite collection of items for 
which the following operations are defined:
– Initialize the priority queue, PQ, to the empty priority 

queue.

– Determine whether or not the priority queue, PQ, is 
empty.

– Determine whether or not the priority queue, PQ, is 
full.

– Insert a new item, X, into the priority queue, PQ.

– If PQ is non-empty, remove from PQ an item X of 
highest priority in PQ.
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The Priority Queue Data Types

/* This is the file “PQTypes.h” */

#define MAXCOUNT 10

typedef int PQItem;

typedef PQItem PQArray[MAXCOUNT+1];

typedef struct {

int Count;

PQArray ItemArray;

} PriorityQueue;
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The Priority Queue Interface File

/* this is the file “PQInterface.h”      */

#include “PQTypes.h”     

/* defines types PQItem and PriorityQueue */

void Initialize (PriorityQueue *);

int Empty (PriorityQueue *);

int Full (PriorityQueue *);

void Insert (PQItem, PriorityQueue *);

PQItem Remove (PriorityQueue *);
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The Priority Queue Implementation 
File

/* This is the file “PQImplementation.c” */

#include “PQInterface.h”

void Initialize(PriorityQueue *PQ)

{

PQ->Count=0;

}

int Empty(PriorityQueue *PQ)

{ 

return(PQ->Count==0);

}

int Full(PriorityQueue *PQ)

{

return(PQ->Count==MAXCOUNT);

}
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The Priority Queue Implementation 
File (cont’d)

void Insert(PQItem Item, PriorityQueue *PQ)

{

int ChildLoc;

int ParentLoc;

(PQ->Count)++;

ChildLoc=PQ->Count;

ParentLoc=ChildLoc/2;

while (ParentLoc != 0){

if (Item <= PQ->ItemArray[ParentLoc]){

PQ->ItemArray[ChildLoc]=Item;

return;

} else {

PQ->ItemArray[ChildLoc]=PQ->ItemArray[ParentLoc];

ChildLoc=ParentLoc;

ParentLoc=ParentLoc/2;

}

}

PQ->ItemArray[ChildLoc]=Item;

}
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Notes

• The previous algorithm first introduces a new 
empty node in the first available position in 
the complete binary tree.

• Then, it propagates this empty node upwards 
on the path towards the root, until the correct 
location is found where the new value can be 
inserted without violating the heap property.
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The Priority Queue Implementation 
File (cont’d)

PQItem Remove(PriorityQueue *PQ)

{

int CurrentLoc;

int ChildLoc;

PQItem ItemToPlace;

PQItem ItemToReturn;

if(Empty(PQ)) return;

ItemToReturn=PQ->ItemArray[1];

ItemtoPlace=PQ->ItemArray[PQ->Count];

(PQ->Count)--;

CurrentLoc=1;

ChildLoc=2*CurrentLoc;
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The Priority Queue Implementation 
File (cont’d)

while (ChildLoc <= PQ->Count){

if (ChildLoc < PQ->Count){

if (PQ->ItemArray[ChildLoc+1] > PQ->ItemArray[ChildLoc]){

ChildLoc++;

}

}

if (PQ->ItemArray[ChildLoc] <= ItemToPlace){

PQ->ItemArray[CurrentLoc]=ItemToPlace;

return(ItemToReturn);

} else {

PQ->ItemArray[CurrentLoc]=PQ->ItemArray[ChildLoc];

CurrentLoc=ChildLoc;

ChildLoc=2*CurrentLoc;

}

}

PQ->ItemArray[CurrentLoc]=ItemToPlace;

return(ItemToReturn);

}
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Comments on the Remove Function

9 8

2567

1 4 3

The Remove function optimizes our earlier method by moving 9, 7 and 
4 upward to make a hole where 3 will come to be inserted.
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Complexity of Removing an Item from 
a Heap

• To remove an item from a heap H, we must delete the last leaf L in 
level order, and then reheapify the tree that results from replacing 
the root’s value with L’s value V.

• During reheapification, we repeatedly exchange the value V with 
the larger values of the children nodes on some path from the root 
downward toward V’s final resting place.

• The longest possible path for these pairwise exchanges is a path 
from the root to some leaf on the bottommost row of H.

• The longest path from the root to a bottom leaf is the height of H
(equivalently, the  level number of the bottom row in H).

• For a complete binary tree with 𝑛 items, the height is given by 
𝐥𝐨𝐠𝟐 𝒏 i.e., the largest integer smaller than or equal to 𝐥𝐨𝐠𝟐 𝒏 .

• Therefore, removal of an item from a heap takes 𝑶(𝐥𝐨𝐠𝒏) time.
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Proposition

• A heap 𝑇 storing 𝑛 entries has height ℎ =
⌊log 𝑛⌋.

• Proof?
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Proof

• From the fact that 𝑇 is a complete binary tree, 
we know that there are 2𝑖 nodes in level 𝑖, for 
0 ≤ 𝑖 ≤ ℎ − 1, and level ℎ has at least 1 node.

• Thus, the number of nodes of 𝑇 is at least

1 + 2 + 4 +⋯+ 2ℎ−1 + 1 = 2ℎ − 1 + 1

= 2ℎ
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Proof (cont’d)

• Level ℎ has at most 2ℎ nodes, and thus the 
number of nodes of 𝑇 is at most

1 + 2 + 4 +⋯+ 2ℎ−1 + 2ℎ = 2ℎ+1 − 1.

• Since the number of nodes is equal to the 
number of entries 𝑛, we obtain 2ℎ ≤ 𝑛 and 
𝑛 ≤ 2ℎ+1 − 1.
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Proof (cont’d)

• Thus, by taking logarithms of both sides of 
these two inequalities, we see that ℎ ≤ log 𝑛
and log 𝑛 + 1 − 1 ≤ ℎ.

• Since ℎ is an integer, the two inequalities 
above imply that ℎ = ⌊log 𝑛⌋.
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Complexity of Inserting an Item in a 
Heap

• Similarly, an insertion can cause pairwise 
exchanges of node values to occur along a 
path from a leaf in the bottom row upward all 
the way to the root.

• Thinking in a similar way, we can see that 
insertion can also be done in 𝑶(𝐥𝐨𝐠𝒏) time.
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Complexity of Making a Heap
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Complexity of Making a Heap (cont’d)

• Suppose the tree we are considering is like the 
one on the previous slide and has 𝑙 levels.

• An item at level 𝑖 could be exchanged  with 
children along any downward path at most (𝑙 −
𝑖) times before coming to rest.

• The tree contains 2𝑖 nodes on level 𝑖.
• Since each of the 2𝑖 nodes on level 𝑖 could be 

exchanged downward at most (𝑙 − 𝑖) times, the 
cost of processing the nodes on level 𝑖 is 𝑙 − 𝑖 ∗
2𝑖 .
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Complexity of Making a Heap (cont’d)

• Therefore, the total number of exchanges needed 
to apply the heapifying process to all nodes on all 
levels except the bottom level could not exceed 
the sum 𝑆 below:

𝑆 = ෍

𝑖=0

(𝑙−1)

𝑙 − 𝑖 ∗ 2𝑖

• 𝑆 can be shown to be less than 2𝑛 (exercise!). 

• Therefore the heapifying process has complexity 
𝑶 𝒏 .
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Comparing Running Times of Priority 
Queue Operations for the Three 

Representations

Priority Queue 
Operation

Heap 
Representation

Sorted List 
Representation

Unsorted Array 
Representation

Organize a priority 
queue

𝑂(𝑛) 𝑂(𝑛2) 𝑂(1)

Remove highest 
priority item

𝑂(log 𝑛) 𝑂(1) 𝑂(𝑛)

Insert a new item 𝑂(log 𝑛) 𝑂(𝑛) 𝑂(1)
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Heapsort

• If we use the PriorityQueue ADT 
implementation developed here to sort an 
array (as we have done in the past with the 
other two representations), then we have a 
version of the sorting algorithm heapsort.

• While sorting using the other representations 
of priority queues takes time 𝑂(𝑛2), heapsort
can be shown to take time 𝑶(𝒏𝐥𝐨𝐠𝒏).
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Expression Trees

• Expression trees (δένδρα εκφράσεων) are 
binary trees used to represent algebraic 
expressions formed with binary operators.

• Example: the tree on the next slide is an 
expression tree for the following  algebraic 
expression: (𝑏2 − 4 ∗ 𝑎 ∗ 𝑐)/(2 ∗ 𝑎)
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Example (cont’d)

/

− *

2 a^

b 2

*

* c

4 a
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Parse Trees

• Compilers parse algebraic expressions (and, in 
general, program statements) and build parse 
trees (δένδρα συντακτικής ανάλυσης) such as 
the expression tree of the previous example.

• Parse trees are then traversed by code 
generators to produce assembly code.
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Traversing Binary Trees

• A traversal of a tree is a process that visits 
each node in the tree exactly once in some 
particular order.

• Three popular traversal orders for binary trees 
are preorder, inorder and postorder
(προδιατεταγμένη, ενδοδιατεταγμένη και
μεταδιατεταγμένη διάταξη).
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Traversal Orders for Binary Trees

PreOrder InOrder PostOrder

Visit the root Traverse left subtree in 
InOrder

Traverse left subtree in 
PostOrder

Traverse left subtree in 
PreOrder

Visit the root Traverse right subtree in 
PostOrder

Traverse right subtree in 
PreOrder

Traverse right subtree in 
InOrder

Visit the root
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Example

• If, when we visit a node, we print the character 
contained in the node, then, for the above 
example tree, we have:
– PreOrder: +a b
– InOrder: a+b
– PostOrder: ab+

+

a b
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Example

/

− *

2 a^

b 2

*

* c

4 a
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Example (cont’d)

• PreOrder: / – ^ b 2 * * 4 a c * 2 a
• InOrder: b ^ 2 – 4 * a * c / 2 * a
• PostOrder: b 2 ^ 4 a * c * – 2 a * /

• The preorder traversal of an expression tree gives the 
prefix (προθεματική) representation of the expression.

• The postorder traversal of an expression tree gives the 
postfix (μεταθεματική) representation of the expression.

• The inorder traversal of an expression tree gives the 
infix(ενδοθεματική) representation of the expression 
without parentheses.
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Prefix Representation

• The prefix expression for a single operand 
A is A itself.

• The prefix expression for (𝐸1) 𝜃 (𝐸2) is 𝜃𝑃1𝑃2
where 𝑃1 and 𝑃2 are the prefix expressions for 𝐸1
and 𝐸2 respectively.

• Note that no parentheses are necessary in the 
prefix expression, since we can scan the prefix 
expression 𝜃𝑃1𝑃2 and uniquely identify 𝑃1 as the 
shortest (and only) prefix of 𝑃1𝑃2 that is a legal 
prefix expression.
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Postfix Representation

• The postfix expression for a single operand 
A is A itself.

• The postfix expression for (𝐸1) 𝜃 (𝐸2) is 𝑃1𝑃2 𝜃
where 𝑃1 and 𝑃2 are the postfix expressions for 
𝐸1 and 𝐸2 respectively.

• Note that no parentheses are necessary in the 
postfix expression, since we can deduce what 
𝑃2 is by looking for the shorter suffix of 𝑃1𝑃2 that 
is a legal postfix expression.
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Infix Representation

• Question: What is the algorithm for producing 
an infix representation with parentheses of a 
given arithmetic expression represented by an 
expression tree?
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Traversals Using the Linked 
Representation of Binary Trees

• We can declare the type for tree nodes to use 
in the linked representation as follows:

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;
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Example Expression Tree

x y

−

+

z
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Its Linked Representation

LLink RLink

LLink

LLink LLink

LLinkRLink RLink

RLink RLink

SymbolSymbol

Symbol Symbol

Symbol

..

....

z

+

x y
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The Linked Representation

• The linked representation of binary trees 
presented in the previous example can also be 
used when we consider non-empty proper 
binary trees (extended trees).

• In this case, NULL links represent the special 
external nodes we denote by a square.

• In the next lecture we will also see the alternative 
representation where external nodes are 
represented by a special dummy node.
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Traversals Using the Linked 
Representation (cont’d)

• Let us define the folowing enumeration type:

typedef enum {PreOrder, InOrder, PostOrder} OrderOfTraversal;

• We can now write a general recursive function 
to perform traversals in the various traversal 
orders.
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Generalized Recursive Traversal 
Function

void Traverse(TreeNode *T, OrderOfTraversal TraversalOrder)

{   

if (T!=NULL){

if (TraversalOrder==PreOrder){

Visit(T);

Traverse(T->LLink, PreOrder);

Traverse(T->RLink, PreOrder);

} else if (TraversalOrder==InOrder){

Traverse(T->LLink, InOrder);

Visit(T);

Traverse(T->RLink, InOrder);

} else if (TraversalOrder==PostOrder){

Traverse(T->LLink, PostOrder);

Traverse(T->RLink, PostOrder);

Visit(T);

}

}

}
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Generalized Recursive Traversal 
Function (cont’d)

void Visit(TreeNode *T)

{

printf("%c\n", T->Symbol);

}
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The Main Program

#include <stdio.h>

#include <stdlib.h>

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;

typedef enum {PreOrder, InOrder, PostOrder} OrderOfTraversal;

/* code for Visit */

/* code for Traverse */

int main(void)

{

TreeNode *T;

/* code to construct a binary tree to which T points */

Traverse(T, PreOrder);

}
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Using a Stack

• We can use the linked representation of 
binary trees and the stack ADT to write non-
recursive traversal functions.

• A stack is used to hold pointers to subtrees
awaiting further traversal.
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PreOrder Traversal of an Expression 
Tree Using a Stack

#include <stdio.h>

#include “StackInterface.h”

void PreOrderTraversal(TreeNode *T)

{

Stack S;

TreeNode *N;

InitializeStack(&S);

Push(T,&S);

while (!Empty(&S)){

Pop(&S, &N);

if (N!=NULL){

printf(“%c\n”, N->Symbol);

Push(N->RLink, &S);

Push(N->LLink, &S);

}

}

}
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Comments

• Note that the stack in the previous function 
contains pointers to TreeNode.

• Therefore, to have a working program with 
our earlier stack implementations, we need to 
change the file “StackTypes.h” as we 
show on the next slide.
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The Stack Data Types

/* This is the new file StackTypes.h */

#define MAXSTACKSIZE 100

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;

typedef TreeNode *ItemType;

typedef struct{

int Count;

ItemType Items[MAXSTACKSIZE];

} Stack;
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The Main Program

#include <stdio.h>

#include <stdlib.h>

#include “StackInterface.h”

/* code for PreOrderTraversal */

int main(void)

{

TreeNode *T;

/* code to construct a binary tree to which T points*/

PreOrderTraversal(T);

}
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Using a Queue

• We can use the linked representation of 
binary trees and the ADT Queue to write a 
non-recursive function that prints the nodes 
of the tree in level order.
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Level Order Binary Tree Traversal Using 
Queues

#include <stdio.h>

#include “QueueInterface.h”

void LevelOrderTraversal(TreeNode *T)

{

Queue Q;

TreeNode *N;

InitializeQueue(&Q);

Insert(T, &Q);

while (!Empty(&Q)){

Remove(&Q, &N);

if (N!=NULL){

printf(“%c\n”, N->Symbol);

Insert(N->LLink, &Q); 

Insert(N->RLink, &Q);

}

}

}
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Comments

• Note that the queue in the previous function 
contains pointers to TreeNode.

• Therefore, to have a working program with 
our earlier queue implementations, we need 
to change the file “QueueTypes.h” as we 
show on the next slide.
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The Queue Data Types

/* This is the new file QueueTypes.h */

#define MAXQUEUESIZE 100

typedef struct NodeTag{

char Symbol;

struct NodeTag *LLink;

struct NodeTag *RLink;

} TreeNode;

typedef TreeNode *ItemType;

typedef struct {

int Count;

int Front;

int Rear;

ItemType Items[MAXQUEUESIZE];

} Queue;
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The Main Program

#include <stdio.h>

#include <stdlib.h>

#include “QueueInterface.h”

/* code for LevelOrderTraversal */

int main(void)

{

TreeNode *T;

/* code to construct a binary tree to which T points*/

LevelOrderTraversal(T);

}

Data Structures and Programming 
Techniques

126



The Abstract Data Type Binary Tree

• We can now define the ADT Binary Tree with the following 
operations:
– Create: create an empty binary tree.
– IsEmpty: return true if the tree is empty, otherwise return false.
– MakeTree(Root, Left, Right): create a binary tree with Root as 

the root element and Left (resp. Right) as the left (resp. right) 
subtree.

– Delete: delete the tree by freeing all its nodes.
– PreOrder,  InOrder, PostOrder, LevelOrder: traverse the tree 

and visit its nodes in the respective order.
– Print: print the tree using an intuitive representation
– Height: return the height of the tree.
– Size: return the number of elements in the tree.
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The ADT Binary Tree (cont’d)

• For some of the operations, we have already 
shown how to implement them.

• The implementation of the remaining 
operations is left as an exercise.
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C.
– Chapter 9. Sections 9.1 to 9.6.

• R. Sedgewick. Αλγόριθμοι σε C.

Κεφ. 5 και 9.

• The formal propositions we have seen appear in 
the following book:
– M. T. Goodrich, R. Tamassia and D. Mount. Data 

Structures and Algorithms in C++. 2nd edition. John 
Wiley and Sons, 2011.
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