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Abstract—In this paper, we introduce a family of expressive models for qualitative spatial reasoning with directions. The proposed

family is based on the cognitive plausible cone-based model. We formally define the directional relations that can be expressed in each

model of the family. Then, we use our formal framework to study two interesting problems: computing the inverse of a directional

relation and composing two directional relations. For the composition operator, in particular, we concentrate on two commonly used

definitions, namely, consistency-based and existential composition. Our formal framework allows us to prove that our solutions are

correct. The presented solutions are handled in a uniform manner and apply to all of the models of the family.

Index Terms—Spatial databases and GIS, cone-based directional relations, inverse and composition operators.

Ç

1 INTRODUCTION

THE subject of this paper belongs to the broader research
area of Qualitative Spatial Reasoning (QSR). The goal of

QSR is to approach common sense knowledge and reason-
ing about space by using symbolic and not numerical
methods. It is no surprise that QSR has found applications
in many diverse scientific areas that concentrate on building
successful intelligent systems: geographic information
systems (GISs) [1], [2], artificial intelligence [3], [4],
databases [5], [6], and multimedia [7], just to name a few.
Most researchers have concentrated on the three main
aspects of space, namely, topology [8], [3], [1], [4], distance
[2], [9], and orientation [10], [11], [12], [13], [14], [15], [16],
[17]. The uttermost aim in these lines of research is to define
new categories of spatial operators, as well as to build
efficient algorithms for the automatic processing of queries
using such operators.

In this paper, we consider extended objects and concen-
trate on binary directional relations. Such relations describe
how a primary object a is placed relative to a reference object b
by utilizing a coordinate system (for example, object a is
north of object b). Early qualitative models for directional
relations approximate an extended spatial object by a
representative point (most commonly, the centroid) [10],

[2], [12], [16]. Typically, such models partition the space
around the reference object b into a number of mutually
exclusive areas. For instance, the projection-based model
partitions the space by using lines parallel to the axes
(Fig. 1a), whereas the cone-based model partitions the space
by using lines with an origin angle � (Fig. 1b). Depending on
the adopted model, the relation between two objects may
change. For instance, consider Fig. 1: According to the
projection-based model, a is northeast of b (Fig. 1a), whereas,
according to the cone-based model, a is north of b (Fig. 1b).
Later models approximate an object by a representative area
(most commonly, the minimum bounding box (mbb)) and
express directions on these approximations [14], [15].
Unfortunately, models that approximate both the primary
and the reference objects may give misleading directional
relations when objects are overlapping, intertwined, or
horseshoe shaped (for an extended discussion, see [18]).

More recently, Goyal [18] and Skiadopoulos and Kou-
barakis [17], [19] studied a model that expresses the
directional relation by only approximating the reference
object b (using its mbb) while using the exact shape of the
primary object a. Intuitively, this model 1) partitions the
plane around the reference object into nine areas similar to
the projection-based model (these areas correspond to
directional relations such as north, northeast, and so forth)
and 2) records the areas occupied by the primary object.
These areas provide the directional relation between the
primary and the reference objects. For instance, in Fig. 1c,
object a is partly NE and partly E of object b. We denote
this model by Projection-based Directional Relations (PDR).
Clearly, the PDR model offers a more precise and
expressive model than previous approaches that approx-
imate objects by using points or boxes [18].

However, the PDR model is not without weaknesses.
The number of relations that can be expressed in the
model is very large (511 relations). Furthermore, the PDR
model partitions the reference space similar to the
projection-based model by using lines parallel to the axes
(Fig. 1c). Most people do not find this partition natural.
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Typically, people tend to organize surrounding space by
using lines with an origin angle similar to the cone-based
model (Fig. 1b). Hence, most people find the cone-based
partition more intuitive and descriptive. The cognitive
plausibility of the cone-based model has been verified by
studies in the field of cognitive sciences (see, for instance,
[20], [21]). Moreover, the cone-based partition is a typical
approximation for the field of view of the human eye and
camera lenses [22], [23]. For the above reasons, cone-based
models have been used in computer vision [22], [24], robot
navigation [25], and GISs [11], [26].

In this paper, we propose Cone-based Directional Relations
(CDR), an alternative family of directional relation models
that is based on the cognitive plausible cone-based model.
In the CDR family of models, only the reference object is
approximated by its mbb (as in PDR), but the space around
the reference object is partitioned into five areas by using
the cone-based model. The family contains an infinite
number of models. Each model in the CDR family is
identified by a unique value for � ð0� < � < 90�Þ that
defines the origin angle of the space partitioning lines (see
also Fig. 2a). In other words, for each particular application,
by choosing a suitable value for �, we can find an
appropriate model in the CDR family. Moreover, CDR
models result in a set of 31 relations—a significantly smaller
set compared to PDR, which has 511 relations.

We formally define the relations that can be expressed in
the CDR family and focus on two interesting problems:
computing the inverse of a directional relation and
composing two directional relations. The inverse and
composition operations for various kinds of spatial relations
have received considerable attention in the literature [27],
[1], [2], [15], [4], [12]. For the composition operator, in
particular, research has mainly concentrated on two
definitions, namely, existential and consistency-based compo-
sition [8], [28]. Existential composition is the standard
definition of composition from the set theory [8], [28], [15],
[4]. Consistency-based composition is a weaker interpreta-
tion useful in several domains [29], [30].

The inverse and composition operations are used as
mechanisms for inferring new spatial relations from
existing ones. Such mechanisms are important as they are
at the heart of any system that retrieves collections of objects
similarly related to each other by using spatial relations. For
instance, these inference mechanisms are very helpful when
we need to detect inconsistencies in a given set of spatial
relations [16], [4] or preprocess spatial queries and prune
the search space [31]. Inverse and composition are also
essential parts of Relation Algebras [32], [33], [34], so their
formal study is a prerequisite to any algebraic approach to

spatial reasoning. Moreover, composition is often used to
identify classes of relations that have a tractable consistency
problem [27], [4], [35].

The technical contributions of this paper can be

summarized as follows:

. We propose the CDR family of directional relation
models. The relations that can be expressed in each
model of the family are formally defined. CDR
models are based on the cognitive plausible cone-
based model and can be customized to serve a wide
variety of applications. Finally, CDR offers a small
and easy-to-manage set of relations.

. We consider the inverse operation for directional
relations in the CDR family. We present a method to
compute the inverse of a relation and formally prove
its correctness.

. We study the problem of composing two directional
relations of the CDR family. We first present a
method for consistency-based composition. To this
end, we consider progressively more expressive
classes of directional relations and present consis-
tency-based composition algorithms for these
classes. Our theoretical framework allows us to
prove formally that our algorithms are correct.
Finally, we consider the existential definition of
composition. Contrary to consistency-based compo-
sition, we show that the binary relation resulting
from the existential composition of two directional
relations cannot always be expressed using the
relations of the CDR family.

The rest of the paper is organized as follows: Section 2

defines the CDR family of directional relation models. In

Section 3, we study the inverse and composition problem

for the directional relations in the CDR family. Finally,

Section 4 offers conclusions and discusses future research

directions.

2 A FAMILY OF DIRECTIONAL RELATION MODELS

In this section, we present the CDR family of directional

relation models. We consider the euclidean space <2.

Objects are defined as nonempty and bounded sets of

points in <2. Let a be an object. The mbb of object a, denoted

by mbbðaÞ, is the smallest rectangle, aligned with the axes,

that encloses the object (Fig. 2a). Throughout this paper, we

will consider objects that are formed by finite unions of

objects that are homeomorphic to the closed unit disk [17].

This set of objects is denoted by REG�. Objects in REG� can

be disconnected and have holes. However, class REG�
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Fig. 1. Models of directional relations. Fig. 2. Reference tiles and relations.



excludes points, lines, and objects with emanating lines. A
thorough discussion about REG� and the way objects are
modeled in REG� appears in [36], [19].

To define a relation in CDR between a primary object a
and a reference object b, we consider the mbb of object b and
four rays originating from its four vertices. We denote by
r1ðbÞ (respectively, r2ðbÞ, r3ðbÞ, and r4ðbÞ) the ray that
originates from the upper right (respectively, the upper
left, lower left, and lower right) vertex of mbbðbÞ (see also
Fig. 2a). The origin angle of each ray is presented in Fig. 2a.
Note that the origin angle has the same value for all rays
such that the plane is partitioned symmetrically. This angle,
denoted by �, is called the characteristic angle of the model
and can have values in the interval ð0�; 90�Þ.1

Every possible value of � specifies a new model in the
CDR family. Such a model will be denoted by CDRð�Þ. For
instance, CDRð30�Þ denotes the model of CDR, where
� ¼ 30�. Notice that the value of � is fixed within a certain
model CDRð�Þ and is not allowed to vary for different
objects. The analysis that we present in this paper is valid
for any model CDRð�Þ in the CDR family ð0� < � < 90�Þ.
Wherever necessary, in the material that follows, the value
of � appears as a parameter.

The mbb of the reference object b, along with the four
rays, divides the plane into five areas, which we call tiles
(Fig. 2a). The peripheral tiles correspond to the four
directional relations north, west, south, and east. These tiles
will be denoted by NðbÞ, WðbÞ, SðbÞ, and EðbÞ, respectively.
The central area corresponds to the object’s mbb and is
denoted by BðbÞ. Notice that

1. all tiles are closed,
2. all tiles but BðbÞ are unbounded,
3. the union of all five tiles is <2, and
4. two distinct tiles have disjoint interiors but may

share points in their boundaries (for instance, WðbÞ
and BðbÞ share the left side of the mbb of b).

Even though tiles share some points along their borders,
there is no ambiguity in defining relations in the CDR
family because class REG� does not contain objects that
could lie entirely on the borderline (like lines, points, and
objects with emanating lines).

Informally, if a primary object a is included (in the set-
theoretic sense) in tile SðbÞ of some reference object b
(Fig. 2b), then we say that a is south of b and we write a S b.
Similarly, we can define north (N), west (W ), east (E), and
bounding box (B) relations. If a primary object a lies partly in
tile NðbÞ and partly in tile WðbÞ of some reference object b
(Fig. 2c), then we say that a is partly north and partly west of b
and we write a N:W b.

The general definition of a basic directional relation in
our framework is given as follows:.

Definition 1. A basic directional relation is an expression
R1:� � �:Rk, where

1. 1 � k � 5,
2. R1; . . . ; Rk 2 fN;W; S;E;Bg, and
3. Ri 6¼ Rj for every i, j such that 1 � i; j � k, and

i 6¼ j.

A basic directional relation R1:� � �:Rk is called single tile if
k ¼ 1; otherwise, it is called multitile.

Example 1. Expressions S and N :W are basic directional
relations. The first is a single-tile relation, whereas the
second is a multitile. Objects involved in these relations
are shown in Figs. 2b and 2c, respectively.

In order to avoid confusion, we will write the single-tile
elements of a basic directional relation according to the
following order: N , W , S, E, and B. Thus, we always write
N:W :B instead of W:B :N or N:B :W . Moreover, for a
relation such as N:W :B, we will often refer to N , W , and B
as its tiles.

The set of basic directional relations (single or multitile)
in every CDR model contains

P5
i¼1

5
i

� �
¼ 31 elements. We

will use B� to denote this set. Relations in B� are jointly
exhaustive and pairwise disjoint and can be used to
represent definite information about directions. Thus, rela-
tions in B� express precise knowledge like object a is north
of b, denoted by a N b. Using the relations of B� as our basis,
we can define the power set 2B

�
of B�, which contains

231 relations. Elements of 2B
�

are called directional relations
and can be used to represent not only definite but also
indefinite information about directions. Thus, relations in 2B

�

also express imprecise knowledge like object a is either
partly north and partly west or entirely west of object b,
denoted by a fN:W;Wg b. In general, expression a [ni¼1Ri b
denotes that object a is related to b, with some relation
among R1; . . . ; Rn. We will use Q;Q1; Q2; . . . to denote
directional relations and R;R1; R2; . . . to denote basic direc-
tional relations, either single tile or multitile.

Let us now highlight the advantages of the proposed
model.

Cognitive plausibility. CDR models are based on the
cone-based partition of space that is close to the human
perception of direction, as shown by cognitive science
studies [20], [21]. Informally, the cone-based partition is a
typical approximation for the field of view of camera lenses
and the human eye [22], [23]. Cone-based models have been
used in computer vision [22], [24], robot navigation [25],
and GISs [11], [26].

Applicability. The CDR models can be used in a wide set
of applications that use directions like GISs and robot
navigation. In this paper, we have focused on the GISs
paradigm and use cardinal direction relations (like West).
The model can also be used in other applications by simply
renaming the appropriate relations (for instance, using Left
instead of West). For completeness, let us also give a robot
navigation example [25]. Consider a set of robots, equipped
with perceptual capabilities, exploring an unknown area.
This process can be optimized if robots move toward
unexplored areas. Thus, every robot should know the
position and the explored area of every other robot. To this
end, the robots could compose and broadcast a complete
metric map of their vicinity. This solution is costly mainly
because metric maps are hard to compute and broadcast.
Alternatively, every robot could 1) locate the landmarks
and the robots in its vicinity, 2) identify their relations
(using the CDR model), and 3) broadcast this information to
the other robots. This qualitative solution does not require
full metric mapping capabilities, requires significantly
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PDR.



smaller bandwidth, and typically is sufficient for the
exploring task. Similarly, robots can use CDR relations to
retain their formation.

Customization. The CDR models are distinguished
according to the parameter � ð0� < � < 90�Þ that defines
the origin angle of the space separating lines (Fig. 2a). For
each particular application, by choosing a suitable �, we can
find an appropriate model in the CDR family. For instance,
in a robot navigation application where the field of view
angle of the lenses used in the robot’s vision system is 30�,
we may choose to use the CDRð30�Þ model.

Small set of relations. The CDR models can express a
small and easy-to-use set of 31 jointly exhaustive and
pairwise disjoint relations. This number is significantly
smaller than the respective set of PDR relations, which
contains 511 relations.

The next section formally defines the relations that can
be expressed in the CDR family.

2.1 Defining Directional Relations Formally

Intuitively, in order to derive the basic directional relation
between a primary object a and a reference object b, one
needs to identify the tiles of the plane induced by b, where
object a lies. However, such an intuitive (but informal)
definition is generally inadequate for the study of a spatial
model.

For the PDR model, two objects are related through a
single-tile directional relation iff their mbbs are related with
the same relation. This observation allows the definition of
single-tile relations using sets of conditions involving the
vertex coordinates of the objects’ mbbs [17]. This more
elaborate definition was subsequently used to study the
inverse, composition, and consistency checking problems
for that particular model.

We will attempt to derive such a definition for the
proposed family of models. We can easily demonstrate that
the above observation does not hold for the proposed CDR
family. For instance, in Fig. 3a, notice that, whereas a N b,
we have mbbðaÞ N:W b. Thus, the mbb provides a crude
approximation of an object in the CDR family. However, a
more precise approximation exists and can be constructed
as follows:

Let us consider an arbitrary model CDRð�Þ. We further
refine the mbb of an object by using lines parallel to rays
r1; . . . ; r4. After we form the mbb around the object, we also
form four lines, tangent to the object and parallel to the rays.
We use those lines to clip the corners of the mbb. By doing
so, we come up with a new approximation, which we call

mbo (Fig. 3b). The mbo is formally defined in Definition 2

and we will later see that it is appropriate for defining

relations in CDRð�Þ. Notice that the mbo is a special eight-
corner approximation belonging to the general class of

minimum bounding n-corner approximations for n ¼ 8 [37].

Notation 1. We denote by

. Ox (respectively, Oy) the x-coordinate (respectively,
the y-coordinate) of a point O,

. "1j"2 the intersection point of lines "1 and "2, and

. ð"Þx (respectively, ð"Þy) the x-coordinate (respectively,
the y-coordinate) of the intersection point of line " with
the x-axis (respectively, the y-axis), that is, ð"Þx ¼
ð"jxÞx and ð"Þy ¼ ð"jyÞy.

Since set REG� includes disconnected objects, we also

need an appropriate definition of tangency. Thus, a line is

tangent to an object in REG� if it is tangent to one of its

components, and the whole object lies on a single side of the

line. For example, in Fig. 4a, line " is tangent to the

composite object a.

Definition 2. Let CDRð�Þ be an arbitrary model in the CDR
family (where � is the characteristic angle of the model). The

minimum bounding octagon (mbo) of an object a 2 REG�,
denoted by mbo�ðaÞ, is the polygon created by lines "1; . . . ; "8,

where

1. "1; . . . ; "8 are tangential to a,
2. "1, "2 are parallel to the y-axis and ð"1Þx < ð"2Þx,
3. "3, "4 are parallel to the x axis and ð"3Þy < ð"4Þy,
4. "5, "6 form angle � with the x-axis and ð"5Þx < ð"6Þx,

and
5. "7, "8 form angle 180 degrees� � with the x-axis, and
ð"7Þx < ð"8Þx.

The points forming the polygon presented in a counter-

c l o c k w i s e o r d e r a r e : AðaÞ ¼ "4j"5, A0ðaÞ ¼ "1j"5,

BðaÞ ¼ "1j"7, B0ðaÞ ¼ "3j"7, CðaÞ ¼ "3j"6, C0ðaÞ ¼ "2j"6,

DðaÞ ¼ "2j"8, and D0ðaÞ ¼ "4j"8 (Fig. 3b).

Example 2. In certain cases, depending on the shape of

object a, mbo�ðaÞ can degenerate to a polygon having

three, four, five, six, or seven vertices. For instance, in

Fig. 4b, the mbo of object s has only four vertices. This

fact does not affect our analysis.

To define the mbo, we only need to specify four points

(instead of eight).2 More specifically, vertices A0, B0, C0, and

D0 can be computed using vertices A, B, C, and D as

follows:
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2. Similarly to the mbb, where we need two points (instead of four).

Fig. 3. The minimum bounding octagon.

Fig. 4. (a) Tangency and (b) a degenerated minimum bounding octagon.



A0x ¼ Bx A0y ¼ Ay � tan�ðAx �BxÞ
B0x ¼ Bx þ 1

tan� ðBy � CyÞ B0y ¼ Cy
C0x ¼ Dx C0y ¼ Cy þ tan�ðDx � CxÞ

D0x ¼ Dx � 1
tan� ðAy �DyÞ D0y ¼ Ay:

Note also that, from the mbo, we can easily compute
the mbb. For instance, in Fig. 3, the mbbðaÞ is the box
(with its sides aligned with the axes) specified by points
ðBxðaÞ; CyðaÞÞ and ðDxðaÞ; AyðaÞÞ.

Using the mbo, we can formally define single-tile
relations.

Definition 3. Let 1) CDRð�Þ be an arbitrary model in the CDR
family ð0� < � < 90�Þ, 2) a and b be two objects in REG�,
and 3) AðaÞ, BðaÞ, CðaÞ, and DðaÞ and AðbÞ, BðbÞ, CðbÞ, and
DðbÞ the vertices of mbo�ðaÞ and mbo�ðbÞ, respectively.
Relations N , W , S, E, and B are defined as follows:

a N b iff tanð�ÞBxðaÞ þByðaÞ � tanð�ÞBxðbÞþ
AyðbÞ; tanð�ÞCxðaÞ � CyðaÞ �
tanð�ÞDxðbÞ �AyðbÞ and CyðaÞ � AyðbÞ;

a W b iff tanð�ÞDxðaÞ þDyðaÞ � tanð�ÞBxðbÞþ
AyðbÞ; tanð�ÞCxðaÞ � CyðaÞ �
tanð�ÞBxðbÞ � CyðbÞ and DxðaÞ � BxðbÞ;

a S b iff tanð�ÞAxðaÞ �AyðaÞ � tanð�ÞBxðbÞ�
CyðbÞ; tanð�ÞDxðaÞ þDyðaÞ �
tanð�ÞDxðbÞ þ CyðbÞ and AyðaÞ � CyðbÞ;

a E b iff tanð�ÞAxðaÞ �AyðaÞ � tanð�ÞDxðbÞ�
AyðbÞ; tanð�ÞBxðaÞ þByðaÞ �
tanð�ÞDxðbÞ þ CyðbÞ and BxðaÞ � DxðbÞ;

a B b iff CyðaÞ � CyðbÞ; AyðaÞ � AyðbÞ; BxðaÞ �
BxðbÞ and DxðaÞ � DxðbÞ:

A single-tile relation between a primary object a and a
reference object b can also be defined using the mbo of
a ðmbo�ðaÞÞ and the mbb of b ðmbbðbÞÞ. Notice that the above
definition is essentially equivalent to Definition 3 since, as
we have previously seen, mbbðbÞ can be easily computed
from mbo�ðbÞ. We have expressed Definition 3 by using only
mbos for two reasons. First, using the same type of
approximation for both objects a and b results in a more
simple and uniform definition. More importantly, the mbo
of the reference object b ðmbo�ðbÞÞ will be more useful in
subsequent computations. For instance, it is easy to verify
that mbbðbÞ can only be used to compute relations where b
acts as a reference object, whereas mbo�ðbÞ can be used to
compute any relation involving b (regardless of whether b
acts as a primary or a reference object).

Multitile directional relations are defined as follows:

Definition 4. Let a and b be two objects in REG� and R ¼ R1:
� � �:Rk a multitile directional relation. Then, a R1:� � �:Rk b

holds iff there exist objects a1; . . . ; ak 2 REG� such that
a1 R1 b; . . . ; ak Rk b, and a ¼ a1 [ � � � [ ak.

Example 3. In Fig. 2c, we have a N :W b, since there exist
objects a1 and a2 in REG� such that a1 N b, a2 W b, and
a ¼ a1 [ a2.

To avoid overloading in Fig. 2, we have not illustrated
mbo�ðaÞ, mbo�ða1Þ, and mbo�ða2Þ. In the rest of the paper,
we will also omit the mbo of the primary object whenever
the relation can be easily seen. Finally, in Definition 4,

notice that for every i, j such that 1 � i; j � k, and i 6¼ j, ai
and aj have disjoint interiors but may share points in their
boundaries.

In the following section, we will study the problems of
computing the inverse of a directional relation and the
composition of two directional relations. Our results are valid
for every model CDRð�Þ in the CDR family.

3 INVERSE AND COMPOSITION

In this section, we will study the problem of computing the
inverse and the composition of directional relations in the
CDR family. We first present a method for computing the
inverse of a CDR relation and then a method for composing
two CDR relations. The presented solutions are handled in a
uniform manner and apply to all of the CDRð�Þ models of
the CDR family. Let us first define the inverse of a relation.

Definition 5. Let Q be a directional relation in 2B
�
. The inverse

of relation Q, denoted by invðQÞ, is another directional
relation, which satisfies the following: For arbitrary objects a,
b 2 REG�, a invðQÞ b holds iff b Q a holds.

Two definitions of composition appear in the literature.
The first one is the standard existential definition from the
set theory [8], [4].

Definition 6. Let Q1 and Q2 be directional relations in 2B
�
. The

existential composition of relations Q1 and Q2, denoted by
Q1;Q2, is another directional relation from 2B

�
which satisfies

the following. For arbitrary objects a and c, a Q1;Q2 c holds iff
there exists an object b such that a Q1 b and b Q2 c hold.

The second definition is explained as follows [8], [28]:

Definition 7. Let Q1 and Q2 be directional relations in 2B
�
. The

consistency-based composition of relations Q1 and Q2,
denoted by Q1 �Q2, is another directional relation from 2B

�

which satisfies the following: Q1 �Q2 contains all relations
R 2 B� such that there exist objects a; b; c 2 REG� such that
a Q1 b, b Q2 c, and a R c hold.

The consistency-based definition of composition is
weaker than the existential definition. Observe that R1;R2 �
R1 �R2 holds. The above definitions are important and
have attracted the interest of many researchers since they
can be used as a mechanism for inferring new information
from existing ones [8], [28], [4].

In this section, we first present a method to compute the
inverse of a CDR relation (Lemmas 1 and 2 and Theorem 1).
Then, we study consistency-based composition. We con-
sider progressively more expressive classes of directional
relations and give consistency-based composition algo-
rithms for these classes (Lemmas 3, 4, and 5 and Theorem 2).
Finally, we consider the existential definition of composi-
tion and show that the binary relation resulting from the
existential composition of some directional relations cannot
be expressed using the CDR relations. Our theoretical
framework allows us to prove formally that our solutions
are correct.

As we discussed in Section 2.1, relations in the CDR
family are defined using the mbo, whereas PDR relations
are defined using the mbb. When handling the inverse and
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composition problems, this difference is crucial and renders

inapplicable the mbb-based technique developed in [17] for

the PDR model. This led us to develop a new mbo-based

strategy for handling the inverse and composition problems

for the CDR family.
During the study of the inverse and composition

problems, we will use the informal inclusion-based defini-

tion of basic directional relations. The formal definition

involving the mbos of objects is used implicitly. We note

that the mbo-based definition is not without use, as 1) it is

implicitly used and 2) it is an integral part of the framework

that will be required for the further study of the proposed

models (for example, for the study of the consistency

checking and variable elimination problems).
Before we present our results, we introduce the

necessary notation.

Notation 2. Let R1; . . . ; Rk be single-tile directional relations.

We denote by �ðR1; . . . ; RkÞ the disjunction of all basic

directional relations that can be constructed by combining the

single-tile relations R1; . . . ; Rk. For instance, �ðN;W;BÞ
stands for the following directional relation:

fN; W; B; N : W; N : B; W : B; N : W : Bg:

Moreover, we define

�ðR1 : � � � : RkÞ ¼ �ðR1; . . . ; RkÞ and

�ð�ðR11; . . . ; R1k1
Þ; . . . ; �ðRm1; . . . ; RmkmÞÞ ¼

�ðR11; . . . ; R1k1
; . . . ; Rm1; . . . ; RmkmÞ:

We denote by Udir the universal directional relation, that is,

Udir ¼ �ðN;W; S;E;BÞ.
Notation 3. Let R 2 fN;W; S;Eg be a single tile. We denote by

R (respectively, R! and R#) the tile that we meet by moving

counterclockwise (respectively, clockwise and diametrically)

from tile R. Given a relation R, the expressions R , R!, and

R# are defined in the following table:

Notation 4. Let R1; . . . ; Rk be basic directional relations. The tile

union ofR1; . . . ; Rk, denoted by tile-unionðR1; . . . ; RkÞ, is the

basic directional relation that consists of all the tiles in relations

R1; . . . ; Rk. Furthermore, we denote by CombineðQ1; . . . ; QkÞ
(where Q1; . . . ; Qk 2 2B

�
) the directional relation

fR 2 B� : R ¼ tile-unionðs1; . . . ; skÞ
^ s1 2 Q1 ^ � � � ^ sk 2 Qkg:

Example 4. Consider two basic directional relations: N :W

and N :E :B. Then,

tile-unionðN:W;N:E:BÞ ¼ N:W:E:B:

Furthermore, consider two directional relations: fN;N:

Wg and fS; S:Eg. Then,

CombineðfN;N :Wg; fS; S :EgÞ ¼
tile-unionðN;SÞ;

tile-unionðN;S : EÞ;
tile-unionðN : W;SÞ;

tile-unionðN : W;S : EÞ

8>>><
>>>:

9>>>=
>>>;
¼

N : S;

N : S : E;

N : W : S;

N : W : S : E

8>>><
>>>:

9>>>=
>>>;
:

3.1 Computing the Inverse of a Directional Relation

Before we proceed, we present a useful proposition.
Proposition 1 reveals the inherent symmetry in the CDR
family and simplifies the proofs of Lemmas 1 and 2.

Proposition 1. Consider a basic directional relation R1: � � � :Rk.
Let us assume that its inverse is a directional relation that can
be represented as a function of the five tiles N , W , S, E, and
B, that is, invðR1: � � � :RkÞ ¼ fðN;W; S;E;BÞ. Then,

1.

invðR 1 : � � � :R k Þ ¼ fðN ;W ; S ; E ; BÞ
¼ fðW;S;E;N;BÞ:

2.

invðR!1 : � � � :R!k Þ ¼ fðN!;W!; S!; E!; BÞ
¼ fðE;N;W; S;BÞ:

3.

invðR#1 : � � � :R#kÞ ¼ fðN#;W #; S#; E#; BÞ
¼ fðS;E;N;W;BÞ:

Proof. Case 1. This is due to the symmetry of the directional
relations of CDR. To give an example, let us observe
Fig. 5a. For this spatial configuration, we have a1 N:W b1,
b1 S:E a1 and, thus, S:E 2 invðN:W Þ. Now, consider
rotating the configuration in Fig. 5a by 90� counter-
clockwise (Fig. 5b). The effect of this rotation is that the
tiles in our relations have also been rotated. Specifically,
N became WðN Þ, W became SðW Þ, S became EðS Þ,
and E became NðE Þ. Notice that, in Fig. 5b, we have
a2 W:S b2, b2 N:E a2, and, thus, N:E 2 invðW:SÞ. Note
that these expressions can be derived directly from the
expressions a1 N:W b1, b1 S:E a1, and S:E 2 invðN:W Þ
concerning Fig. 5a by directly applying the aforemen-
tioned substitutions.

Cases 2 and 3. These cases also hold due to the
symmetry of directional relations. To verify this, we
have to rotate the plane clockwise by 90� and 180�,
respectively. tu
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We now present and formally prove Lemma 1 for

computing the inverse of single-tile relations.

Lemma 1. Let R 2 fN;W; S;Eg be a single-tile directional

relation. Then,

a. invðRÞ ¼ �ðR ; R!; R#Þ � fR ; R!g and
b. invðBÞ ¼ Udir � fN;W; S;Eg.

Proof. Case 1. We will first prove that the expression of

Lemma 1a, holds for R ¼ N , that is,

invðNÞ ¼ �ðW;S;EÞ � fW;Eg:

Let a and b be two objects in REG� such that a N b. Since

a is north of b, we can intuitively understand and easily

verify that no part of b can, in turn, lie north or inside the

mbb of object a. Therefore, no part of b can lie inside tiles

NðaÞ and BðaÞ and, consequently, tiles N and B cannot

appear in directional relation invðNÞ, which implies that

invðNÞ � �ðW;S;EÞ ¼
fW;S;E;W:S;W:E; S:E;W:S : Eg:

Let us now consider every basic relation in �ðW;S;EÞ
and check whether it belongs to invðNÞ or not:

1. Relation S. Fig. 6a demonstrates that b S a is
possible; thus, S 2 invðNÞ.

2. Relation W:S. Fig. 6b shows that b W:S a is
possible; thus, W:S 2 invðNÞ.

3. Relation S:E. Similar with relation W:S, we can
show that S:E 2 invðNÞ.

4. Relation W:E. Fig. 6c depicts the not-so-obvious
possibility that b W:E a; thus, W :E 2 invðNÞ.

5. Relation W:S:E. Fig. 6d shows that b W:S:E a is
possible; thus, W:S:E 2 invðNÞ.

6. Relation W . It is not possible to create a spatial
configuration such that b W a; thus, W 62 invðNÞ.

7. Relation E. Similar with relation W , it is not
possible to create a spatial configuration such that
b E a and, thus, E 62 invðNÞ.

Therefore, we have invðNÞ ¼ �ðW;S;EÞ � fW;Eg
(M). By applying Proposition 1 to Expression (M), we
also have

invðWÞ ¼ �ðS;N;EÞ � fS;Ng;
invðSÞ ¼ �ðE;W;NÞ � fE;Wg; and

invðEÞ ¼ �ðN;S;WÞ � fN;Sg:

The above expressions and Expression (M) are captured

by Lemma 1a.

Case 2. In order to compute invðBÞ, we apply the
same procedure as with Case 1. Let a and b be two objects
in REG� such that a B b. In this case, we cannot eliminate
any tiles from invðBÞ, so, as a starting point, we will
consider that

invðBÞ � Udir:

By examining every basic relation in Udir in the same way

that we did while proving Case 1, we conclude that

invðBÞ ¼ Udir � fN;W; S;Eg. tu
The following lemma can be used to compute the inverse

of multitile relations:

Lemma 2. Let R ¼ R1 : � � � :Rk ð2 � k � 5Þ be a multitile

directional relation. Also, let

R ¼ fN;W; S;E;Bg � fR1; . . . ; Rkg:

Then,

a. invðRÞ ¼ �ðRÞ if B 62 fR1; . . . ; Rkg and
b. invðRÞ ¼ �ðR;BÞ �R if B 2 fR1; . . . ; Rkg.

Proof. Case 1. We will first prove that the expression of

Lemma 2a holds for R ¼ N:W , that is,

invðN:WÞ ¼ �ðS;E;BÞ:

Let a and b be two objects in REG� such that a N:W b.

Since a is north and west of b, we can intuitively

understand and easily verify that no part of b can, in

turn, lie north or west of object a. Therefore, no part of b

can lie within tiles NðaÞ and W ðaÞ. Consequently, we can

exclude tiles N and W from directional relation

invðN:W Þ. Thus, as a starting point, we can use the

following expression:

invðN:WÞ � �ðS;E;BÞ ¼
fS;E;B; S:E; S:B;E:B;S:E:Bg:

Let us now consider every basic relation in �ðS;E;BÞ and

check whether it belongs to invðN:WÞ or not.

1. Relation E. Fig. 7a shows that b E a is possible;
thus, E 2 invðN:WÞ.

2. Relation E:B. Fig. 7b illustrates that bE:B a is
possible; thus, E:B 2 invðN:WÞ.

3. Relation S:E. Fig. 7c shows that b S:E a is also
feasible; thus, S:E 2 invðN:WÞ.

4. Relation S:E:B. Fig. 7d shows that b S:E:B a is
feasible; thus, S:E:B 2 invðN:WÞ.

5. Relation S. Fig. 7e illustrates that b S a is possible;
thus, S 2 invðN:WÞ.

6. Relation S:B. Fig. 7f shows that b S:B a is feasible;
thus, S :B 2 invðN:W Þ.

7. Relation B. Fig. 7g illustrates that b B a is possible;
thus, B 2 invðN:W Þ.

Therefore, invðN:WÞ ¼ �ðS;E;BÞ (T1). By applying
Proposition 1 to Expression (T1), we have

invðW:SÞ ¼ �ðN;E;BÞ; invðN:EÞ ¼ �ðW;S;BÞ; and

invðS:EÞ ¼ �ðN;W;BÞ:
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The above expressions verify that Lemma 2a also
holds for relations W:S, N:E, and S:E.

We will now prove that the expression of Lemma 2a
holds for R ¼ N:S, that is, invðN:SÞ ¼ �ðW;E;BÞ. To this
end, we will follow the same procedure as with relation
N:W .

Let a and b be two objects in REG� such that a N:S b.
Since no part of object b can lie inside tiles NðaÞ and SðaÞ,
we can exclude tiles N and S from directional relation
invðN:SÞ. Therefore, as a starting point, we can use
expression

invðN:SÞ � �ðW;E;BÞ ¼
fW;E;B;W:E;W:B;E:B;W:E:Bg:

By examining every relation in �ðW;E;BÞ, we conclude

that invðN:SÞ ¼ �ðW;E;BÞ (T2). Furthermore, by apply-

ing Proposition 1 to Expression (T2), we can prove that

Lemma 2a also holds for relation W:E.
Let us now prove that the expression of Lemma 2a

holds for R ¼ N:W:E, that is, invðN:W:EÞ ¼ �ðS;BÞ. We
will follow the same procedure as with relation N:W .

Let a and b be two objects in REG� such that
a N:W:E b. Since no part of object b can lie inside tiles
NðaÞ, W ðaÞ, and EðaÞ, we can exclude tiles N , W , and E
from directional relation invðN:W:EÞ. Therefore, as our
starting point, we can use expression

invðN:W:EÞ � �ðS;BÞ ¼ fS;B; S:Bg:

By examining every relation in �ðS;BÞ, we conclude that

invðN:W:EÞ ¼ �ðS;BÞ (T3). Furthermore, by applying

Proposition 1 to Expression (T3), we can prove that

Lemma 2a also holds for relations N:W:S, N:S:E, and

W:S:E. Last, it is easy to verify that the expression of

Lemma 2a also holds for R ¼ N:W:S:E, that is,

invðN:W:S:EÞ ¼ �ðBÞ ¼ B.
In summary, we have proven that Lemma 2a holds for

all multitile relations that do not contain tile B.
Case 2. This case can be proven by applying the same

procedure as with Case 1. We start by verifying that the
expression of Lemma 2a holds for relations N:B, N:W:B,

N :S:B, N:W:E:B, and N:W:S:E:B. Then, by applying
Proposition 1, we can verify that Lemma 2a holds for all
multitile relations that include tile B. tu

To compute the inverse of an arbitrary directional
relation, we can use the following theorem in combination
with Lemmas 1 and 2:

Theorem 1. Let Q ¼ [ki¼1Ri be a directional relation in 2B
�
,

where Ri are basic directional relations. Then,

invðQÞ ¼ [ki¼1ðinvðRiÞÞ:

Note that invðRiÞ can be computed using Lemmas 1 and 2.

Proof. From the definition of inverse (Definition 5), we have

invðQÞ ¼ fR 2 B� : ð9a; b 2 REG�Þða Q b ^ b R aÞg:

Since Q ¼ [ki¼1Ri, we have a Q b ¼ a R1 b _ � � � _ a Rk b.
Therefore,

invðQÞ ¼ fR 2 B� : ð9a; b 2 REG�Þ
ða R1 b _ � � � _ a Rk bÞ ^ b R ag:

By distributing ^ over _, we have

invðQÞ ¼ fR 2 B� : ð9a; b 2 REG�Þ
ða R1 b ^ b R aÞ _ � � � _ ða Rk b ^ b R aÞg:

Thus, invðQÞ ¼ [ki¼1ðinvðRiÞÞ holds. tu

3.2 Computing the Composition of Two Directional
Relations

Before we address the composition problem, we present
Proposition 2, which serves the same purpose that
Proposition 1 did while studying the inverse problem, that
is, it reveals the inherent symmetry in the CDR family and
simplifies the proofs of the relevant lemmas.

Proposition 2. Consider two basic directional relations: R1 ¼
R11 : � � � :R1k and R2 ¼ R21 : � � � :R2m. Let us assume that their
composition is a directional relation that can be represented as
a function of the five tiles N , W , S, E, and B, that is,
R1 �R2 ¼ fðN;W; S;E;BÞ. Then,

1.

R 11 : � � � :R 1k �R21qq
 : � � � :R 2m ¼

fðN ;W ; S ; E ; BÞ ¼ fðW;S;E;N;BÞ:

2.

R!11 : � � � :R!1k �R!21 : � � � :R!2m ¼
fðN!;W!; S!; E!; BÞ ¼ fðE;N;W; S;BÞ:

3.

R#11 : � � � :R#1k �R
#
21 : � � � :R#2m ¼

fðN#;W #; S#; E#; BÞ ¼ fðS;E;N;W;BÞ:

Proof. This is due to the symmetry of the directional
relations of CDR. tu
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We will address the composition problem one step at a
time. First, we consider the case of composing two single-
tile relations.

Lemma 3. Let R 2 fN;W; S;Eg be a single-tile directional
relation. Then,

1. R �R ¼ R,
2. R �R# ¼ Udir,
3. R �R ¼ R �R! ¼ R �B ¼ �ðR;R ; R!; BÞ,
4. B �R ¼ �ðR;R ; R!Þ, and
5. B �B ¼ B:

Proof. Case 1. We will first prove that the expression in
Lemma 3.1 holds for R ¼ N , that is, N �N ¼ N . Let a, b,
and c be three objects in REG� such that a N b and b N c
hold. Fig. 8a presents objects b and c such that b N c.
Since a N b, object a lies inside tile NðbÞ (the dotted area
in Fig. 8a). Notice that tile NðbÞ can only lie inside
tile NðcÞ and, consequently, object a can only lie inside
tile NðcÞ. More formally, we have a � NðbÞ � NðcÞ. In
other words, if a N b and b N c, then a N c and, thus,
N �N ¼ N (S1) holds. By applying Proposition 2 to
Expression (S1), we also have

W �W ¼W; E � E ¼ E and S � S ¼ S:

All of the above expressions and Expression (S1) are
captured by Lemma 3.1.

Case 2. We will first prove that the expression of
Lemma 3.2 holds for R ¼ N , that is, N � S ¼ Udir. Let a, b,
and c be three objects in REG� such that a N b and b S c
hold. Fig. 8b presents objects b and c such that b S c.
Object a lies inside tile NðbÞ (the dotted area in Fig. 8b).
Notice that area NðbÞ can intersect with all five tiles of
object c, namely, NðcÞ, WðcÞ, SðcÞ, EðcÞ, and BðcÞ.
Consequently, object a can lie within any of these five
tiles or any combination of them. In other words, if a N b
and b S c, then a �ðN;W; S;E;BÞ c or a Udir c and, thus,
N � S ¼ Udir (S2) holds. By applying Proposition 2 to
Expression (S2), we can easily verify that Lemma 3.2
holds.

Case 3. We will first prove that expression R �R ¼
�ðR;R ; R!; BÞ holds for R 2 fN;W; S;Eg. Fig. 8c helps
us verify that the expression holds for R ¼ N , that is,
N �W ¼ �ðN;W;E;BÞ (S3). Then, by applying Proposi-
tion 2 to Expression (S3), we can prove that the
expression holds for every R 2 fN;W; S;Eg.

In a similar manner, we can also prove that R �
R! ¼ �ðR;R ; R!; BÞ holds for R 2 fN;W; S;Eg. We
will now prove that expression R �B ¼ �ðR;R ; R!; BÞ
holds for R 2 fN;W; S;Eg. Fig. 8d helps us verify that
the expression holds for R ¼ N , that is, N �B ¼
�ðN;W;E;BÞ (S4). Then, by applying Proposition 2 to
Expression (S4), we can prove that the expression holds
for every R 2 fN;W; S;Eg.

Therefore, we have proven that Lemma 3.3 holds.
Case 4. Fig. 8e helps us verify that expression B �R ¼

�ðR;R ; R!Þ holds forR ¼ N , that is,B �N ¼ �ðN;W;EÞ
(S5). By applying Proposition 2 to Expression (S5), we can
verify that Lemma 3.4 holds.

Case 5. This case is trivial and Fig. 8f helps us verify
that B �B ¼ B. tu

We will now turn our attention to the composition of a
single-tile directional relation with a multitile directional
relation. To this end, we use the COMPOSESM Algorithm
(Fig. 9). The algorithm takes as inputs a single-tile
directional relation R1 and a multitile relation R2 ¼ R21 :

� � � :R2kðk � 2Þ and returns the composition R1 �R2. The
following is an example of the COMPOSESM Algorithm in
operation:

Example 5. Let R1 ¼ N and R2 ¼ N:B ¼ R1:B. Using the
COMPOSESM Algorithm (Line 3), we have N �N:B ¼ N .
This can be verified using Fig. 10c.

The following lemma establishes the correctness of the
COMPOSESM Algorithm:

Lemma 4. Let R1 be a single-tile directional relation and R2 ¼
R21 : � � � :R2k be a multitile directional relation. Then, R1 �R2

can be computed by the Algorithm COMPOSESM .

Proof. Every line of the algorithm computes the composi-
tion of a set of pairs of basic directional relations.
Particularly, lines 1 and 2 compute the composition for
R1 ¼ B. The rest of the algorithm computes the composi-
tion for R1 2 fN;W; S;Eg. Therefore, we will examine
each line of the algorithm individually and verify that it
correctly computes the relevant composition.
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Line 1. This If statement states that

B �R21:B ¼ �ðR21; R
 
21; R

!
21; BÞ;

where R21 2 fN;W; S;Eg. We will first prove that this
expression holds for R21 ¼ N , that is,

B �N:B ¼ �ðN;W;E;BÞ:
Let a, b, and c be three objects in REG� such that a B b
and b N:B c hold. Fig. 10a presents objects b and c such
that b N:B c. Since a B b, object a lies inside tile BðbÞ
(the dotted area in Fig. 10a). Notice that area NðbÞ can
intersect with tiles NðcÞ, WðcÞ, EðcÞ, and BðcÞ. Conse-
quently, object a can lie within any of these four tiles
or any combination of them. In other words, if a B b
and b N:B c, then a �ðN;W;E;BÞ c. Thus, N �N:B ¼
�ðN;W;E;BÞ (E1) holds. By applying Proposition 2 to
Expression (E1), we also have

B �W:B ¼ �ðN;W; S;BÞ; B � E:B ¼ �ðN;S;E;BÞ; and

B � S:B ¼ �ðW;S;E;BÞ:

All of the above expressions and Expression (E1) are
captured by Line 1 of the Algorithm COMPOSESM .

Line 2. The condition of this If statement is satisfied
when R1 ¼ B, and R2 6¼ fN:B; W:B; S:B; E:Bg; other-
wise, the condition of line 1 would have been satisfied.
Line 2 holds for R2 ¼ N:W , that is, B �N:W ¼ Udir. This
can be verified using Fig. 10b. Also by using Fig. 10b, we
can verify that the composition ofBwith any relation that
is made up of at least two adjacent tiles (that is,
R2 6¼ fN:B; W:B; S:B; E:Bg) is equal to Udir.

Line 3. This If statement states that R1 �R1:B ¼ R1,
R1 2 fN;W; S;Eg. To prove that this expression holds
for R1 ¼ N , that is, N �N:B ¼ N (E2), we use Fig. 10c.
Then, by applying Proposition 2 to Expression (E2), we
can verify that Line 3 is correct for all R1 2 fN;W; S;Eg.

Line 4. The condition of this If statement is
satisfied when R2 2 fR1:R

 
1 ; R1:R

 
1 :Bg. We will only

prove that Line 4 is correct for R2 ¼ R1:R
 
1 , that is,

R1 �R1:R
 
1 ¼ �ðR1:R

 
1 Þ. The proof for R2 ¼ R1:R

 
1 :B is

similar. Line 4 holds for R1 ¼ N , that is, N �N:W ¼
�ðN;WÞ (E3). This can be verified using Fig. 10d. By
applying Proposition 2 to Expression (E3), we can also
verify that Line 4 is correct for all R1 2 fN;W; S;Eg.

Line 5. The proof is similar to the proof of Line 4.
Line 6. The condition of this If statement is satisfied

when relation R2 contains tiles fR1; R
#
1g or fR1; R

 
1 ; R

!
1 g.

We will first prove that line 6 holds for R1 ¼ N . Then, R2

contains tiles fN;Sg or fN;W;Eg. We will concentrate
on the two most representative relations of this group,
namely, R2 ¼ N:S and R2 ¼ N:W:E, since the proofs for
the other relations of the group are almost identical to
one of these two. Fig. 10e helps us verify that N �N:W:
E ¼ �ðN;W;EÞ (E4) and Fig. 10f that N �N:S ¼
�ðN;W;EÞ (E5). Then, by applying Proposition 2 to
Expressions (E4) and (E5), we can verify that line 6 holds
for all R1 2 fN;W; S;Eg.

Line 7. The If condition of this statement requires that
B 2 fR21; . . . ; R2kg. However, for the algorithm to reach
line 7, the conditions of the If statements in lines 3-6 must
have not been satisfied. These four statements provide
the composition for all relations R2 that contain tile R1.
Therefore, relation R2 includes tile B but not tile R1. In
other words,

R2 2 fR 1 :B;R!1 :B;R#1:B;R
 
1 :R!1 :B;

R 1 :R#1:B;R
!
1 :R#1:B;R

 
1 :R!1 :R#1:Bg:

We will concentrate on relations of the form R2 ¼ R#1:B
and prove that R1 �R#:B ¼ �ðR1; R

 
1 ; R

!
1 ; BÞ (E6) holds

(the proofs for the rest of the relations are similar).

Expression (E6) holds for R1 ¼ N , that is,

N � S:B ¼ �ðN;W;E;BÞ:

This can be verified using Fig. 10g. Then, by applying

Proposition 2, we can prove that Expression (E6) holds

for every R1 2 fN;W; S;Eg.
Line 8. If the execution of the algorithm reaches line 8,

then relation R2 cannot contain tiles R1 and B, that is,
R2 2 fR 1 :R!1 ; R

 
1 :R#1; R

!
1 :R#1; R

 
1 :R!1 :R#1g. When tile R#1 is

present in relation R2, the proof is similar to the proof of
Lemma 3.2, which states that R1 �R#1 ¼ Udir, so we will
not consider these relations. Instead, we will prove
expression R1 �R 1 :R!1 ¼ Udir, which is not apparent.
Fig. 10h shows that the expression holds for R1 ¼ N , that
is, N �W:E ¼ Udir. Then, by applying Proposition 2, we
can prove that line 8 is correct for all R1 2 fN;W; S;Eg.tu

Summarizing our progress so far, we have presented

Lemma 3, which can be used to compute the composition

of two single-tile relations, and then the Algorithm
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COMPOSE SM , which provides the composition of a single-
tile relation and a multitile relation. In other words, we
are able to compute the composition of a single-tile
directional relation and a basic (single-tile or multitile)
directional relation. The next logical step is to address the
problem of composing a multitile directional relation and
a basic relation. Let us study two specific examples that
will help us understand the method used to compute the
composition of such relations.

Example 6. Let us compute N:W �N:B. Let a, b, and c be
three objects in REG� such that a N:W b and b N:B c. To
compute N:W �N:B, we have to find all possible
relations between a and c. According to Definition 4, a N:
W b implies that there exist objects a1 and a2 such that
a1 N b, a2 W b, and a ¼ a1 [ a2. We can handle the
composition problem for each of the two components
of object a separately and then use the corresponding
results to create the directional relation N:W �N:B.

Fig. 11a shows two objects b and c such that b N:B c.
The heavily dotted area corresponds to tile NðbÞ, where
object a1 lies at ða1 N bÞ, and the lightly dotted area
corresponds to tile WðbÞ, where object a2 lies at ða2 W bÞ.
Since a1 N b and b N:B c, we have a1 N �N:B c and,
using the Algorithm COMPOSESM , we can compute that
a1 N c (see also Fig. 11a). Similarly, since a2 W b and
b N:B c, we have a2 �ðN;W; S;BÞ c.

Let us see how we can use these results to calculate
the possible relations between a and c. Since a ¼ a1 [ a2,
if, for example, a1 N c and a2 W:S c, then we have
a tile-unionðN;W:SÞ c or a N:W:S c. Likewise, if a1 N c
a n d a2 N:W:B c, t h e n a tile-unionðN;N:W:BÞ c o r
a N:W:B c. Therefore, directional relation N:W �N:B
includes all basic relations created by taking the
tile-union of each relation in fNg with every relation in
�ðN;W; S;BÞ. In other words,

N:W �N:B ¼ CombineðN; �ðN;W; S;BÞÞ:

The result, as well as the procedure that we have used in
order to compute N:W �N:B, can be captured by expression
N:W �N:B ¼ CombineðN �N:B;W �N:BÞ. One could be
tempted to generalize this expression and use it to compute
the composition of any two relations:

R11:� � �:R1k �R2 ¼ CombineðR11 �R2; . . . ; R1k �R2Þ; ðCÞ
but, unfortunately, it does not always produce the correct
result. Let us see another example that will help clarify why
the aforementioned expression fails.

Example 7. Let us compute W:B �N . If we use Expression
(C), then we have W:B �N ¼ CombineðW �N;B �NÞ.
Since W:S 2 CombineðW �B;W �NÞ, it follows from the
above equation that there exists a spatial configuration
such that a W:B b, b N c, and a W:S c. It is easy to verify
that such a configuration does not exist; thus, Expression
(C) cannot be applied to W:B �N .

To compute the correct composition, let a, b, and c be
three objects in REG� such that a W :B b and b N c.
According to Definition 4, a W :B b implies that there
exist objects a1 and a2 such that a1 W b, a2 B b, and
a ¼ a1 [ a2. Figs. 11b and 11c depict two spatial config-
urations involving objects b and c such that b N c. In both
cases, the lightly dotted area corresponds to tile WðbÞ
(that is, the area where object a1 lies), whereas the
heavily dotted area corresponds to tile BðbÞ (that is, the
area where object a2 lies):

. For the configuration of Fig. 11b, we have
a1 �ðN;W; S;BÞ c and a2 �ðN;EÞ c. Thus, we have
a Combineð�ðN;W; S;BÞ; �ðN;EÞÞ c and

Combineð�ðN;W; S;BÞ; �ðN;EÞÞ �W:B �N:

. For the configuration of Fig. 11c, we have
a1 �ðN;W Þ c and a2 �ðN;W;EÞ c. Thus, we have
a Combineð�ðN;WÞ; �ðN;W;EÞÞ c and

Combineð�ðN;WÞ; �ðN;W;EÞÞ �W:B �N:

In summary, we have

Combineð�ðN;W; S;BÞ;
�ðN;EÞÞ [ Combineð�ðN;W Þ;
�ðN;W;EÞÞ �W:B �N:

It is not hard to verify that any other spatial configura-
tion such that a W:B b and b N c would produce
composition results that are a subset of those produced
by the configurations of Figs. 11b and 11c. Thus,

W:B �N ¼ Combineð�ðN;W; S;BÞ;
�ðN;EÞÞ [ Combineð�ðN;WÞ; �ðN;W;EÞÞ;

or, equivalently,

W:B �N ¼ CombineðW �N;B �NÞ
� fW:S;W:B;W:S:Bg:

Summarizing Examples 6 and 7, we can distinguish two
cases. For some pairs of relationsR1 ¼ R11:� � �:R1k andR2, like
N:W and N:B of Example 6, Expression (C) can be applied
directly. For the other cases, there are pairs, like W:B and N
of Example 7, to which Expression (C) cannot be applied
directly. Fortunately, as we will see later, we always have

R1 �R2 :� CombineðR11 �R2; . . . ; R1k �R2Þ:

Based on this observation, we present the Algorithm
COMPOSEM (Fig. 12), which can be used to compute the
composition of a multitile directional relation and a basic
directional relation. The Algorithm COMPOSEM takes as
inputs a multitile directional relation R1 ¼ R11 : � � � :
R1kðk � 2Þ and a basic relation R2. Initially, the algorithm
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computes set C ¼ CombineðR11 �R2; . . . ; R1k �R2Þ. Then, it
removes from set C all relations that cannot belong to the
composition R1 �R2.

The following lemma demonstrates the correctness of the

Algorithm COMPOSEM .

Lemma 5. Let R1 and R2 be two basic directional relations.

Then, R1 �R2 can be computed by Algorithm COMPOSEM .

Proof. To demonstrate the correctness of the Algorithm
COMPOSEM , we will present the steps that we followed
in order to create it. As we discussed earlier, for some
relation pairs R1 ¼ R11 : � � � :R1k and R2, we can directly
compute their composition by using Expression (C)
(Example 6), whereas, for other pairs, we must compute
their composition from first principals (like in Exam-
ple 7). For these pairs, the composition is equal to a
subset of CombineðR11 �R2; . . . ; R1k �R2Þ and therefore
can be described using an expression of the form
R1 �R2 ¼ CombineðR11 �R2; . . . ; R1k �R2Þ � S, where S
is a set of basic directional relations.

Based on this observation, we present Table 1. This table
presents the composition of all 26 multitile relations and
relations B, N , N:B, N:W , N:W:B, N:W:E, N:W:E:B,
N:W:S:E, and N:W:S:E:B. In Table 1, we use a star ð?Þ to
denote that the composition can be computed using
expression R1 �R2 ¼ CombineðR11 �R2; . . . ; R1k �R2Þ. In
cases where the composition is computed using expres-
sion R1 �R2 ¼ CombineðR11 �R2; . . . ; R1kÞ � S, we sim-
ply write the set S. The complete transitivity table can be
derived from Table 1 by using Proposition 2.

The structure of the Algorithm COMPOSEM reflects
the results of Table 1. The composition of most relation
pairs is equal to C, whereas a handful of pairs produce
results equal to C � S. Thus, the algorithm is mainly a
list of rules describing these exceptions. Let us now see
how these rules can be derived from Table 1. Consider,
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for instance, the composition of relations W :B and N .
According to Table 1, we have

W:B �N ¼ CombineðW �N;B �NÞ
� fW:S;W:B;W:S:Bg:

By applying Proposition 2 to this expression, we

conclude that

S : B �W ¼ CombineðS �W;B �WÞ
� fS:E; S:B;S:E : Bg;

N:B � E ¼CombineðN � E;B � EÞ
� fN:W;N:B;N:W : Bg;

E:B � S ¼CombineðE � S;B � SÞ
� fN:E;E:B;N:E:Bg:

We can easily verify that the above expressions are

equivalent to this single expression:

R :B �R ¼ CombineðR �R;B �RÞ�
fR :R#; R :B;R :R#:Bg; R 2 fN;W; S;Eg:

The final version of the algorithm, as presented in
Fig. 12, contains all of the rules that can be derived from
Table 1 as If statements. tu

The following example demonstrates how the Algorithm

COMPOSEM is used.

Example 8. The four outer If statements of the Algorithm

COMPOSEM regard the pattern of relation R2. R2 ¼ R
implies that R2 consists of a single peripheral tile. R2 ¼
R:B implies that R2 consists of a single peripheral tile

and tile B. Similarly, R2 2 fR:R#; R:R#:Bg implies that

R2 consists of two nonadjacent tiles and, possibly, tile

B, whereas R22fR:R :R!; R:R :R!:Bg implies that R2

consists of three adjacent peripheral tiles and, possibly,

tile B. For instance, the pattern of relation R2 ¼ N:S is

R:R#, where R ¼ N . Having determined the pattern of

relation R2 and assigned a value to R, we proceed, if

necessary, to the inner If statements and substitute the

value of R that we determined. For example, let us

consider the composition N:W �N:S. As we mentioned

earlier, the pattern of relation R2 is R:R#, where

R ¼ N . As a consequence, the condition of the third

outer If statement is satisfied, so we proceed to the

relevant inner If statements. By substituting R! N , we

notice that the first inner If statement is satisfied, since

R1 ¼ R:R ¼ N:W . Therefore, we have

N:W �N:S ¼ CombineðN �N:S;W �N:SÞ
� fW:B;W:S:Bg:

To compute the composition of two arbitrary directional

relations, we use the following theorem:

Theorem 2. Let Q1 ¼ [ki¼1R1i and Q2 ¼ [mj¼1R2j be two

directional relations in 2B
�
, where all R1i, R2j are basic

directional relations. Then,

R1 �R2 ¼ fR 2 B�:R 2 R1i �R2jg:

Note that R1i �R2j can be computed using Lemmas 3, 4,

and 5.

Proof. Based on Definition 7, we have

Q1 �Q2 ¼ fR 2 B�:ð9a; b; c 2 REG�Þ
ða Q1 b ^ b Q2 c ^ a R cÞg:

Since Q1 ¼ [ki¼1R1i and Q2 ¼ [mi¼1R2j, we have

a Q1 b ¼ a R11 b _ � � � _ a R1k b and

b Q2 c ¼ b R21 c _ � � � _ b R2m c:

Therefore,

Q1 �Q2 ¼ fR 2 B�:ð9a; b; c 2 REG�Þða R11 b _ � � �
_ a R1k bÞ ^ ðb R21 c _ � � � _ b R2m cÞ ^ a R cg:

Finally, by distributing ^ and _, we have

Q1 �Q2 ¼ fR 2 B�:ð9a; b; c 2 REG�Þ
_

i;j
ða R1i b ^ b R2j c ^ a R cÞ

� o

¼ fR 2 B�:R 2 R1i �R2jg:
ut

Let us now leave the consistency-based definition of

composition and consider the standard notion of existential

composition from the set theory (Definition 6). Similarly to
many models of spatial relations [8], [33], [17], the language

of CDR is not expressive enough to capture the binary relation,

which is the result of the existential composition of

directional relations. This is illustrated by the following
example:

Example 9. Consider object variables a, b, and c and
directional relations a N b and b N c. The only directional

relation implied by these two constraints is a N c (see

Fig. 13a). This is captured by the fact that N �N ¼ N (see

Lemma 3). Let us now assume that ðN;NÞ ¼ N also
holds. Then, for each pair of objects a0 and c0 such that

a0 N c0, there exists an object b0 2 REG� such that

a0 N b0 and b0 N c0. However, Fig. 13b shows two such

objects, a0 and c0, such that a0 N c0 and it is impossible to
find an object b0 2 REG� such that a0 N b0 and b0 N c0.

If we consider Fig. 13b, we will notice that the
semantics of existential composition imply that object a
lies completely on the north tile of c (that is, a N c holds),
and the mbbs of objects a and c do not touch. Intuitively,
the second constraint is not expressible in the language
of directional relations presented in Section 2. It is an
open question to define an appropriate set of relations
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that could be used to augment the language of CDR such
that the constraints needed to define the result of
existential composition are expressible.

4 CONCLUSIONS

In this paper, we have introduced a family of directional

relation models. We have formally defined the relations that

can be expressed in the family and studied the inverse and

the composition (consistency-based and existential) of

directional relations. We have presented methods to

compute the inverse and consistency-based composition,

while we have demonstrated that the result of existential

composition cannot be expressed. The aforementioned

methods apply to all of the models of the family. Further

research could concentrate on the extension of the CDR
language so that existential composition is definable, as well

as the study of algorithms for 1) computing the minimal

network of a set of directional constraints, 2) for enforcing

consistency, and 3) performing variable elimination (a task

that relates to existential composition).
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