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Abstract. In the era of big data, a vast amount of geospatial data has
become available originating from a large diversity of sources. In most
cases, this data does not follow the linked data paradigm and the existing
transformation tools have been proved ineffective due to the large volume
and velocity of geospatial data. This is because none of the existing tools
can utilize effectively the processing power of clusters of computers. We
present the system GeoTriples-Spark which is able to massively transform
big geospatial data into RDF graphs using Apache Spark. We evaluate
GeoTriple-Spark’s performance and scalability in standalone and dis-
tributed environments and show that it exhibits superior performance
and scalability when compared to all of its competitors.

1 Introduction

A vast amount of geospatial data is now available on the Web, originating from
a large diversity of sources like crowd-sourced projects (e.g., OpenStreetMap1),
geospatial search engines like Google Maps, data hubs like the ESRI Open Data
Hub2 and Earth observation programs such as Copernicus3. As a result, re-
searchers and practitioners working in Semantic Technologies have started trans-
forming this big geospatial data into linked data, interlinking it with other
data sources and further populating the Linked Open Data Cloud4. The project
LinkedGeoData [3] was the first project to do this by collecting information from
OpenStreetMap and converting it into linked data. Furthermore, projects such
as TELEIOS [20], LEO [9], MELODIES [8] and Copernicus App Lab [4] have
published several geospatial datasets that are Earth observation products, like
CORINE Land Cover and the Urban Atlas5. This methodology has also been
followed in the development of geospatial knowledge graphs like YAGO2geo [17],

0The present work was funded by the European Union’s Horizon 2020 research and
innovation project under grant agreement No 825258.

1https://www.openstreetmap.org/
2https://hub.arcgis.com/search
3https://www.copernicus.eu/
4https://lod-cloud.net/
5http://kr.di.uoa.gr/#datasets
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which extends YAGO2 [13] with precise geospatial information originated from
multiple official government sources.

In many cases, geospatial data comes in large volumes and with high velocity.
For example, this is the case in Earth observation programs such as Copernicus.
Up to 2019 the Copernicus Open Access Hub6 had published approximately
13 million Earth observation products, with a publication rate of over 30,500
products per day7. The size of such Earth observation products depends on the
resolution of the image, and it can vary from a few megabytes (MB) to multiple
gigabytes (GB). Data of such large scale requires special techniques and tools in
order to process it efficiently. Despite the bulk of work on storage and querying
of big RDF graphs [2,16], the scalable transformation of big geospatial data into
linked data has been overlooked so far. The present paper attempts to close this
gap.

Transforming geospatial data into linked data, enables users to leverage the
power of ontologies for modeling the domain. Furthermore, users can interlink
their data with other linked geospatial data using tools like the temporal and
geospatial extension of Silk [31], RADON [30] or GIA.nt [27], pose GeoSPARQL
queries by storing it into spatially-enabled triple stores such as Strabon [19]
or GraphDB8, and visualize it using visualization tools like Sextant [26]. One
of the activities in the research project ExtremeEarth9 [18] is to publish data
extracted from Copernicus imagery into RDF graphs, so as to interlink it with
other geospatial sources (e.g., in-situ observations), and provide it as linked open
data [24]. At the moment though, there is no existing tool able to deal with the
large scale of Copernicus data, and for this reason, we developed a new version
of the tool GeoTriples [21] able to transform big geospatial data into linked data.
In more details, the contributions of this paper are the following:

– We design and implement the system GeoTriples-Spark10,11, which is a new
version of GeoTriples that runs on top of Apache Spark and enables the
transformation of big geospatial data into linked data. GeoTriples-Spark is
an open source project, licensed under the Apache license version 2.0.

– We evaluate our system using datasets of varying input sizes, in different sce-
narios, and compare its performance with its main competitors: GeoTriples-
Hadoop [21] and the Spark-based implementation of TripleGeo [28]. We show
that, in most cases, GeoTriples-Spark decreases the transformation time by
approximately 40%. We also show that GeoTriples-Spark can transform ter-
abytes of data in a reasonable amount of time when no other system has
been proven to be able to do so.

6https://scihub.copernicus.eu/
7https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/

AnnualReport2019
8https://graphdb.ontotext.com/
9http://earthanalytics.eu/

10https://github.com/LinkedEOData/GeoTriples
11https://zenodo.org/record/4899793
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To enable the reproduction of our experiments, all the relevant data and code
is available in the repository of GeoTriples-Spark12.

The structure of the rest of the paper is as follows. Section 2 discusses related
work. Section 3 introduces the tool GeoTriples and its main components. In
Section 4 we present GeoTriples-Spark, and in Section 5 we evaluate it against
other systems. In Section 6 we sum up and present directions for future work.

2 Related Work

Geospatial data can exist in raster or vector forms. Raster data refers to images
where each pixel is associated with a specific location and its colour may indi-
cate a metric or a class. A well-known format for storing raster data is GeoTIFF,
which is an industry-standard for images from GIS and satellite remote sensing
applications. Vector data are made up of vertices and edges and are composed
of three basic geometry types: points, lines and polygons. They are commonly
available in formats such as ESRI shapefile, GeoJSON, KML and GML docu-
ments and in spatially-enabled RDBMS like PostGIS. CSV files can also store
geospatial information, by containing complex geometric types expressed as Well
Known Text13 (WKT), a text markup language for representing vector geome-
tries. In this work, we focus exclusively on vector data.

Two are the main approaches for the transformation of relational and non-
relational data into RDF graphs: direct mapping and using mapping languages.
Direct mapping14 is a straightforward approach to map relational data into RDF.
In direct mapping, the tables of the relational database become the classes, the
column names are mapped into RDF properties that represent the relation be-
tween subject and object, the subjects of triples are formed using the primary
key of each tuple, and the objects of triples are formed using the values for
the rest of the columns of the table. In this approach, the generated triples are
dictated by the initial schema of the relational data. Alternatively, the transfor-
mation using mapping languages allows us to define a set of mapping rules that
indicate how to map the input data into RDF triples. There are two well-known
mapping languages: R2RML15 and RML16 [11]. R2RML is also a W3C recom-
mendation and it is used for expressing customized mappings to map relational
databases into RDF graphs. RML is a more generic mapping language that can
express rules able to map data from semi-structured (like XML and JSON) and
structured formats into RDF graphs. Both mapping languages are very rich and
enable the manipulation of the input data in numerous ways.

Historically, the first tool for transforming geospatial data into RDF was GE-
OMETRYtoRDF [23] which enabled users to transform data stored in spatially-
enabled RDBMS into RDF graphs. GEOMETRYtoRDF mapped the geometri-

12https://github.com/LinkedEOData/GeoTriples/tree/master/data
13https://www.ogc.org/standards/wkt-crs
14https://www.w3.org/TR/rdb-direct-mapping/
15https://www.w3.org/TR/r2rml/
16https://rml.io/
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cal data into GML files which were then transformed into RDF triples using the
open source libraries GeoTools17 and Apache Jena18. Even though this project
is no longer maintained, its code-base was the basis for the development of tool
TripleGeo which is discussed below.

A different approach appears in [10] which shows how R2RML can be com-
bined with a spatially-enabled relational database in order to transform geospa-
tial data into RDF. However, the transformation of other geospatial data sources
for vector data e.g., shapefiles is not discussed.

The closest existing tool to GeoTriples is TripleGeo19 [28,29] which was
developed in the project GeoKnow20. Similarly to GeoTriples, TripleGeo is a
tool for transforming geospatial features from various sources into RDF graphs.
TripleGeo supports the transformation of structured data (ESRI shapefiles, CSV,
GeoJSON and GPX) or semi-structured data (XML, GML and KML), as well
as from spatially-enabled DBMSs and of less standard formats such as Open-
StreetMap data and certain INSPIRE data and metadata. Furthermore, recently
in the project SLIPO21, TripleGeo was further extended with several novel fea-
tures and specific functionalities to efficiently support the transformation of large
datasets containing Points of Interest (POIs). This was achieved by extending
TripleGeo to run on top of Apache Spark. However, it was designed to run only
in standalone mode and not in distributed environments, so it cannot utilize
the processing power of clusters of computers. Therefore, TripleGeo cannot be
used for the transformation of very big geospatial data that requires more than
a single machine to process it.

We close this related work section by point out that there are applications
where the data owners might not be willing to transform their geospatial data
into RDF, but still want to use Semantic Technologies in their application. In this
case, one cannot adopt the transformation-into-RDF paradigm of this paper, but
can instead use the geospatial ontology-based data access paradigm pioneered
by Ontop-spatial [5]. For example, [6] shows that you can leave geospatial data
in their original vector or raster formats and still be able to query them using
GeoSPARQL and the system Ontop-spatial22.

3 GeoTriples

GeoTriples [21,22] is an open source tool developed by our team23 in the National
and Kapodistrian University of Athens, for the transformation of geospatial data
into linked geospatial data. GeoTriples currently supports the transformation of
spatially-enabled databases (PostGIS and MonetDB), ESRI shapefiles, XML

17https://geotools.org/
18https://jena.apache.org/documentation/io/streaming-io.html
19https://github.com/SLIPO-EU/TripleGeo
20http://geoknow.eu/Welcome.html
21http://slipo.eu/
22http://ontop-spatial.di.uoa.gr/
23http://ai.di.uoa.gr/
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Fig. 1: The system architecture of GeoTriples

documents (hence GML documents), KML, GeoJSON and CSV documents.
The produced graph is by default compliant with the GeoSPARQL vocabu-
lary and can be manifested in any of the popular RDF syntaxes such as Turtle,
RDF/XML, Notation3 or N-Triples.

GeoTriples consists of two components: a mapping generator that, given an
input file, it generates a mapping file containing the mapping rules, and a map-
ping processor that applies the mapping rules in order to map each instance
of the input data into the corresponding RDF triples. Additionally, the first
component of GeoTriples is a connector that provides an abstraction layer and
allows the other components to transparently access the input data regardless
of the format of the source. Figure 1 displays a simplified diagram of GeoTriples
system architecture.

The execution of GeoTriples comprises three steps. In the first step, we use the
mapping generator to create a mapping file containing the mapping rules. Then,
as a second optional step, the user can edit the mapping file so the produced
triples will adopt any vocabulary or ontology she wants. Finally, the last step
follows the transformation of the input file, in which the mapping processor
applies the mapping rules to map the input data into RDF triples.

The mappings produced by the mapping generator consist of two triples
maps: one for handling non-geometric (thematic) data, and one related to the
geospatial data. The triples map that handles the thematic information defines
a logical table that contains the attributes of the input data source and a unique
identifier for the generated instances. Combined with a URI template, the unique
identifier is used to produce the subjects of the produced triples. For each at-
tribute of the input data, GeoTriples generates a term map that defines an RDF
predicate according to the name of the attribute and a predicate-object map.
The triples map that handles the geospatial information defines a logical table
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with a unique identifier similar to the thematic one. The logical table contains
term maps that indicate the serialization of the geometric information according
to the WKT representation, and the generation of all the necessary attributes
for producing a GeoSPARQL compliant RDF graph. Hence, if the input is an
ESRI shapefile, GeoTriples constructs RML mappings with transformations that
invoke GeoSPARQL/stSPARQL extension functions. If the input is a relational
database, GeoTriples constructs SQL queries that utilize the appropriate spatial
functions of the Open Geospatial Consortium24 standard [12] to generate the
information required.

At the beginning of the transformation, GeoTriples parses the input map-
pings and extracts the content of the logical table using the appropriate way
(e.g., a SELECT query). If the subject map is a template-valued term map or a
column-valued term map, the related columns are extracted and stored in mem-
ory. Then, the processor iterates over all predicate-object maps, and for each
one, it extracts all template- and column-valued term maps. These term maps
are cached in memory along with the position that they appear in. Afterwards,
the processor extracts all the features that are referenced by the term maps that
appear in the subject, predicate and object positions for the current predicate
map and iterates over the results. For each predicate and object value in the
result row, a new RDF triple is constructed.

4 GeoTriples-Spark

Apache Spark25 [34] is an open source, distributed, general-purpose, cluster com-
puting framework that uses a master/worker architecture. There is a Driver
process that is responsible to split the job into tasks, to schedule them to run
on Executors and to coordinate the overall execution. Executors are distributed
agents that execute tasks in parallel or sequentially. At the core of Apache Spark
is the notion of data abstraction as a distributed collection of objects, known
as Resilient Distributed Datasets (RDDs) [33]. RDDs allow the user to apply a
series of transformations (i.e., map, filters, etc.), creating a lineage graph that
will not be executed before calling an action (i.e., count, write to file, etc.). All
transformations and actions are performed in parallel, as each Executor is as-
signed with a portion of the overall data known as partition and the execution
of the transformation linkage graph runs inside a task.

GeoTriples-Spark is a new version of GeoTriples that runs on top of Apache
Spark and enables the massive transformation of big geospatial data into RDF
graphs. The input big geospatial data can be provided as multiple separate
files which will be transformed concurrently or as a big single file. Currently,
GeoTriples-Spark supports the transformation of CSV, GeoJSON and ESRI
shapefiles and it can run in any standalone or distributed environment that
supports the execution of Apache Spark jobs. Figure 2 displays the architecture
of GeoTriples-Spark.

24https://www.ogc.org/standards/sfs
25https://spark.apache.org/
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Fig. 2: The GeoTriples-Spark architecture

The mapping generator is the same as the one in the original GeoTriples sys-
tem. However, the mapping processor is new and makes effective use of Apache
Spark as we explain below.

The first component of GeoTriples-Spark is the Reader, which employs the
appropriate libraries in order to load the input data into an Apache Spark
Dataset, which is a distributed immutable collection of data organized into
named columns. When a dataset is stored in a distributed filesystem (like HDFS),
it is split into multiple chunks of constant size. When GeoTriples-Spark starts,
the Reader loads these data chunks into partitions, which will be transformed
as individual units in parallel. Users can change the default number of parti-
tions in order to increase parallelization, but this can invoke data shuffling. To
load ESRI shapefiles and GeoJSON, we use the library GeoSpark26 [32] which
is a cluster computing framework that extends Apache Spark with spatial com-
putations. After initializing the Dataset, a new column is inserted containing
a monotonically increasing unique index which will be combined with a URI
template to form the subjects of produced triples. This is the default way of
constructing subjects, but the user can overwrite it by editing the mapping file.
Moreover, this generated index is not consecutive, as this would require to have
counted all the records of the input data, which would add an overhead to the
execution. Additionally, before the transformation starts, the Reader also loads
and extracts the mapping rules from the mapping file, and broadcasts them so
they will be available in all nodes.

26http://geospark.datasyslab.org/
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The transformation starts with a Map phase where for each partition, an
RML processor is initialized, responsible for transforming all the records of the
input partitions into RDF triples. Each RML processor iterates over all the
records of its input partition and applies the mapping rules extracted by the
mapping file, generating the corresponding triples. Note that, in most cases, the
size of the produced triples exceeds the size of the initial dataset, which is sensi-
ble due to the nature of RDF triples. Hence, we avoid performing a Reduce and
collect the produced triples into a single node, as this can overwhelm the tar-
geted node and lead to memory errors. Consequently, after the transformation,
the triples of each partition are stored in an individual file, thus the produced
triples are stored into multiple files, one for each partition. Therefore, the whole
procedure is a highly parallelized one as each process works individually from
the rest and it simply loads its corresponding partitions, applies the mapping
rules and stores the generated triples in a file.

Note that except for the broadcast of the mapping rules, there is no need for
further data shuffling during the whole procedure as each partition already con-
tains all the necessary information to perform the transformation. Additionally,
when the produced triples of a record are generated, they are directly written in
the target file. Consequently, the whole procedure is memory friendly, as it needs
to maintain in the memory neither the initial data nor the produced triples. This
makes GeoTriples-Spark highly scalable and able to transform a large amount
of data with minimum memory requirements.

The parallelization of the whole procedure is based on the number of parti-
tions and available resources (i.e., the physical processing units). More partitions
mean the more parallelized the whole procedure can be (according to the num-
ber of the concurrently executed threads), but it also means that each process
will have to transform a smaller chunk of data, as the initial dataset will have
been divided into more partitions of fewer records. The number of partitions is
determined by the size and the format of the source, and by the configuration
settings of the filesystem, but it can also be configured by the user. However,
increasing the initial number of partitions can invoke data shuffling, which in a
distributed cluster can invoke network and disk I/O, which in its turn can affect
negatively the performance of the system.

The transformation of CSV and GeoJSON documents is very similar. These
filetypes are considered text files, and therefore they are directly loaded as mul-
tiple partitions by Spark, as they are distributedly stored across the cluster.
The geometry feature in CSV files is expected to be in WKT and hence it does
not require any further processing. Regarding GeoJSON, the system loads them
as simple JSON files that follow the GeoJSON specification of RFC 794627. In
GeoJSON, the information is stored as a collection of geometric features consist-
ing of the geometries and the thematic properties. The geometries are specified
by the type (e.g., Point, LineString, Polygon, etc.) and by a list of coordinates,
and the thematic properties are defined by a set of key-value pairs. So, using
Spark’s API, we load the properties of the geometric features into an Apache

27https://tools.ietf.org/html/rfc7946
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Spark Dataset, and then we extract and transform the geometries into WKT,
which we add to the Dataset. Finally the partition-wise transformation of the
Dataset into RDF triples follows.

The case of ESRI shapefiles is a bit more complicated. As mentioned, we load
ESRI shapefiles using GeoSpark, whose shapefile reader always loads the input
shapefile into a single partition28. Since shapefiles are composed of multiple files,
in order to load them, we first need to merge all the related component files into
one. This is happening because all the related component files must be located
in the same node to utilize the shapefile index and the related attributes. Load-
ing shapefiles from distributed filesystems is a well-known problem and it has
been studied extensively in [1]. Hence, if users want to parallelize the transfor-
mation of a single shapefile, they must repartition the loaded data in order to
redistribute it into multiple partitions. This will probably invoke data shuffling
which may have a negative effect on the performance. However, shapefiles are
typically small, and actually, there is a 2GB size limit for any of its compo-
nent files29. Additionally, it is very common to store geospatial data as multiple
shapefiles. Thus, we have enabled GeoTriples-Spark to be able to transform mul-
tiple shapefiles concurrently, by loading them as individual partitions that will
be transformed in parallel.

5 Evaluation

For the evaluation of GeoTriples-Spark, we compare it with three competitors
systems: the centralized version of GeoTriples, the Hadoop-based implementa-
tion of GeoTriples30 and the Spark-based implementation of TripleGeo31 which
we refer to as TripleGeo-Spark. The following experiments concern the perfor-
mance of the systems against varying input sizes, the scalability of GeoTriples-
Spark and also its performance regarding the transformation of very big geospa-
tial data into RDF. For the comparison with GeoTriples-Hadoop using shapefiles,
we reproduce the same experiments presented in [21], while for the comparison
using CSV files we perform large-scale experiments with bigger datasets.

For the experiments, we used three different environments, a Hadoop cluster,
a standalone machine that runs Apache Spark, and a large-scale cluster that runs
the Hospworks [15] platform. The main module of Hopsworks is Hops32 , which is
a next generation distribution of Apache Hadoop, using a new implementation of
HDFS called HopsFS [25]. Since TripleGeo is designed to run only in standalone
mode, it can neither read the configuration file nor write the output triples in
a distributed filesystem. As a result, TripleGeo can run neither in Hopsworks

28https://github.com/DataSystemsLab/GeoSpark/issues/356
29https://desktop.arcgis.com/en/arcmap/latest/manage-data/shapefiles/

geoprocessing-considerations-for-shapefile-output.htm
30https://github.com/dimitrianos/GeoTriples-Hadoop
31https://github.com/SLIPO-EU/TripleGeo/tree/master/src/eu/slipo/

athenarc/triplegeo/partitioning
32https://github.com/hopshadoop/hops
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Fig. 3: CSV experiments

nor in the Hadoop cluster. Therefore, we compare the Spark- and Hadoop-based
implementations of GeoTriples in the Hadoop cluster, and we compare the Spark-
based implementations of GeoTriples and TripleGeo in the standalone machine.
Last, we use the Hospworks cluster to perform large-scale experiments.

The Hadoop cluster consists of four nodes with 8 cores each with Intel(R)
Xeon(R) E5-2650 v3 CPU at 2.30GHz and 8GB of memory. The standalone
machine contains 32 virtual cores33 at 2.20GHz and 128GB of memory. The
large-scale cluster is a very powerful cluster provided to us by the company
Logical Clocks34, containing approximately 1000 CPU cores at 2.40GHz, 12TB
of RAM and 1PB of storage. Some of the data used in the experiments are from
the Global Administrative Areas dataset35 (GADM) while the rest are extracts
of the OpenStreetMap project that are publicly available from the company
GEOFABRIK36. Moreover, we further edit and replicate the datasets, in order
to increase the input size. To enable the reproduction of the experiments, all the
datasets are available in the repository of GeoTriples-Spark.

Figures 3a and 3b show the performance of GeoTriples-Spark for varying
input CSV file sizes against the Hadoop-based implementation of GeoTriples
and the Spark-based implementation of TripleGeo. In the experiment of Fig-
ure 3a, both GeoTriples-Spark and TripleGeo-Spark, load the input data as 32
partitions which are transformed concurrently by 32 tasks. In the experiment
of Figure 3b, we did not change the initial number of loaded partitions of the
datasets, as it would invoke network I/O which we wanted to avoid. In both
experiments of Figure 3, GeoTriples-Spark outperforms its competitors and we
can also observe that as the size of input data increases, the effectiveness of
GeoTriples-Spark becomes even clearer, particularly for the last datasets where
the execution time decreases up to 47% compared to TripleGeo-Spark and 42%

33The system uses hyper-threading hence it has 16 physical cores
34https://www.logicalclocks.com/
35https://gadm.org/
36http://download.geofabrik.de/
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Fig. 4: ESRI shapefiles experiments: Transformation of big shapefiles

compared to GeoTriples-Hadoop. The results are similar when using GeoJSON
documents as input.

This difference in the performance of the two systems derives from their im-
plementation differences. First of all, GeoTriples-Spark uses an extended RML
processor, while the transformation of TripleGeo-Spark is based on StreamRDF
of Apache Jena. Furthermore, the execution of GeoTriples-Spark is very straight-
forward as it simply reads the input data, performs the transformation by ap-
plying the mapping rules, and stores the produced triples directly in the files.
All of these steps are performed natively using Apache Spark’s API. On the
other hand, TripleGeo-Spark performs partition-wise transformation, and stores
the results after transforming batches of input records, maintaining interme-
diate results in memory. Moreover, the writing procedure is not implemented
natively using Spark’s interface, but using Jena’s StreamRDF writers. Last but
not least, TripleGeo-Spark computes and outputs extra attributes derived from
geometries, like the area of polygons and the length of lines. This adds an extra
overhead in the execution, as such computations are expensive especially for big
geometries.

Figure 3c depicts the scalability experiments with regards to strong and weak
scaling37. In strong scaling, we examine how the overall computational time of
the job scales as we increase the number of available processing cores. In weak
scaling, we examine the speedup while increasing both the job size and the
number of processing elements. In the strong scaling experiment, the size of the
job is 15GB, while in the weak scaling, the input size is equivalent to the number
of active cores (i.e., 2 cores → 2GB, 4 cores → 4GB). In weak scaling, we can
observe that the execution is almost linear but we can notice that there is a small
deceleration as the number of cores increases. We observe similar in the strong
scaling experiment. The main reason for this is because the Executors read and
write in the same disk, hence more active cores lead to bigger latencies in disk
I/O.

37https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-

scaling/
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Dataset
Size
(MB)

Times
loaded

GeoTriples-
Spark (sec.)

GeoTriples-
Hadoop (sec.)

Andorra 888 15 345 370

Australia 247 60 382 499

Ukraine 2 1000 428 1002

Table 1: ESRI Shapefile experiments: Transformation of multiple
shapefiles of varying sizes

For the experiments with ESRI shapefiles, we evaluate the performance of
GeoTriples-Spark in two kinds of experiments. In the first experiment, we com-
pare the performance of GeoTriples-Spark and TripleGeo-Spark in the trans-
formation of big ESRI shapefiles. The shapefiles are displayed in Table 4a and
contain information of the road system of four countries (Greece, Austria, Spain
and Germany) originated from OSM. In most cases, ESRI shapefiles are rel-
atively small because they are compressed database files. So, to create bigger
ones, we merge multiple shapefiles into one. The largest shapefile we use (i.e.,
DE ) contains the whole road-system of Germany and it was created by merging
the shapefiles of the road-system of the states of Germany. In these experiments,
both tools repartition the input data into 32 partitions which are all transformed
in parallel. The results are presented in Figure 4b. Both systems perform well
and quite similarly, but in the last and largest dataset, GeoTriples-Spark outper-
forms TripleGeo-Spark, as it requires 62.5% of the time TripleGeo-Spark needs
to transform it. This performance benefit becomes even more distinctive as we
increase the size of the input.

In the second experiment, we examine and compare the performance of the
Spark- and Hadoop-based implementations of GeoTriples regarding the trans-
formation of multiple shapefiles concurrently. Similarly to GeoTriples-Spark,
GeoTriples-Hadoop loads the data of a shapefile into a single mapper, but in con-
trast with the Spark implementation, GeoTriples-Hadoop cannot re-distribute
the load to other mappers, as it is mentioned in [21]. Therefore, GeoTriples-
Hadoop is good for transforming multiple shapefiles where each one is assigned
to a different mapper, but it is incapable of transforming shapefiles where their
size exceeds the available memory of mappers. In this experiment, we load three
different shapefiles of varying sizes multiple times, in order to evaluate how the
two systems perform when the goal is to transform multiple small (Ukraine),
medium (Australia) and large files (Andorra). The results are displayed in Ta-
ble 1 and we can see that both tools perform similarly regarding the big and the
medium shapefiles, with GeoTriples-Spark performing slightly better. However,
we observe a significant difference in the last dataset where GeoTriples-Spark is
superior as it requires less than 50% of the time GeoTriples-Hadoop needs.

Let us now present our large-scale experiments shown in Tables 2 and 3.
For the experiments with CSV documents, we constructed a dataset of size up
to 250GB, which we load multiple times. Likewise, for the experiments with
ESRI shapefiles, we load the AT and DE shapefiles multiple times. The memory
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Dataset
Times
loaded

Input
Size

#Executors
Output
Size

Total time
(in minutes)

100GB.csv 1 100GB 41 840.1GB 3.3

250GB.csv 1 250GB 60 2.1TB 6.6

250GB.csv 2 500GB 65 4.1TB 13

250GB.csv 4 1TB 70 8.3TB 26

250GB.csv 8 2TB 80 16.6 TB 50

Table 2: Large-scale experiments with CSV documents

Dataset Times loaded
Input
Size

#Executors
Output
Size

Total time
(in minutes)

AT 153 100 GB 20 427.7 GB 4.3

AT 381 250 GB 30 1068.6 GB 9.9

DE 136 500 GB 15 2.5 TB 17

DE 258 1TB 27 5.1 TB 34

Table 3: Large-scale experiments with ESRI shapefiles

requirements of each Executor are the minimum, as neither the input data nor
the generated triples are cached in memory. Furthermore, there is no need for
large Spark execution memory38 since there is little to none data shuffling. So,
in these experiments, we equipped each Executor with 2GB of memory. In the
end, we managed to transform 2TB of CSV input in less than an hour and 1TB
consisting of multiple shapefiles in less than half an hour.

An important issue that arises with very large input files is the size of the
output files, as this is approximately eight times bigger than the initial input. To
solve this issue, we are streaming the produced triples directly in a distributed
geospatial triple store we are currently developing [7], instead of writing them
on the disk. This will facilitate access to the produced graphs and will enable us
to pose GeoSPARQL queries efficiently.

To ensure the quality of the output and to verify that the produced graphs
are the expected ones, we performed limited quality control. To do this, we stored
the produced graph of the smallest of the large-scale experiments in a spatially-
enabled triple store and the initial data into a spatially enabled database. Then
we posed a series of queries to both stores and we validated the correctness of the
results using a Geographic Information Systems (GIS). This way we confirmed
that neither the geometries nor the thematic information has altered in any
way by the transformation. Additionally, we also deduced that all the necessary
links/predicates of the graph were generated, as otherwise, it would have not
produced the correct results.

38https://spark.apache.org/docs/latest/tuning.html
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6 Summary and Future Work

In this work, we presented GeoTriples-Spark, which is a new version of GeoTriples,
able to transform big geospatial data into RDF. We also evaluated its perfor-
mance against the original version of GeoTriples, the Spark-based implementa-
tion of TripleGeo and GeoTriples-Hadoop. GeoTriples-Spark not only outper-
forms its competitors, but we also show that it is capable of transforming up
to terabytes of input data, in a reasonable amount of time. GeoTriples-Spark
is used in the project ExtremeEarth in order to transform data extracted from
satellite images into linked data.

In a use case scenario of ExtremeEarth [24], we first download satellite images
that cover areas in the Polar regions. Then, using deep learning techniques,
we extract information and store it as multiple shapefiles. Then, we transform
these multiple shapefiles into RDF concurrently using GeoTriples-Spark and
interlink them with other geospatial datasets containing in-situ observations.
Finally, we store the produced triples into a distributed geospatial RDF store
which is currently under development by our group. The goal is to be able to
run the whole pipeline in real-time. GeoTriples-Spark is designed especially for
such use cases where one needs to transform multiple CSV files or shapefiles
concurrently in an efficient way.

As for future work, we plan to extend GeoTriples-Spark in order to be able to
transform data from other geospatial sources like big KML and GML documents,
and from systems that are built on top of Hadoop, like Apache Hive39 and Apache
Accumulo40. Moreover, we plan to extend both GeoTriples and GeoTriples-Spark
to support the GeoSPARQL+ [14] vocabulary, which enables handling raster
geospatial data.
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