
Three-Dimensional Entity Resolution with JedAI

George Papadakis1, George Mandilaras1, Luca Gagliardelli2, Giovanni Simonini2, Emmanouil Thanos3,
George Giannakopoulos4, Sonia Bergamaschi2, Themis Palpanas5, Manolis Koubarakis1

1National and Kapodistrian University of Athens, Greece {gpapadis,gmandi,koubarak}@di.uoa.gr
2University of Modena and Reggio Emilia, Italy {name.surname}@unimore.it

3KU Leuven, Belgium emmanouil.thanos@kuleuven.be
4NCSR “Demokritos”, Greece ggianna@iit.demokritos.gr

5University of Paris & French University Institute (IUF), France themis@mi.parisdescartes.fr

Abstract

Entity Resolution (ER) is the task of detecting different entity profiles that describe the same real-world objects. To facilitate
its execution, we have developed JedAI, an open-source system that puts together a series of state-of-the-art ER techniques that
have been proposed and examined independently, targeting parts of the ER end-to-end pipeline. This is a unique approach, as
no other ER tool brings together so many established techniques. Instead, most ER tools merely convey a few techniques, those
primarily developed by their creators. In addition to democratizing ER techniques, JedAI goes beyond the other ER tools by
offering a series of unique characteristics: (i) It allows for building and benchmarking millions of ER pipelines. (ii) It is the only
ER system that applies seamlessly to any combination of structured and/or semi-structured data. (iii) It constitutes the only ER
system that runs seamlessly both on stand-alone computers and clusters of computers - through the parallel implementation of all
algorithms in Apache Spark. (iv) It supports two different end-to-end workflows for carrying out batch ER (i.e., budget-agnostic), a
schema-agnostic one based on blocks, and a schema-based one relying on similarity joins. (v) It adapts both end-to-end workflows
to budget-aware (i.e., progressive) ER. We present in detail all features of JedAI, stressing the core characteristics that enhance
its usability, and boost its versatility and effectiveness. We also compare it to the state-of-the-art in the field, qualitatively and
quantitatively, demonstrating its state-of-the-art performance over a variety of large-scale datasets from different domains.

The central repository of the JedAI’s code base is here: https://github.com/scify/JedAIToolkit .
A video demonstrating the JedAI’s Web application is available here: https://www.youtube.com/watch?v=OJY1DUrUAe8.

Keywords: Entity Resolution, Blocking, Matching, Clustering, Batch Methods, Progressive Methods, Massive Parallelization

1. Introduction

Entity Resolution (ER) constitutes a core data integration
task, with many applications that range from knowledge bases
to question answering [1, 2, 3]. Its goal is to detect duplicate
entity profiles that describe the same real-world objects. Due
to the lack of a unique identifier per real-world object, ER can
only be resolved by overcoming two main challenges: (i) the
inherently quadratic computational cost, O(n2), as in the worst
case, every entity profile should be compared with all others,
and (ii) the noise and/or ambiguity in the attribute names and
values that describe each entity profile, hampering the detec-
tion of duplicates.

Existing ER systems [3, 4, 5, 6] attempt to tackle the above
two challenges in a partial (unidimensional) way. In essence,
the end-to-end pipelines they construct apply a batch, seri-
alized processing that relies heavily on schema and domain
knowledge to optimize two main steps [3]: (i) Blocking, which
groups together similar entity profiles, restricting the computa-
tional cost to the comparison of a subset of the input entities,
and (ii) Matching, which applies complex similarity measures
and rules in order to distinguish between matching and non-
matching entities. Each system, though, typically implements

a few methods (primarily those proposed by its creators), and
requires heavy user involvement. Yet, not all users are capa-
ble of configuring and using these ER systems. As a result, the
potential user base of such systems is restricted to experts, and
even in that case, their capabilities and scope are rather limited.

In this paper, we present the Java gEneric DAta Integration
(JedAI) system, an open-source ER system [7] that goes be-
yond the state-of-the-art in the field by covering a broad range
of the main techniques in the literature and by supporting a large
variety of use cases. In fact, JedAI can create any end-to-end
pipeline that is defined by the following three dimensions:

1. Schema-awareness. JedAI supports both schema-based
and schema-agnostic pipelines. The former rely on sim-
ilarity join techniques, which efficiently detect near du-
plicates based on the noise-free, distinctive values of a
specific attribute name. In contrast, the schema-agnostic
workflows extract overlapping blocks from all attribute
values and refine them through generic, efficient tech-
niques that disregard any schema knowledge.

2. Budget-awareness. JedAI supports both budget-agnostic
and budget-aware pipelines. The former are executed as
a batch process that produces results upon its completion,

Preprint submitted to Elsevier May 29, 2020

Schema-
awareness

Budget-
awareness

Execution mode

Schema-agnostic

Serial processing

Parallelization

Schema-based

Budget-agnostic

Budget-aware

Figure 1: The solution space of the end-to-end ER pipelines that can be con-
structed by JedAI.

whereas the latter operate in a pay-as-you-go manner that
produces results progressively - their goal is to optimize
performance within a specific budget of temporal or com-
putational resources.

3. Execution mode. JedAI supports both the serialized ex-
ecution of an end-to-end pipeline and its massive paral-
lelization through Apache Spark [8].

Essentially, each pipeline category involves methods of two
fundamentally different types. By allowing the methods of each
category to be combined with those of all other dimensions,
JedAI introduces the three-dimensional ER, which covers the
entire solution space that is formed by the three axes in Figure 1.
This is a unique feature, given that all other tools merely cover
the small, two-dimensional part of the solution space that is
highlighted in gray.

Another unique feature of JedAI is its generality. JedAI
supports both Clean-Clean ER, which resolves two individu-
ally duplicate-free, but overlapping data sources, and Dirty ER,
which receives as input a single data source that contains du-
plicates in itself. This goes beyond top tools like Magellan [3],
which exclusively supports Clean-Clean ER. Most importantly,
JedAI applies seamlessly to data of any structuredness, support-
ing input formats that range from structured entities to semi-
structured and un-structured ones (i.e., described by free text).
As a result, its pipelines apply to any domain, as long as its
entity profiles are described by textual values, regardless of the
level of noise in attribute values and names. The only require-
ment is that the matching entities share parts of their attribute
values. This is demonstrated by the experiments in Section 9,
which involve a wide range of large datasets from various do-
mains (e-commerce, bibliographic data, census data etc).

An additional advantage of JedAI is its high usability.
JedAI conveys non-learning methods that require minimal hu-
man intervention, as neither domain knowledge nor training
sets are needed. Users are only required to select the meth-
ods that will form an end-to-end workflow. Optionally, the in-
ternal parameters of each method can be fine-tuned for optimal
performance. In case of no relevant experience, the default con-
figurations can be used, as they have been experimentally ver-
ified to consistently achieve high performance across various,
diverse datasets [9, 10]. In this way, JedAI allows non-experts

to create complex pipelines of high performance with minimal
human intervention, almost in a hands-off manner. This is made
possible through an intuitive user interface that provides hints
for building end-to-end solutions, while facilitating the obser-
vation of the input data as well as the intermediate and the final
results. Notably, the large variety of resulting pipelines can be
easily benchmarked through the GUI with respect to both ef-
fectiveness and time efficiency. This facilitates to identify the
best performing baseline and to assess the impact of a partic-
ular method, workflow step or configuration parameter on the
overall performance.

In summary, this work makes the following contributions:

• We analytically describe all important aspects of JedAI,
delving into the types of solutions it creates and the cor-
responding end-to-end workflows. We explain the role of
every component in its modular architecture, outlining the
functionality of each method it includes. Thus, we facili-
tate not only the use of JedAI, but also its extension with
more methods and modules.

• We perform an extensive experimental evaluation that in-
volves 10 real-world and 7 synthetic datasets, whose sizes
range from few thousand to few million entities. We eval-
uate the relative performance of all types of end-to-end
pipelines created by JedAI (batch, progressive, schema-
based, schema-agnostic, serialized and parallel ones), pro-
viding useful insights into their pros and cons.

• We compare JedAI with the state-of-the-art, qualitatively
and quantitatively, highlighting the limitations of existing
tools and explaining how we go beyond them.

The rest of the paper is structured as follows: Section 2 pro-
vides background knowledge, while Section 3 presents JedAI’s
modular architecture. The back-end is analytically described
in Section 4, the front-end in Section 5 and the data model in
Section 6. Section 7 presents the massively parallel operation
of JedAI, Section 8 discusses applications employing JedAI,
whereas Section 9 is devoted to the thorough experimental anal-
ysis. The paper concludes with a qualitative comparison with
the state-of-the-art in Section 10 and a summary of the key
points in Section 11.

2. Problem Definition

We call the representation of a real-world object an entity
profile, or entity for simplicity. More formally, an entity profile
consists of a unique identifier and a set of textual name-value
pairs. This simple model is versatile enough to accommodate
both structured or semi-structured data. We say that two entities
ei and e j are matching or duplicates, ei≈e j, if they refer to the
same real-world object.

In this context, Entity Resolution (ER) is the task of identi-
fying the matching entities within a given set of entity profiles,
E. When the entities come from two different data sources (i.e.,
E = E1∪E2) and each data source is individually duplicate-free,
we have a Clean-Clean ER problem. When the entities comes

2

User

JedAI-core
Data Reading

W
or

kfl
ow

 M
an

ag
er

Evaluation
Data Writing

BC

BB

SC

CC

Pr

EM

Pr
og

re
ss

iv
e,

 b
lo

ck
in

g-
ba

se
d

w
or

kfl
ow

D
oc

um
en

ta
tio

n

Pa
ra

m
et

er
 C

on
fig

ur
at

io
n

Te
xt

 P
ro

ce
ss

in
g

D
at

a
M

od
el

EC

SJ
B

at
ch

, j
oi

n-
ba

se
d

w
or

kfl
ow

BC

BB

SC

CC

EM

EC

B
at

ch
, b

lo
ck

in
g-

ba
se

d
w

or
kfl

ow

EC

SJ

Pr
og

re
ss

iv
e,

 jo
in

-b
as

ed
 w

or
kfl

ow

Data
Store

Data
Store

JedAI-gui

W
iz

ar
d

In
te

rfa
ce

 (J
av

aF
X)

Ju
py

te
r N

ot
eb

oo
k

(p
yj

ni
us

)

C
om

m
an

d-
lin

e
In

te
rfa

ce

Set methods

Output

EC

Input

Figure 2: JedAI’s model-view-controller architecture.

from the same data source, which contains duplicates, we have
a Dirty ER problem.

We call matching function the binary function � that takes
as input two entities and determines the likelihood that they
are duplicates: � : E × E → (0; 1). Usually, matching func-
tions require the computation of similarity measures, which are
prohibitively expensive to apply on all possible pairs of enti-
ties—the complexity of this naı̈ve approach is O(|E|2). The goal
of blocking methods is to alleviate this complexity by indexing
similar entities into blocks, so as to restrict the actual compar-
isons to entities co-occurring in at least one block. The indexing
functions employed for blocking are called blocking functions.
A blocking function �(ei) → {k1; ::; kn} takes as input an entity
and returns one or more blocking keys, which are used to place
the entity into one or more buckets (i.e., the blocks).

After applying the matching function to all pairs in a set of
blocks B, a clustering algorithm leverages the results of the
matching function to produce the final outcome of ER. This
consists of a set of equivalence clusters, such that every cluster
corresponds to a distinct real-world object and contains all en-
tities that describe it. Note that for Clean-Clean ER, all equiva-
lence clusters have a cardinality up to two.

Let ci; j stand for an individual comparison between entities
ei and e j, CB for the set of pairwise comparisons in the set
of blocks B, D for the set of matching pairs after the cluster-
ing phase, and M for the real set of matching entities (i.e.,
ground-truth). To assess the quality of a set of blocks B, we
employ the blocking recall, which is called Pairs Complete-
ness and is defined as PC = |CB ∩ M|=|M|, and the block-
ing precision, which is called Pairs Quality and is defined as
PQ = |CB ∩ M|=|CB|. To assess the quality of the overall ER
process, we employ recall and precision, which are respectively
defined as Re = |D ∩ M|=|M| and Pr = |D ∩ M|=|D|. We
also consider their harmonic mean, F-Measure (F1). Time ef-
ficiency is measured through the running time (RT) that inter-
venes between receiving the input entities and producing the
equivalence clusters.

3. JedAI Overview

JedAI aims to address the following goals:
• (G1) Broad data coverage. JedAI should apply seamlessly to
most types of structured and semi-structured data.

• (G2) Broad literature coverage. JedAI should serve as a li-
brary of the main, established techniques in the literature.
• (G3) Broad scenario coverage. JedAI should support both
academic and commercial applications.
• (G4) High usability. JedAI should accommodate a broad user
base that includes both lay and expert users. The former should
be able to build complex, high performing end-to-end pipelines
for the data at hand without necessarily knowing all details
about the functionality of their methods. The latter should be
able to intervene in all aspects of JedAI’s functionality so as to
tailor it to their special needs.
• (G5) Extensibility. JedAI should facilitate its enrichment with
new techniques or even workflow steps by power users.
• (G6) High time efficiency. JedAI should process large datasets
quickly, not only in commodity, stand-alone systems, but also
in powerful computer clusters.

Goal G1 is accomplished through JedAI’s flat entity model,
which consists of a string-valued entity id (e.g., URI) and a set
of textual name-value pairs. This simple model is capable of
accommodating the main structured and semi-structured data
formats, while supporting noisy attribute names or values, tag-
style values (which are not associated with any attribute name)
and entity links, where the URI of an entity is given as an at-
tribute value to the associated entity. See Section 6 for details.

To meet G2, JedAI comprises numerous methods that sup-
port four different end-to-end ER workflows (cf. Section 4).

For G3, JedAI’s code is released under Apache License V2.0,
which supports both academic and commercial applications.
The former are further facilitated through JedAI’s benchmark-
ing functionality; its intuitive GUI allows every user to easily
evaluate the relative performance of a large variety of end-to-
end pipelines, in case a ground-truth is available (as is common
in academic applications). To additionally support commercial
applications, any workflow built by JedAI can operate indepen-
dently of a ground-truth, producing its own detected matches.

To address G4, JedAI equips novice users with a wizard-like
GUI, with documentation and with default parameters for every
implemented method. In case a ground-truth is available, they
can also use two ways of automatic parameter fine-tuning (see
Section 4.5). For power users, JedAI offers manual configura-
tion for each method as well as a modular architecture, where
every workflow step corresponds to a separate component that
implements a simple and clear interface. Every new class (al-
gorithm) implementing a particular interface can be seamlessly
integrated into the corresponding component, thus facilitating
extensibility (G5), too.

Finally, goal G6 is met for stand-alone systems through GNU
Trove [11], which provides high performance data structures
that operate on primitive data types instead of objects, restrict-
ing their time and space complexity to a large extent [12]. For
cluster systems, JedAI supports massive parallelization of all
methods and workflows through Apache Spark. This is actually
accomplished through the same GUI as the serialized execution.

The above six objectives are accomplished through JedAI’s
model-view-controller architecture, which is depicted in Figure
2. JedAI-gui provides the interfaces for user interaction (view),

3

JedAI-core implements the plethora of methods and workflows
(controller), and the Data Model component provides the data
structures that lie at its core (model). We elaborate on these
three parts in the next three sections.

4. Back-end: JedAI-core

This component implements four different end-to-end ER
workflows that are formed by two of JedAI’s dimensions:
budget- and schema-awareness (note that the execution mode
does not alter the form of the end-to-end workflows - only the
way they are carried out). For each workflow, we briefly de-
scribe the role of each step and the functionality of the avail-
able methods so as to facilitate their understanding and use
by researchers and practitioners. Typically, any method in a
workflow step can be combined with any method of the same
or the other steps. Thus, the more steps a workflow involves,
the higher is the number of valid combinations, which raises up
to several millions for the largest workflows. This is a unique
feature among all ER systems.

4.1. Budget- & schema-agnostic workflow

Figure 3 depicts this end-to-end pipeline along with the avail-
able methods per workflow step. All methods are inherently
crafted for highly noisy and heterogeneous data, despite their
learning-free functionality. They rely on a schema-agnostic
functionality that leverages all attribute values in each entity
rather than employing a particular set of attributes. Thus, they
are resilient to errors in attribute values. Excluding the input
and output steps, which are described in Section 6, the process-
ing steps are the following:

1) Schema Clustering (SC). This is an optional step, suit-
able for highly heterogeneous datasets with a schema compris-
ing a large diversity of attribute names. In these settings, it
significantly improves the overall precision at a limited cost on
recall by grouping together attributes that are syntactically sim-
ilar, but are not necessarily semantically equivalent [12, 13]. At-
tribute Name Clustering groups together attributes with similar
names, Attribute Value Clustering does the same for attributes
with similar values, and Holistic Attribute Clustering is a hybrid
method that considers both attribute values and names.

All methods can be combined with any similarity measure
and representation model from the Text Processing compo-
nent (see Section 4.5). They produce a set of attribute clusters,
which lay the ground for improving the next steps in various
ways: Block Building leverages them to break large blocks into
smaller ones, without missing duplicates [12], while Compari-
son Cleaning extracts the entropy per blocking key for a-priori
weighting candidate matches [13].

2) Block Building (BB). This step clusters similar entities
into blocks so as to drastically reduce the candidate match
space, cutting down on the overall ER running time. It includes
most of the state-of-the-art blocking methods [14] using their
schema-agnostic adaptation [9], which extracts multiple block-
ing keys from each entity. In this way, every entity participates
into several blocks, reducing the likelihood of missed matches,

i.e., duplicates having no block in common. In other words,
high recall is achieved by producing overlapping blocks with
high levels of redundancy. This comes, however, at the cost
of low precision, due to the large number of unnecessary com-
parisons [10] - the redundant ones, which are repeated across
different blocks, and the superfluous ones, which involve non-
matching entities.

The core approach is Token Blocking (TB) [15], which uses
as blocking keys every token in any attribute value. It is the only
parameter-free method in the literature, but is inappropriate for
sparse entity profiles with character-level errors.

To cover such cases, Suffix Arrays (SA) [16] extends TB by
converting its blocking keys into their suffixes that consist of
at least lmin characters. Then, it considers only the suffixes
appearing in at most bmax entities, i.e., maximum block size.
Extended Suffix Arrays [14, 9] alters SA by converting TB’s
blocking keys into all substrings (not just suffixes) with more
than lmin characters that occur in less than bmax entities.

A similar approach, independent of frequency thresholds, is
Q-Grams Blocking [14, 17], which transforms every TB block-
ing key into all substrings of q characters, i.e., q-grams. Ex-
tended Q-Grams [14, 9] improves Q-Grams by transforming
every TB blocking key into combinations of N q-grams.

All these hash-based methods create a separate block for ev-
ery distinct key such that two matches co-occur in a block if
they share at least one key. Duplicates with all their keys dif-
fering in at least one character are not placed in any common
block, thus being undetectable. To overcome this issue, other
methods rely on the similarity of keys.

The main similarity-based method is Sorted Neighborhood
(SN) [18], which sorts TB’s keys alphabetically and orders the
corresponding entities accordingly; then, it slides a window of
fixed size w over the sorted list of entities. In every iteration,
the last entity in the current window is compared with all other
entities in the same window. Extended Sorted Neighborhood
[14, 9] improves SN by sliding the window over the sorted list
of blocking keys, rather than the list of entities. This means that
each block combines w TB blocks.

Finally, LSH MinHash [19] and LSH Superbit Blocking [20]
create blocks with entities whose sets of keys exceed a certain
threshold on Jaccard or cosine similarity, respectively.

Note that any combination of the above methods is possible.
Usually, this is necessary for highly noisy datasets, e.g., those
including both character- and token-level errors.

3) Block Cleaning (BC). This is an optional step that cleans
the original blocks from those dominated by the redundant and
the superfluous comparisons. Removing these comparisons im-
proves precision at a minor cost in recall [10].

The core assumption in BC is that the larger a block is,
the less likely it is to contain unique duplicates, i.e., matches
co-occurring in no other block (e.g., a block corresponding
to a stop word). In this context, Size-based Block Purging
[21] discards all blocks exceeding a certain number of entities,
Cardinality-based Block Purging [15] discards all blocks ex-
ceeding a certain number of comparisons, Block Filtering [22]
retains every entity in a subset (r%) of its smallest blocks, and

4

Entity
Matching

Data
Reading

Block
Cleaning

Comparison
Cleaning

Entity
Clustering

Data Writing
& Evaluation

Schema
Clustering

Block
Building

1) CSV files
2) RDF/XML/
OWL files
3) Relational DBs
(mySQL,
PostgreSQL)
4) SPARQL
endpoints
5) Java serialized
objects
6) RDF/HDT files
7) RDF/JSON files

Hash-based Methods
1) Token Blocking
2) Suffix Arrays
3) Extended Suffix
Arrays
4) Q-Grams Blocking
5) Extended Q-Grams
Blocking

Similarity-based
Methods
1) Sorted
Neighborhood
2) Extended Sorted
Neighborhood
3) LSH MinHash
Blocking
4) LSH SuperBit
Blocking

1) Block Filtering
2) Size-based Block
Purging
3) Cardinality-based
Block Purging
4) Block Clustering

1) Comparison
Propagation
2) Cardinality Edge
Pruning
3) Cardinality Node
Pruning (CNP)
4) Weighted Edge Pruning
5) Weighted Node
Pruning (WNP)
6) Reciprocal CNP
7) Reciprocal WNP
8) BLAST
9) Canopy Clustering
10) Extended Canopy
Clustering

1) Group Linkage
2) Profile Matcher

Clean-Clean ER
1) Unique Mapping
Clustering
2) Row-Column
Clustering
3) Best Assignment
Clustering

Dirty ER
1) Connected
Components
2) Center Clustering
3) Merge-Center
Clustering
4) Ricochet Clustering
5) Correlation
Clustering
6) Markov Clustering
7) Cut Clustering

1) Attribute Name
Clustering
2) Attribute Value
Clustering
3) Holistic Attribute
Clustering

In combination with
Text Processing (see
Entity Matching).

Data Writing
Same data formats as
Data Reading.

Evaluation
Effectiveness Measures:
1) Recall
2) Precision
3) F-measure
4) Pairs Completeness
5) Pairs Quality

Measures 4 and 5 apply
only to sets of blocks.

Efficiency Measures:
1) Run-time per step
2) End-to-end run-time

Text Processing
Character & token
n-gram graphs
in combination with
containment, value,
normalized value
and overall graph
similarity.

Character & token
n-grams
in combination with
cosine, Jaccard,
generalized Jaccard
or SIGMA similarity.

Any word or
character-level pre-
trained embeddings
in combination with
cosine similarity or
Euclidean distance.

Data
Reading

Schema
Clustering

Block
Building

Block
Cleaning

Prioritization

Entity
Matching

Data Writing
& Evaluation

(c)

Data
Reading

Block
Cleaning

Comparison
Cleaning

Entity
Matching

Entity
Clustering

Data Writing
& Evaluation

(a)

Similarity
Join

Entity
Clustering

Data Writing
& Evaluation

(b)

Schema
Clustering

Block
Building

Data
Reading

Meta-blocking
Weighting Schemes:

ARCS, CBS, ECBS,
JS, EJS, Pearson χ2

Similarity
Join

Data
Reading

Block
Cleaning

Comparison
Cleaning

Entity
Clustering

Data Writing
& Evaluation

Schema
Clustering

Block
Building

Figure 3: JedAI’s budget- & schema-agnostic end-to-end workflow along with the available methods per step. Self-loops indicate steps that can be repeated, whereas
gray rectangles designate optional steps.

Block Clustering [23] ensures that all blocks remain within a
user-specified range of sizes.

These methods are complementary and can be combined for
higher performance gains. The larger the set of input blocks is,
the more BC methods should be applied to it.

4) Comparison Cleaning (CC). This optional step also tar-
gets redundant and superfluous comparisons, but operates at the
level of individual comparisons, achieving higher accuracy than
BC at the cost of a higher time complexity. It includes primarily
Meta-blocking techniques [10], of which only one can be added
in an end-to-end pipeline.

The simplest approach is Comparison Propagation [24],
which eliminates all redundant comparisons from a set of over-
lapping blocks. Instead of hashing all executed comparisons in
memory, an approach that does not scale to large datasets, it
performs a pairwise comparison ci; j in block bk only if k is the
least common block index of ei and e j.

All other methods of this step extend Comparison Propaga-
tion so that it discards superfluous comparisons, as well. To
this end, they rely on block co-occurrence patterns, as they are
captured by the Meta-blocking weighting schemes. These as-
sociate every non-redundant comparison ci; j with a normalized
score that depends on the blocks the entities ei and e j share: the
more blocks they have in common and the smaller these blocks
are, the higher is the overall score.

Based on these schemes, Weighted Edge Pruning [25] dis-
cards all comparisons with a weight lower than the average one
across all distinct comparisons in the input blocks. Cardinality
Edge Pruning [25] retains the overall top-K weighted compar-
isons. Cardinality Node Pruning (CNP) [25] keeps the top-k
weighted comparisons per entity. Reciprocal CNP [22] retains
comparisons that are among the top-k weighted ones for both
involved entities. Weighted Node Pruning (WNP) [25] esti-
mates the average comparison weight for every entity and re-
tains only those comparisons that exceed it. Reciprocal WNP
[22] keeps comparisons that exceed the average weight for both

involved entities. BLAST [13] retains those weighted higher
than the average maximum weight of the two involved entities.

Note that Comparison Cleaning also includes the schema-
agnostic adaptation of Canopy Clustering [26], which itera-
tively selects a random entity from the input blocks and cre-
ates a new block that contains all co-occurring entities with
a comparison weight higher than tin; all entities with a com-
parison weight higher than tex (> tin) are not placed in any
other block. Extended Canopy Clustering [14, 9] replaces the
weight thresholds with cardinality ones: each new block con-
tains the nin co-occurring entities with the highest comparison
weights, while the nex (< nin) most similar entities are excluded
from all other blocks.

5) Entity Matching (EM). This step involves schema-
agnostic methods for assessing the value similarity of all en-
tity pairs in the input blocks. Profile Matcher aggregates all
attribute values in each entity into a representation model and
compares it with the models of the other entities according to a
specific similarity measure. Group Linkage [27] matches a pair
of entities based on bipartite graph matching: every value from
the one entity is linked with its most similar value from the other
entity; if the similarity of these links is high enough and there
is a large fraction of such links, the two entities are considered
duplicates. Both methods can be combined with any similarity
measure and representation model from the Text Processing
component (see Section 4.5). It is also possible to combine dif-
ferent configurations of these methods into a single workflow,
leveraging evidence from multiple representations and similar-
ity measures. In all cases, the resulting similarity scores are
normalized in [0; 1].

6) Entity Clustering (EC). This step partitions the compar-
isons executed by EM into equivalence clusters. Its functional-
ity depends on the type of the ER task at hand.

For Clean-Clean ER, Unique Mapping Clustering [28] is
typically applied. It sorts all pairwise comparisons in decreas-

5

Data
Reading

Schema
Clustering

Block
Building

Block
Cleaning

Prioritization
Data Writing
& Evaluation

Entity
Matching

Similarity
Join

Entity
Clustering

Data Writing
& Evaluation

Data
Reading

(a)

Comparison
Cleaning

(b)

Entity
Clustering

Figure 4: (a) The schema-based workflow, regardless of budget-awareness; (b) the budget-aware, schema-agnostic one.

ing similarity score and iteratively considers the top one as
a match, if its score exceeds a predetermined threshold and
none of the involved profiles has already been matched. Row-
Column Clustering implements an efficient approximation of
the Hungarian Algorithm [29], while Best Assignment Clus-
tering implements an efficient, heuristic solution to the assign-
ment problem in unbalanced bipartite graphs [30].

For Dirty ER, the simplest approach is Connected Compo-
nents [31, 32], which sets a cut-off threshold t and consid-
ers as matches all comparisons with a similarity score higher
than t; then, it estimates the transitive closure of the matches.
For higher robustness to noise, more advanced algorithms build
clusters around selected entities that operate as centers. Cen-
ter Clustering [33] defines as centers the nodes with the high-
est average similarity score, while Merge-Center Clustering
[31] unites clusters with centers similar to the same node. Ric-
ochet Clustering [34] defines as centers the entities with the
highest number of comparisons and iteratively re-assigns every
entity to its closer cluster center, similar to K-Means. Other
techniques amplify the strength of intra-links, i.e., the simi-
larity scores inside each equivalence cluster, while abating the
strength of inter-cluster links, i.e., the similarity scores across
different equivalence clusters. This approach is treated as an
optimization problem by Correlation Clustering [35], whereas
Markov Clustering [36] relies on random walks and Cut clus-
tering [37] on the minimum cuts of maximum flow paths.

4.2. Budget-agnostic, schema-based workflow
This type of workflows leverages domain knowledge to

achieve both high effectiveness and high efficiency. This is usu-
ally the case in datasets where a single attribute contains values
that are distinctive enough to identify matching entities. As an
example, consider the title attribute in bibliographical data. In
such cases, the user needs to define a matching rule that con-
sists of two parameters: the distinctive attribute, and a similar-
ity threshold, above which two values are considered to indicate
duplicate entities.

The steps of this end-to-end budget-agnostic, schema-based
workflow appear in Figure 4(a). After data reading, JedAI al-
lows users to detect the most reliable attribute in terms of noise
and distinctiveness through the data exploration functionality
(see Section 5). A similarity join algorithm is then used to ac-
celerate the detection of pairs of entities that satisfy the user-
specified matching rule, while a clustering algorithm leverages
the resulting similarity scores to identify implicit matches or
remove wrong ones.

To implement the Similarity Join (SJ) step, JedAI conveys
a library of the state-of-the-art techniques. They are listed in
Figure 5 and can be distinguished in two broad categories ac-
cording to the similarity measures they support.

The token-based methods are crafted for the Overlap, Jac-
card, Cosine and Dice similarity measures [38, 39]. To com-

pute them, these methods transform every textual value into the
set of its tokens. AllPairs [40] sorts the tokens of every attribute
value in increasing order of frequency across all values. Then,
it forms the prefix of each value by selecting the n first tokens,
i.e., the n rarest ones. Subsequently, Prefix Filtering demands
that two values exceed the user-specified similarity threshold if
their prefixes share at least one token. The size of the prefix
depends on this threshold and the selected similarity measure.
In general, the higher the similarity threshold, the shorter the
prefix and the less candidate matches are produced. PPJoin
[41] extends Prefix Filtering with Positional Filtering, which
estimates a tighter upper bound for the overlap between the two
sets of tokens, based on the positions where the common to-
kens in the prefix occur. SilkMoth goes beyond these methods
by enabling fuzzy joins, i.e., allowing slight variations in the
matching tokens.

The character-based methods are crafted for Edit Distance,
which essentially estimates the minimum number of edit oper-
ations (i.e., insertions, deletions and substitutions) that are re-
quired to transform one attribute value to another [38]. For short
textual values, FastSS [42] provides the most efficient filtering
[38]. Every value is associated with the set of substrings that are
produced after deleting a certain number of characters, and ev-
ery other value that shares one or more substrings is considered
a candidate match. PassJoin [43] partitions a value into a set
of non-overlapping character q-grams and, based on the pigeon-
hole principle, it considers as candidate matches the values that
share at least one of these q-grams. The same principle lies at
the core of PartEnum [44], which is however crafted for the
Hamming Distance, i.e., the minimum number of substitutions
required to change one value to the other. Ed-Join [45] adapts
Prefix Filtering to Edit Distance, similar to the character-based
AllPairs, and optimizes it by removing unnecessary q-grams
from the prefix and by adding Position Filtering.

4.3. Budget-aware, Schema-agnostic workflow
This workflow is suitable for applications with limited com-

putational or time resources, which can only be addressed in a
pay-as-you-go way that provides the best possible partial so-
lution in the context of the available resources. To this end, it
applies the workflow in Figure 4(b). Even though it seems iden-
tical to the budget- and schema-agnostic workflow in Figure 3,
there are several key differences: (i) Data Reading also receives
as input the user-specified budget in terms of the maximum run-
ning time or the maximum number of executed comparisons.
(ii) Block Building is now an optional step, as some progres-
sive methods can be applied directly to the input entities. (iii)
Entity Matching executes one comparison at a time. (iv) Eval-
uation primarily focuses on the rate of detected duplicates per
comparison, i.e., the evolution of recall as more comparisons
are executed. The resulting diagram is used for estimating the
area under curve, which is analogous to the effectiveness of the

6

