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Abstract—In this paper, we deal with the integration of multi-
ple sources of information such as Earth observation (EO) syn-
thetic aperture radar (SAR) images and their metadata, semantic
descriptors of the image content, as well as other publicly available
geospatial data sources expressed as linked open data for posing
complex queries in order to support geospatial data analytics. Our
approach lays the foundations for the development of richer tools
and applications that focus on EO image analytics using ontolo-
gies and linked open data. We introduce a system architecture
where a common satellite image product is transformed from its
initial format into to actionable intelligence information, which
includes image descriptors, metadata, image tiles, and semantic
labels resulting in an EO-data model. We also create a SAR image
ontology based on our EO-data model and a two-level taxon-
omy classification scheme of the image content. We demonstrate
our approach by linking high-resolution TerraSAR-X images with
information from CORINE Land Cover (CLC), Urban Atlas (UA),
GeoNames, and OpenStreetMap (OSM), which are represented in
the standard triple model of the resource description frameworks
(RDFs).

Index Terms—Analytics, linked open data, queries, ontologies,
resource description framework (RDFs), Strabon, TerraSAR-X
images.

I. INTRODUCTION

E ARTH OBSERVATION (EO) imaging satellites continu-
ously acquire huge volumes of high resolution scenes and

increase the size of archives and the variety and complexity of
EO image content. This exceeds the capacity of users to access
the information content. In this context, it requires new method-
ologies and tools, based on a shared knowledge from different
sources, for locating interesting information in order to sup-
port emerging applications such as change detection, analysis
of image time series, and urban analytics.

The state-of-the-art of operational systems for EO data
access (in particular for images) allows queries by geographical
location, time of acquisition, or type of sensor [1]. Nevertheless,
this information is often less relevant than the content of
a scene (e.g., specific scattering properties, structures, and
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objects). Kato coined the term content-based image retrieval
[2] to describe his experiments on the automatic retrieval of
images from a database by color and shape features. The term
has since then been widely used for describing the process
of retrieving desired images from large archives on the basis
of low-level features such as color, texture, and shape, which
can be automatically extracted from the images themselves.
Several successful systems following this principle have been
implemented during the last 20 years [3]–[7].

However, later the problem of matching the image con-
tent expressed as low-level primitive features with semantic
definitions, usually adopted by humans became evident; caus-
ing the so-called semantic gap [8]. In an attempt to reduce
the semantic gap, more systems including labeling or defini-
tion of the image content by semantic names were introduced.
For example, Rasiwasia et al. [9] clarified the problem of the
semantic gap and proposed several methods for linking the
image content with semantic definitions. Here, it was demon-
strated that the semantic representation has an intrinsic benefit
for image retrieval by introducing the concept of query by
semantic example (semantics and content). In general, an image
archive contains additional information apart from the pixel
raster data, e.g., distribution data, acquisition dates, processing
and quality information, and other related information, which
in general is stored and delivered together with the image
data in the form of text files. However, this information is not
fully exploited in querying the image archive. Thus, another
important issue is how to deal with and take advantage of the
additional information delivered together with EO images.

Presently, in addition to the image content and metadata, geo-
information plays an important role in finding scenes of interest
and projecting the results on a global view as a map repre-
sentation. Thus, the tendency is to use geospatial information
for querying and visualizing the content of image archives. In
[10], Shahabi et al. presented a three-tier system for effectively
visualize and query geospatial data. This system simulated
geolocations and fusion relevant geospatial data in a virtu-
alized model in order to support decisions. It used a set of
fundamental spatiotemporal queries and evaluated the queries
to verify decisions virtually prior to executing them in the real
world. This system was oriented to multimedia data. In [11], the
geotags and the underlying geocontext for an advanced visual
search were exploited showing satisfactory results in the image
retrieval. The importance of integrating a geospatial infrastruc-
ture based on standardized web services into an EO data library
was mentioned in [12]. The provision of a geospatial service
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Fig. 1. Architecture of the system. The system is composed of (upper-part) EO product processing and (lower-part) management of geospatial information.

infrastructure to access multilevel and multidomain datasets
is a challenging task. Stepinski et al. [13] discussed the lack
of tools for data analytics, citing as an example the NLCD
database, which has not been analyzed so far due to the lack of
tools beyond basic statistics and SQL queries; thus, the authors
introduced a new application called Land-ExA [13], which is
a Geoweb tool for query and retrieval of spatial patterns in
land cover datasets. This tool applies the concept of “query by
example” and, instead of presenting a ranked list of relevant
maps, it produces a similarity map indicating the spatial distri-
butions of the locations having patterns similar to the passed
query. Brunner et al. presented a system implementing web
services and open sources [14]. Here, an EO image is over-
lapped with vector sources via web services. It provides good
visualization; however, no real-image processing is achieved.
Advanced queries using metadata, semantics, and image con-
tent were presented in [15], showing how the integration of
multiple sources helps the end-user in finding scenes of inter-
est. Moreover, in recent years, the development of ontologies
as explicit formal specifications of the terms in the domain and
relations among them [16] has been applied to the EO frame-
work [17]. Knowledge mining in EO data archives based on
an ontology was suggested by Durbha and King [18], which
describes concepts and domains that can be adapted to EO
understanding. In [19], a taxonomy for high-resolution SAR
images is proposed.

In this paper, we present a new framework that sets the foun-
dations for the development of richer tools and applications
that focus on EO image analytics using ontologies and linked
open data. The proposed framework allows a user to express

complex queries by combining metadata of EO images (e.g.,
date and time of image acquisition), image content expressed
as low-level features (e.g., selected feature vectors), and/or
semantic labels (e.g., ports and bridges), as well as other pub-
licly available geospatial data sources expressed in resource
description framework (RDF) as linked open data. The pro-
posed framework also visualizes the results of such complex
queries using geographical locations. We demonstrated our
approach using synthetic aperture radar (SAR) data, specifically
very-high-resolution TerraSAR-X images as EO products, and
CORINE Land Cover (CLC), Urban Atlas (UA), GeoNames,
and OpenStreetMap (OSM) as geospatial data sources in the
form of linked open data.

This paper is organized as follows. Section II describes our
approach by presenting the system architecture. Section III
presents the EO data model and defines the SAR image ontol-
ogy. Section IV introduces query languages and shows some
examples of queries based on geospatial ontologies. Section V
presents some examples of urban analytics using queries based
on ontologies. Finally, the conclusion and further work are
presented in Section VI.

II. SYSTEM ARCHITECTURE

The system architecture is depicted in Fig. 1, which describes
the main components and the relations between them. The sys-
tem is organized into two main parts 1) processing of EO
products which is in raster format and 2) management of
geospatial information, which is in vector format. The system
aims at providing an approach for linking EO image content
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expressed as semantic labels with the geometry of raster and
vector objects that allows generation of analytic charts as the
result of queries based on semantics, metadata, and related
information.

The upper part of Fig. 1 is mainly focused on EO product pro-
cessing by generating a data model and semantic descriptions
based on knowledge discovery (KD) methods. The lower part is
focused on the integration of geospatial data sources expressed
in the form of linked open data and the answering and visual-
ization of complex queries based on an ontology that models
the EO domain and the processing of an EO product.

In the following, we start presenting the data sources man-
aged by the system and later the description of each module.

A. EO Products and Linked Open Data

EO products together with linked open data are used as data
sources in the system and they are described as follows.

1) EO Products: In general, EO images carry information
about physical parameters and, additionally, present the Earth
surface as matrices of pixels, where each pixel has an associ-
ated geographical location (latitude and longitude). However,
querying and accessing to EO images pose unique problems
since geographical features to be represented as ontological
objects are not defined in the structure of the data, which is a
matrix of pixels. Moreover, EO images may be complemented
with geospatial information in vector format, where the enti-
ties (objects) are well defined with the basic elementary points,
lines, and polygons. Vector data contain the geometry of these
elements.

In this paper, we worked with TerraSAR-X images. A
TerraSAR-X product [20] is mainly composed of the image
data and its metadata. The size of a very-high-resolution
TerraSAR-X image is on average 10 000× 10 000 pixels with
varying numbers of bits per pixel (16 or 32), different types
of data (float, unsigned int) and consisting of one or multiple
bands in GeoTiff format, the corresponding metadata are con-
tained in Extensible Markup Language (XML) files containing
related information in form of structured text and numbers. An
XML product description metadata file comprises about 250
entries grouped into categories such as product components,
product information (i.e., pixel spacing, coordinates, and for-
mat), processing parameters, platform data, calibration history,
and product quality annotation. The image spatial resolution
varies from 1 to 10 m depending on the ordered product. A
TerraSAR-X image has to be ordered in a selectable data rep-
resentation, where four main alternative representations are
available (Single look Slant range Complex (SSC), Multilook
Ground range Detected (MGD), Geocoded Ellipsoid Corrected
(GEC), and Enhanced Ellipsoid Corrected (EEC)).

2) Linked Open Data (LOD): The use of linked data is a
new research area, which studies how one can make RDF data
available on the Web, and interconnect it with other data with
the aim of increasing its value for everybody [21]. In the last
few years, linked geospatial data have received increased atten-
tion as researchers and practitioners have started tapping the
wealth of geospatial information available on the Web. As a
result, the linked open data cloud has been rapidly populated

with geospatial data (e.g., OSM) some of it describing EO
products (e.g., CLC and UA). The abundance of this data will
become useful to EO data centers to increase the usability of
the millions of images and EO products that are expected to be
produced in future.

In the following, we describe the EO products CLC and UA
that we have made available in RDF as linked geospatial data at
the Datahub portal1 and other useful publicly available linked
geospatial datasets, such as OSM and GeoNames.

a) CORINE land cover: The CLC project is an activity
of the European Environment Agency (EEA) that collects data
describing the land cover of 38 European countries. The project
uses a hierarchical scheme with three levels to describe land
cover with a mapping scale of 1:100 000 and a small mapping
unit of 25 ha. Level 1 is the most generic classification (e.g.,
artificial surfaces and agriculture areas) and comprises five cate-
gories, level 2 (e.g., urban fabric, industrial, and transport units)
comprises 15 categories, and the last level is the most detailed
one (e.g., continuous urban fabric, discontinuous urban fabric)
comprising around 45 categories.

b) Urban atlas: UA is also an activity of the EEA that
provides reliable, intercomparable, high-resolution land use
maps for 305 large European urban zones and their surround-
ings. Its geometric resolution is 10 times higher (1:10 000)
than that of CLC with a minimum mapping unit of 0.25 ha
for urban areas and 1 ha for other areas. The project uses a
four-level hierarchical scheme based on the CLC nomenclature.
The first level comprises four categories (e.g., forests, water,
and artificial surfaces), the second level comprises four cate-
gories (e.g., commercial units, mines, dump, and construction
sites), the third level comprises 12 categories (e.g., discontin-
uous urban fabric, sports and leisure facilities, and airports),
while the fourth level comprises 7 categories (e.g., fast transit
road and associated land). The UA is available for more than
150 urban agglomerations within Europe.

We stress that the CLC and UA datasets present complemen-
tary characteristics making them very attractive to an EO expert
who can combine them for performing analytical tasks, such
as the ones presented in Section V. Fig. 2 depicts exactly this
observation where the content of the CLC and UA datasets is
depicted for the region of Cologne, Germany. One can access
various kinds of metadata information for the areas classified
by either CLC or UA, such as its computed area, its code, the
date of production, as well as its land use/land cover.

c) OpenStreetMap: OSM2 maintains a global editable
map based on information provided by users, which is orga-
nized according to an ontology derived mainly from OSM
tags, i.e., attribute-value annotations of nodes, ways, and rela-
tions. The OSM data have been transformed into RDF and
published as linked open data by the LinkedGeoData project
(http://linkedgeodata.org/).

d) GeoNames: GeoNames3 is a gazetteer that collects
both spatial and thematic information for various place names
around the world. It contains over 10 million geographical

1[Online]. Available: http://datahub.io/organization/teleios
2[Online]. Available: http://openstreetmap.org/
3[Online]. Available: http://www.geonames.org/
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Fig. 2. Map centered on the region of Cologne depicting available information
from the (a) CLC and (b) UA.

names and consists of over 8 million unique features whereof
2.8 million populated places and 5.5 million alternate names.
All features are categorized into 1 out of 9 feature classes
and further subcategorized into 1 out of 645 feature codes.
GeoNames is integrating geographical data such as names of
places in various languages, elevation, population, and others
from various sources.

B. EO Product Processing

The upper part of Fig. 1 shows the modules used for EO
product processing. This part is composed of 1) data model
generation (DMG); 2) EO database (EO-DB); and 3) KD.

1) Data Model Generation: The DMG aims at transform-
ing from an initial form of full EO products to actionable intelli-
gence information, which includes image descriptors, metadata,
and image patches, called EO Data Model as depicted Fig. 3.
Finally, all this information is stored into a relational database
enabling the rest of the modules. During DMG the metadata
of an EO image is processed. In general, the metadata comes
in a text format stored as markup language (e.g., XML) files
including information about the acquisition time, the quality of
the processing, description of the image like resolution, pixel
spacing, number of bands, origin of the data, acquisition angles,
acquisition time, resolution, projection, etc. The use of meta-
data enriches the data model by adding more parameters that
can be used later in advanced queries. Then the EO image
is going to be cut into square-shaped patches and for each
patch a very-high-resolution quick-look is generated. These

Fig. 3. UML representation of the EO Data Model.

quick-looks are used in the KD component. In a next step, using
the patches, the image content analysis is performed by dif-
ferent feature extraction methods, which are able to describe
texture, color, spectral features, etc. Currently, the system relies
on two feature extraction methods, namely, the gabor linear
moment and weber local descriptors.

a) Gabor linear moment (GLM): GLM is a linear filter
used in image processing. Frequency and orientation represen-
tations of a Gabor filter are similar to those of the human visual
system, and it has been found to be particularly appropriate
for texture representation and discrimination [22]. In the spa-
tial domain, a 2-D Gabor filter is a Gaussian kernel function
modulated by a sinusoidal plane wave. Gabor filters are self-
similar; all filters can be generated from one mother wavelet by
dilation and rotation. The implementation of the Gabor filter
by Manjunath and Ma [22] convolves an image with a lat-
tice of possibly overlapping banks of Gabor filters at different
scales, orientations, and frequencies. The scale is the scale of
the Gaussian used to compute the Gabor wavelet. The texture
parameters computed from the Gabor filter are the mean and
variance for different scales and orientations. The dimension of
the final feature vector is equal to twice the number of scales
multiplied by the number of orientations; for instance, using
two scales and six orientations results in a feature vector with
24 elements.

b) Weber local descriptor (WLD): Inspired by Webers
law, Chen et al. [23] proposed a robust image descriptor for tex-
ture characterization in optical images with two components:
differential excitation and orientation. The differential excita-
tion component is a function of the ratio between two terms:
1) the relative brightness level differences of a current pixel
compared to its neighbors and 2) the brightness level of the cur-
rent pixel. The orientation component is the gradient orientation
of the current pixel. Using both terms, a joint histogram is con-
structed giving the WLD descriptor as a result. This filter was
adapted for SAR images [24]. Here, the gradient in the original
WLD was replaced by the ratio of mean differences in vertical
and horizontal directions.
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As result of the DMG, part of the EO Data Model is
created and stored into the database. This model will be com-
pleted by using active learning methods for semantic labeling
of the image content and posteriori it will be complemented
with geospatial information coming from linked open data
sources.

2) EO Database: The EO product processing is centered on
a relational database management system (DBMS), where the
database structure supports the KD component after mapping
the EO Data Model into several tables and creating the relations
between them. The use of a DBMS provides some advantages
such as the natural integration of the different kinds of informa-
tion, the ensuring of the referential integrity, the speed of the
operations. Therefore, all the information about the EO product
such as patches with geographical locations, image coordinates,
metadata entries, extracted features, and quick-looks are stored
into a structured table-based scheme, which implements the
proper relations between the tables and indices for performance
optimization.

3) Knowledge Discovery (KD): The KD component deals
with finding hidden patterns or existing objects in the EO-DB
and grouping them in semantic categories by involving the end-
user interactively for labeling the image content. The image
labeling or semantic definition is based on active learning meth-
ods being supported, e.g., by a support vector machine (SVM).
Starting from a limited number of labeled data, active learning
selects the most informative samples to speed up the conver-
gence of accuracy and to reduce the manual effort of labeling
[25]. The two core components in active learning are the sam-
ple selection strategy and model learning, which are repeated
until convergence. In our implementation of the sample selec-
tion (cf. Fig. 1), a set of image patches are presented to the
end-user, who will give positive and negative feedback exam-
ples assuming that a positive example is a patch containing an
object of interest. Later, the list of positive and negative samples
is passed as training data (TD) to a SVM. The SVM creates
a model based on the TD, using this model it will be able to
predict whether another patch belongs to the desired category
or not. At the beginning of the procedure, when only a few
labeled tiles are available, a coarse classifier is learned. After
that, we repeat the iteration of the two components until the
classification result is satisfactory. The number of iterations is
determined by the end-user, who will stop the interactive loop
when he is satisfied with the results. These results are grouped
as a new category with a semantic label given by the end-user.
Thus, this component adds semantic descriptors to the EO Data
Model.

C. Management of Geospatial Information

The lower part of Fig. 1 is responsible for enriching EO
products with auxiliary data, e.g., land cover categories taken
from CLC and geographical location of points taken from
Geonames. These offer querying functionalities to users that go
beyond the ones currently being available to them. This can be
done by relying on semantic web technologies, such as stRDF
and stSPARQL, OWL ontologies, and geospatial data sources
expressed as linked data.

The enrichment of EO products stored in the EO-DB involves
first a transformation step of the relational database encoding
to the data model RDF. This transformation is guided by an
OWL ontology that models the EO domain and the knowl-
edge pertaining to the processing of an EO product as it was
previously described. This ontology is hereinafter called SAR
ontology. The result of the transformation is the RDF descrip-
tion of the EO products, which is subsequently stored in a
Strabon RDF store together with other available linked open
data, such as CLC. The Strabon endpoint component is the
interface that provides user access to the content of Strabon by
allowing users to formulate complex queries in the stSPARQL
query language. The Strabon endpoint also offers capabilities
to visualize the results of complex queries on a map and dia-
grams that are useful for data analytics. An important part of our
architecture is that it allows the users also to leverage the linked
data offered by the Strabon endpoint and to develop domain-
specific services (e.g., data mining and rapid mapping) as well
as general-purpose applications (e.g., visualization tools [26]).

III. EO DATA MODEL AND SAR ONTOLOGY

After the processing of EO products, a data model is gener-
ated in order to provide all information representing actionable
intelligence that later is exploited for semantic definition of
the image content. In a further step, the description of the EO
products is made by using RDFs and ontologies.

A. EO Data Model

The EO data model has been introduced in [15]. Here,
we present an enhanced and extended version of this model
including semantic annotations as is depicted in Fig. 3.

The EO Data Model represents an EO product, which is com-
posed of metadata, a raster image, and vector data. The raster
image is divided into patches, which are converted to feature
vectors by applying feature extraction methods. Later, using
machine learning methods, the patch content is associated with
semantic labels (categories) giving as result a semantic cata-
logue of the image. From this model, the main processing unit
is a patch because it consists of geographical information, it has
associated feature vectors, and it includes semantic definitions.
This data model is transformed to the standard triple model of
the RDF in order to be part of the SAR ontology and to be
linked to other data, e.g., CLC and UA.

B. Definition of the SAR Ontology

In order to define the SAR ontology, the semantic annotation
of the SAR image content is organized as two-level hierarchi-
cal taxonomy, which later is used as a main component of the
ontology. In this section, we define the SAR ontology based on
our EO Data Model and the TerraSAR-X taxonomy.

1) TerraSAR-X Taxonomy: The TerraSAR-X taxonomy is
the result of a careful analysis and annotation of the content of
SAR images [19]. A sufficiently large dataset that composed of
several TerraSAR-X scenes was created in order to perform the
annotation on a large set of TerraSAR-X data. The acquisition
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Fig. 4. Taxonomy scheme with two levels: level 1 gives general information
about the categories and level 2 details each category of level 1.

Fig. 5. (Left–right) high-density urban area, forest broadleaf, ocean, pasture,
skyscraper, road, lake, and bridge.

of TerraSAR-X products covers 109 different areas around the
world. The total number of patches obtained after running the
DMG is about 110 000 and these patches were classified into
about 850 semantic categories. For these categories, about 75
independent labels were defined and we grouped these labels
into a hierarchical semantic annotation scheme [27]. The anno-
tation was made using the machine learning methods described
above. Our scheme is a two-level annotation scheme where
level 1 gives general information about the content of a patch
(e.g., agriculture, bare ground, forest, transportation, unclassi-
fied, urban area, or a water body), while level 2 details the
general information from level 1 (e.g., for forest − > forest
broadleaf, forest coniferous, forest mixed, parks, trees, and not
specified further).

Fig. 4 presents only few examples of the taxonomy defined
for TerraSAR-X during the annotation procedure. The complete
TerraSAR-X taxonomy is presented in detail in [27]. Examples
of the image content are presented in Fig. 5. Here, we selected
TerraSAR-X patches representing six major landuse classes
(urban area, forest, water bodies, transportation, agriculture,
and bare ground). Fig. 5 can be seen that urban area classes are
the classes with very high brightness. Semantic class forest has
medium brightness and homogeneous texture. The brightness
varies according to the thickness of vegetation. Roads appear
as dark linear features and class ocean appears as dark pixels in
the TerraSAR-X image.

In the following, the SAR ontology derived from our
TerraSAR-X taxonomy is described.

2) SAR Ontology: The description of the EO products fol-
lows the OWL ontology4 depicted in Fig. 6 and which will be

4[Online]. Available: http://www.earthobservatory.eu/ontologies/dlrOntology.
owl

Fig. 6. SAR ontology based on the two-level classification scheme defining the
semantic categories of TerraSAR-X images.

referred as the SAR ontology. It comprises the following major
parts.

1) The part that comprises the hierarchical structure of a
product and the XML metadata associated with it (e.g.,
time and area of acquisition, sensor, imaging mode, and
incidence angle).

2) The part that defines the concepts and properties that
formalize the outputs of the data model generation com-
ponent (e.g., patch and feature vector).

3) The part that defines the land cover/use classification
scheme for annotating image patches that was constructed
while experimenting with the KD framework presented
above (e.g., “port,” and “urban built-up”).

In particular, the SAR ontology comprises the following
classes (as shown in Fig. 6).

1) Image. This class corresponds to TerraSAR-X satellite
images. Instances of this class are TerraSAR-X images.

2) Product. This class corresponds to EO products that
are associated with TerraSAR-X images. An instance
of the class product might be associated with multi-
ple instances of the class Image through the property
hasImage.

3) Metadata. This class corresponds to TerraSAR-X xml
annotation file. Instances of this class are TerraSAR-X
metadata entries.

4) Patch. This class corresponds to patches of an image as
they are generated using the tiling procedure mentioned
in Section II-B1. Instances of this class are associated
with instances of the class Image through the property
hasImage.

5) FeatureVector. This class corresponds to a feature vec-
tor that is computed for a specific patch. An instance
of this class is a feature vector value for an instance of
the Patch class with which it is associated through the
property hasFeatureVector.

6) LandCover. This class corresponds to the land cover/land
use of a geographical area that a patch occupies. The
LandCover class has a number of subclasses based on the
classification scheme of Fig. 4, which is reflected in the
SAR ontology.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ESPINOZA-MOLINA et al.: VERY-HIGH-RESOLUTION SAR IMAGES AND LINKED OPEN DATA ANALYTICS BASED ON ONTOLOGIES 7

7) Label. This class corresponds to the semantic label that
is assigned to a patch through the property hasLabel.
Instances of the class Label are associated with sub-
classes of the class LandCover through the property
correspondsTo.

IV. QUERY LANGUAGES

A. Standard Query Languages

Using the EO Data Model stored in the relational database,
we can access the information via Standard Query Language
(SQL) statements. SQL is a statement-based logical query lan-
guage, which allows finding and exploiting data in a standard
manner. SQL statements allow us to easily query an image
archive combining all defined entities and their attributes. For
example, a typical SQL statement for searching EO products
within in a specific time period is

SELECT resolution, startimeutc, stoptimeutc
FROM metadata
WHERE starttimeutc > 30/06/2007 and

stoptimeutc < 30/06/2010.

This query returns the EO images acquired during this
period. More complicated queries can be performed based on
SQL statements, e.g.,

SELECT �
FROM patch
WHERE mean (gabor-features) > 45.

A list of patches with a mean value of their extracted features
being greater than 45 is returned.

From an application point of view, this kind of queries
is a powerful tool in finding information in the relational
database.

B. Data Model stRDF and the Query Language stSPARQL

The stRDF data model and the stSPARQL query language
are extensions of the RDF data model and the SPARQL query
language for the representation and querying of RDF data
with geospatial information. stRDF introduces the new data
type strdf:geometry for modeling geometric objects that
change over time. The values of this data type are typed
literals that encode geometric objects using the OGC stan-
dard well-known text (WKT) or Geographic Markup Language
(GML). In stRDF, information is expressed as triples of
URIs, literals, and blank nodes in the form subject predi-
cate object. stRDF allows triples to have an optional fourth
component representing the time the triple is valid in the
domain.

The following four RDF triples encode information related
to a patch of an image. The prefix tsx corresponds to
the namespace for the URIs that refer to the SAR ontol-
ogy, while xsd and strdf correspond to the XML Schema
namespace and the namespace for our extension of RDF,
respectively.

tsx:QKL_TSX1_SAR . . . 047_160_0_0.jpg a tsx:Patch;
tsx:hasSize "160"ˆ̂ xsd:integer;
tsx:hasIndexI "0"ˆ̂ xsd:integer;
strdf:hasGeometry "POLYGON((12.28 45.45,...,

12.28 45.45))"ˆ̂ strdf:WKT.

The fourth triple above shows the use of spatial literals to
express the geometry of the patch in question. This spatial lit-
eral specifies a polygon that has exactly one exterior boundary
and no holes. The exterior boundary is serialized as a sequence
of the coordinates of its vertices. These coordinates are inter-
preted according to the WGS84 geodetic coordinate reference
system identified by the URI http://spatialreference.
org/ref/epsg/4326/ (which can be omitted from the spatial
literal).

stSPARQL provides functions that can be used in filter
expressions to express qualitative or quantitative spatial rela-
tions. For example, the function strdf : contains is used
to encode the topological relation nontangential proper part
inverse (NTPP−1) of RCC-8 [28]. stSPARQL also supports
update operations (insertion, deletion, and update of stRDF
triples) on stRDF data in SPARQL Update 1.1.5 In addition,
stSPARQL performs the corresponding spatial selection and
spatial join by instantiating the two queries templates.

The following query, expressed in stSPARQL, computes the
distribution of instances of UA classes in TerraSAR-X images.

SELECT ?uaLandUse (COUNT(DISTINCT ?ua) AS ?count)
WHERE {
?ua ua:hasCode ?uaCode.
?ua ua:hasLandUse ?uaLandUse.
?ua geo:hasGeometry ?uaGeometry.
?uaGeometry geo:asWKT ?uaGeo.

#Berlin
FILTER (strdf:mbbIntersects(?uaGeo,
"POLYGON ((13.317529 52.494114000000003,13.4
29790499999999 52.50573,13.416467000000001
52.554319999999997,13.303621 52.54265600000
0001,13.317529 52.494114000000003))"
ˆ̂ strdf:WKT)).

}
GROUP BY ?uaLandUse
ORDER BY DESC(?count)

In the above query, linked data from UA are used to
retrieve geospatial information about a TerraSAR-X scene
taken over Berlin, Germany. The strdf : mbbintersects
function checks whether the minimum bounding box of the
geometry of each UA class intersects with the minimum bound-
ing box of the polygon that represents the given TerraSAR-X
image of Berlin. We realize that stSPARQL enables us to
develop advanced semantics-based querying of EO data along
with open linked data being available on the web. In this way,
the architecture of Fig. 1 unlocks the full potential of these
datasets, as their combination the abundance of data being
available on the web is offering significant added value.

5[Online]. Available: http://www.w3.org/TR/sparql11-update/
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The stRDF model and stSPARQL query language have been
implemented in the Strabon system, which is freely available as
open source software.6 Strabon extends the well-known open
source Sesame 2.6.3 RDF store and uses PostGIS as its spatially
enabled backend DBMS.

V. GEOSPATIAL DATA ANALYTICS

In the following experiments, we use a test dataset com-
posed of 200 worldwide TerraSAR-X scenes, where 109 images
were applied to the formulation of the SAR Ontology described
above. In most examples, we interpret three TerraSAR-X scenes
taken over Germany (Berlin, Munich, and Cologne) since
CLC and UA data are available for these cities. We also use
Geonames data. It is important to mention that applications
are able to link to different data sources and to use and share
data effectively for answering queries and supporting specific
requirements by the use of RDFs.

A. Semantic Link Between Geospatial Ontologies

By exploiting the expressivity of the query language
SPARQL and the capability of Strabon Endpoint to export
query results encoded into various formats (XML, CSV, KML,
etc.), or to visualize them as diagrams, users can explore
implicit properties about data.

For example, an interesting question is: What is the distri-
bution of TerraSAR-X semantic categories in a specific area?.
This can be answered by the query in Table I, which counts how
many unique patches, in the area of Cologne, are attributed to
specific TerraSAR-X categories. By posing similar queries for
the CLC, UA, and GeoNames datasets and by visualizing the
results as pie charts (cf. Fig. 7), a user can have an insight for
the category distribution of each dataset. We observe that the
TerraSAR-X and CLC datasets have a high diversity of cate-
gories being almost uniformly distributed among the patches,
while UA and GeoNames have less diversity of categories and
one or two categories are attributed to almost every patch.
Table II summarizes the results of the Fig. 7; here, it can be
seen that TerraSAR-X has the highest number of semantic cate-
gories, where 16% of the patches are classified as “high-density
urban area.”

SPARQL can also be used to correlate different datasets and
to discover similarities or conflicts between them. For exam-
ple, the query in Table III selects all CLC categories which
are attributed to patches labeled as “Industrial area” in the SAR
ontology. Table IV summarizes the results. Here, we observed
that the category “industrial area” in the SAR ontology is also
characterized as industrial area in CLC and UA; however, more
semantic categories are found in both datasets.

Finally, we can use SPARQL to discover statistic proper-
ties by correlating different datasets. For example, the query
in Table V counts how many patches with a specific label in
the area of Munich are characterized as “continuous urban fab-
ric” according to the CLC dataset. The results of this query and
two similar ones about Cologne and Berlin are visualized as a

6[Online]. Available: http://www.strabon.di.uoa.gr/

TABLE I
NUMBER OF PATCHES, IN THE AREA OF COLOGNE, THAT ARE

ATTRIBUTED TO SPECIFIC CATEGORIES ACCORDING TO THE SAR
ONTOLOGY

Fig. 7. Categories of different datasets (TSX, CLC, UA, and GeoNames) for
the city of Cologne.

histogram in Fig. 8. These queries select patches in continu-
ous urban fabric CLC areas. Thus, the TerraSAR-X categories
that are selected are similar (e.g., different types of residen-
tial areas and high building areas). In Fig. 8, we can also see
that the largest number of “high residential area” patches occur
is in Munich. The number of “roads” is similar in Berlin and
Cologne.

B. Land Use Distributions

In the following examples, we present land use distributions
of the different geospatial datasets.

a) Land use distribution of the whole dataset: Fig. 9 shows
the land use distribution of the whole dataset according to the
SAR Ontology. As we can see, around 34 different land use
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TABLE II
DISTRIBUTION OF SEMANTIC CATEGORIES OVER COLOGNE CITY

ACCORDING TO TERRASAR-X, CLC, UA, AND GEONAMES

TABLE III
SELECT ALL CLC CATEGORIES WHICH ARE ATTRIBUTED TO PATCHES

LABELED AS “INDUSTRIAL AREA” IN THE SAR Ontology

TABLE IV
CLC, UA AND GEONAMES CATRGORIES ATTRIBUTED TO PATCHES

LABELED AS “INDUSTRIAL AREA” IN THE SAR Ontology

categories can be identified, with “medium density residential
area” ranking first, followed by “roads,” and “high-density
residential area.”

b) Land use of Berlin: Fig. 10 shows the land use distribution
of Berlin according to the UA dataset. The pie chart visualizes
the result of the stSPARQL query described in Section V. As we
can see, the “continuous urban fabric areas” cover the highest
percentage of land use in Berlin followed by “water bodies.”

c) Land use of Munich: In this example, we look for semantic
categories within an area of Munich characterized as “contin-
uous urban fabric.” The query shown in Table VI discovers
the semantic categories of the SAR ontology that correspond to
the “continuous urban fabric areas” of Munich according to the
CLC dataset. The result of the query is visualized in Fig. 11.
Here, we can observe that categories such as “high-density
residential area,” “sport area,” “forest,” and “channel,” which

TABLE V
COUNT HOW MANY PATCHES IN THE AREA OF MUNICH WITH A SPECIFIC

LABEL ARE CONTAINED IN AN AREA CHARACTERIZED AS “CONTINUOUS

URBAN FABRIC” ACCORDING TO THE CLC DATASET

Fig. 8. How many patches with a specific label are contained in a continuous
urban fabric area (CLC)?

Fig. 9. Land use distribution of our test dataset.
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Fig. 10. Land use distribution of Berlin according to UA.

TABLE VI
COUNT HOW MANY PATCHES IN THE AREA OF MUNICH WITH A SPECIFIC

LABEL ARE CONTAINED IN AN AREA CHARACTERIZED AS “CONTINUOUS

URBAN FABRIC”

belong to the SAR ontology are characterized as “continuous
urban fabric” in the CLC dataset.

d) Land use of Cologne: In this example, we analyzed the
number of UA areas of Cologne contained by a TerraSAR-X
patch. The query specification is described in Table VII.
Here, this returns the number of UA areas that exist in each
TerraSAR-X patch of Cologne city. The result is shown in
Fig. 12.

C. Urban Analytics

Queries help us to get an idea about the existing semantics
that are in the database and the relation between these semantics
and other different parameters (e.g., location of the scene and
incidence angles).

Fig. 11. Semantic categories of the SAR ontology within an area of Munich
characterized as continuous urban fabric.

TABLE VII
NUMBER OF UA AREAS OF COLOGNE BEING CONTAINED IN

A TERRASAR-X PATCH

Fig. 12. Number of UA areas of Cologne contained in a specific patch.

e) Cities ranked by green areas: Fig. 13 shows the cities of
our experimental database ranked by green areas. The bar chart
illustrates the distribution of green areas by city. A query was
performed using semantic labels like “trees,” “forest,” “parks”
and we counted the total number of patches belonging to these
categories. The results highlighted that the city code 59, refer-
ring to Teica in Romania, has the highest percentage of green
areas.
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Fig. 13. Cities ranked by green areas.

Fig. 14. Distribution of semantic categories by incidence angle.

Fig. 15. Distribution of water bodies by continent.

f) Distribution of semantic labels by incidence angle: In this
kind of query, we used metadata and semantic labels in order to
show the distribution of semantic labels versus incidence angle
and we analyzed whether there is a correlation between them.
Fig. 14 shows the results. Here, it can be observed that most of
the semantic labels appear at incidence angles between 35◦ and
40◦; however, the category “forest” occurs at angles of more
than 45◦.

g) Distribution of water bodies by continents: In this kind
of query, we used Geonames and semantic categories from the
SAR ontology in order to group our scenes according to the
place and to semantic labels being associated with water bodies
(e.g., channels, rivers, and ocean). Fig. 15 shows the results.
One can see that the member states of the European Union
have the highest diversity in water bodies linked to 23 different
semantic categories, where the major category corresponds to
“river and stubble.” Oceania has only three water body classes.
“Channels” exist in five continents, while the category “river
and agriculture” does not exist in North America and Oceania.

VI. CONCLUSION

Our approach in this paper is focused on geospatial data ana-
lytics by using very-high-resolution SAR images, by defining
an ontology to explain the image content, and by integrating
linked open geospatial data sources. In this paper, we presented
a remote sensing application case oriented to geospatial data
analytics for TerraSAR-X images. Data analytics is achieved
using the defined SAR ontology and the proposed system
architecture.

This deals with the integration of multiple source of infor-
mation such as image content expressed as low-level features,
metadata entries, semantic descriptors of the image content
being represented in an ontology as well as publicly available
geospatial data sources expressed in RDFs as linked open data
such as CLC and UA. The system allows end-user to pose
complex queries and to visualize the results using geographical
locations. Moreover, the content of a satellite image together
with linked open data land use/land cover is summarized in
charts that explain the urban analytics.

Finally, we conclude that the combination of linked open data
with EO images is without doubt a challenging task that may be
achieved if proper tools are available. It addresses new research
topics such as sharing standardization and optimization, image
retrieval using several sources, and query languages. Moreover,
as future work, it remains the evaluation of the system perfor-
mance as well as the enhancement of the SAR ontology, and the
generalization of the ontology for EO images. We could also
think in adding statistical machine learning methods for image
retrieval using heterogonous data sources.
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