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Abstract

The Transformer architecture continues to
show remarkable performance gains in many
Natural Language Processing tasks. However,
obtaining such state-of-the-art performance in
different tasks requires fine-tuning the same
model separately for each task. Clearly, such
an approach is demanding in terms of both
memory requirements and computing power.
In this paper, aiming to improve training
efficiency across multiple tasks, we propose
to collectively factorize the weighs of the
multi-head attention module of a pre-trained
Transformer. We test our proposed method
on finetuning multiple natural language under-
standing tasks by employing BERT-Large as an
instantiation of the Transformer and the GLUE
as the evaluation benchmark. Experimental
results show that our method requires training
and storing only 1% of the initial model
parameters for each task and matches or
improves the original fine-tuned model’s
performance for each task while effectively
decreasing the parameter requirements by two
orders of magnitude. Furthermore, compared
to well-known adapter-based alternatives on
the GLUE benchmark, our method consistently
reaches the same levels of performance while
requiring approximately four times fewer total
and trainable parameters per task.

1 Introduction

Transformer-based language models such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019b)
and T5 (Raffel et al., 2020) have shown remark-
able performance in many Natural Language Pro-
cessing (NLP) tasks, including language under-
standing (Liu et al., 2019a), machine translation
(Vaswani et al., 2017) and text generation (Brown
et al., 2020), to mention but a few examples. Such
deep language models are first pretrained on a
large-scale unlabelled text dataset, and are then
fine-tuned on various downstream tasks by employ-
ing labeled data. To this end, sequential transfer

learning is adopted, where all the pretrained model
parameters are optimized on the downstream task-
specific loss. Despite the simplicity and the practi-
cal success of such a training scheme, the exponen-
tial increase in the size of the models and training
data can make it difficult and costly for researchers
and practitioners with limited computational re-
sources to benefit from these models in domain or
task-specific applications.

To mitigate this issue, many recent papers have
focused on learning multiple tasks simultaneously
by sharing most of the parameters of a given model
between tasks, and introducing a task-specific clas-
sifier on top of the shared network (Liu et al.,
2019a). Along with cutting down on parameter
costs through the aforementioned parameter shar-
ing scheme, multi-task learning also improves the
overall performance of the pretrained model across
all tasks. However, training on multiple tasks re-
quires access to all task-specific data simultane-
ously, hindering the extension of such models to
new domains incrementally.

An alternative approach to parameter sharing is
the introduction of task specific non-shared parame-
ters, also known as adapters, to the initial model ar-
chitecture. Adapters (Rosenfeld and Tsotsos, 2020;
Rebuffi et al., 2017) are typically small non-shared
feedforward networks (FFN) inserted at each layer
of a main network (e.g., BERT). For each task, a
separate set of adapters needs to be trained. In
particular, the standard practice is to freeze the
main model during task training and update only
the adapter parameters, introducing a huge parame-
ter cost reduction and the ability to incrementally
train a model for an arbitrary number of tasks with-
out having access to each dataset at the same time.
However, the effectiveness of adapters is subject to
extensive architecture search, that includes not only
the adapter structure, but also their position in the
overall network architecture, as well as the evalua-
tion of parameter reduction and performance trade-



offs (Houlsby et al., 2019; Pfeiffer et al., 2020a).
Motivated by the above mentioned shortcom-

ings, we introduce a tensor-based method for adapt-
ing a pre-trained Transformer to new unseen NLP
tasks by collective weight factorization of network
weights. In particular, our method relies on col-
lecting the Multi Head Attention (MHA) module
weight matrices into a high-order tensor and repre-
sent it in Tucker format (Tucker, 1963), by applying
a full-rank Tucker decomposition to it (see Fig. 1).
This allows training only the decomposition fac-
tor matrices while keeping the rest of the network
frozen, leading to significant parameter cost sav-
ings without any architecture search. In short, our
contributions are the following:

• We formulate a method for efficient learning
of multiple NLP tasks, utilising a Tucker
decomposition of the tensor consisting of
the weights of a pre-trained Transformer.
Compared to adapter-based alternatives,
we are able to achieve high parameter cost
reductions without resorting to a costly
architecture search.

• We experimentally show that our method
matches adapter-based alternatives and full
model fine-tuning in terms of performance by
evaluating it on the GLUE benchmark. Com-
pared to adapters, we achieve over four times
less total parameters and only need to train
1% of the model’s parameters for each task.

• We study the effect of applying our method to
different parts of the Transformer architecture,
similarly to other studies, e.g., (Lu et al.,
2021; Houlsby et al., 2019; Tay et al., 2020b) .
Interestingly, our results suggest that applying
adaptation methods to the MHA mechanism
can still perform well or even better than
when applied to fully connected layers.

The organization of the rest of the paper is as fol-
lows. Section 2 discusses closely related work. In
Section 3, we introduce the proposed methodology.
In Section 4, we provide implementation details
of our method and present experimental results.
Conclusions are drawn in Section 5.

2 Related Work

This work lies at the intersection of multi-source
domain adaption, while further incorporating ten-
sor decompositions for the parametrization of the
Transformer architecture.

A primary approach for fine-tuning deep learn-
ing models in the context of multi-source domain
adaptation is adapter learning. Adapters were intro-
duced in Computer Vision as a way to efficiently
fine-tune a model by adding extra adapter modules
to the network (Rosenfeld and Tsotsos, 2020; Re-
buffi et al., 2017) and have been extended to the
NLP domain as well. Specifically, involving the
Transformer architecture (Vaswani et al., 2017),
Stickland and Murray (2019) fine-tune the pre-
trained transformer BERT (Devlin et al., 2019)
with a multi-task strategy by training task-specific
adapters along with the rest of the model. Houlsby
et al. (2019) propose using adapters to efficiently
learn multiple tasks in an incremental manner by
fine-tuning only the task specific model adapters
each time. Likewise, Pfeiffer et al. (2020b) adapt
the pretrained multilingual model XLM-R (Con-
neau et al., 2020) to other languages through train-
ing language-specific adapters. In (Pfeiffer et al.,
2021), a simpler architecture is presented where
adapters are only added after the feed-forward part
of the attention module. The placement and in-
ternal structure of adapters is non-trivial and may
impact model efficiency, thus adapters require ex-
tensive experimentation before they are deployed
(Pfeiffer et al., 2020a). In contrast, the method
proposed in this paper is straightforward to imple-
ment, without requiring any architecture search.
Additionally, the number of trainable parameters
is even less than adapter-based counterparts, while
performance is comparable or better.

Instead of adding extra task-specific parameters
to the model as in the adapter case, a number of
works aim to directly modulate the layer weights
for each task. These methods are mostly based on
the hypernetwork scheme (Ha et al., 2017) in which
the weights of a network are generated dynamically
by using another network. An alternative strategy
is modulating the activations of the network layers
as seen in (Perez et al., 2018) where question en-
codings are used to modulate the activation maps
of a convolutional network. Tay et al. (2020b) use
a hypernetwork scheme based on decomposable
projections to create efficient multi-task transform-
ers utilising training strategies similar to (Stickland
and Murray, 2019).

In the context of deep learning, tensor methods
are often used to compress a model or make its
operations faster (Panagakis et al., 2021). A promi-
nent idea in this area is reshaping the weight matri-



ces of network layers into high order tensors and
decomposing them to achieve high compression
rates. Similar to the decomposition of convolu-
tional (Bulat et al., 2020) and fully connected lay-
ers (Novikov et al., 2015), Khrulkov et al. (2019)
propose to compress the embedding matrices of
NLP architectures by reshaping them into tensors
and then use the Tensor-Train (TT) Decomposition
(Oseledets, 2011) on them. The same strategy is
used in (Tjandra et al., 2017) where all the weight
matrices of an RNN or an LSTM unit are again
decomposed into a TT format.

The main novelty behind our work lies in utiliz-
ing the Tucker decomposition in a collective weight
factorization context, in order to efficiently extend
pretrained Transformer models to new tasks within
the NLP domain. We show that selectively group-
ing and decomposing specific layers (such as the
MHA modules) can lead to efficient NLP task adap-
tation with little to no architecture search, while
retaining strong performance.

3 Collective Weight Factorization for
Incremental Task Learning

In this section, we present our method which is
based on the collection of a pretrained network’s
weight matrices into a single high-order tensor.
We then introduce task-specific factor matrices
by decomposing the said tensor using a Tucker
decomposition on the collected weight matrices
and training the factor components of the decom-
position via backpropagation. A visual overview
of the proposed method is presented in Fig. 1.

3.1 Preliminaries

We consider learning models h1, h2, . . . , hN for
tasks T1, T2, . . . , TN that become available in any
order, with each model hi has θi parameters. This
is in contrast to multi-task learning where all the
tasks are available at train-time, with some or all pa-
rameters being jointly trained and shared between
tasks, i.e., θ1 = θ2 = θN . Our hypothesis is that
the weights of a big model trained on a generic task
using huge amounts of data can be successfully uti-
lized to fine-tune new models on new tasks, while
keeping the number of newly introduced weights
for training to a minimum.

Notation. We denote matrices by capital letters
in italics (e.g., M ) and tensors by caligraphic cap-
ital letters (e.g., T ). We use a colon to denote all
the elements of a mode, e.g., T:,:,i2 for the frontal

slices of a 3-way tensor. The mode-n unfolding
of a tensor T ∈ RI0×I1×...×IN is defined as a ma-
trix P[n] ∈ RIn×IM with IM =

∏N
k=0,k ̸=n Ik. Fi-

nally, we define the n-mode product of a tensor
T ∈ RI0×I1×...×IN with a matrix M ∈ RJ×IM as
the result of multiplying the matrix with the mode-
n unfolding of the tensor: T ×n M = MT[n] ∈
RI0×...×In−1×J×In+1×...×IN

Tucker Decomposition. The Tucker decom-
position (Tucker, 1963) of an n-way tensor T ∈
RI0×I1×...×IN decomposes the tensor T into a core
tensor G ∈ RR0×R1×...×RN and a set of factor ma-
trices F (n) ∈ RRk×Ik and can be regarded as a
higher order Principal Component Analysis (PCA).
The decomposed tensor is expressed as the n-mode
product of the core tensor with the corresponding
factor matrix:

T = G ×1 F
(1) ×2 F

(2) × . . .×n F (n) (1)

Computing the core and factor matrices (De Lath-
auwer et al., 2000) requires unfolding the tensor
along each mode, performing Singular Value De-
composition (SVD) and storing the left singular
vectors of the decomposition. The core is then
computed by multiplying the initial tensor T with
the transpose of each factor matrix:

G = T ×1 F
(1)T ×2 F

(2)T × . . .×n F (n)T (2)

It is well known that low-rank Tucker decompo-
sition can reduce parameters (Kolda and Bader,
2009). In this work however, we do not use
Tucker for compression of an individual model,
but rather to capture task-agnostic components of
model weights that are shared amongst tasks, mak-
ing finetuning to multiple tasks much more effi-
cient.

3.2 Collective weight factorization
Throughout the rest of the paper, we consider the
collective factorization of the MHA module of a
transformer which consists of multiple attention
modules as in (Vaswani et al., 2017). Concretely,
the attention operation consists of queries and keys
of dimension dk stacked into matrices Q,K and
values of dimension dv stacked into the matrix V :

Att(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

The multi-head attention is then formed by con-
catenating multiple attention heads and param-
eterized with a hidden size h. Each head lin-
early projects each Q, K, V input with matrices



Figure 1: The MHA mechanism of each encoder block L is constructed from a slice of the n-mode product of a core
tensor and n factor matrices. The core tensor along with the FFN module of each encoder block are frozen and
shared between tasks. Without loss of generality, we depict the stacked weights tensor using three dimensions for
easier comprehension.

WQ
i ,WK

i ∈ Rh×dk , W V
i ∈ Rh×du . The concate-

nation of the different heads is then projected using
a matrix WO ∈ Rnheadsḋu×h:

MHA(h) = Concat(head1, . . . , headnheads)W
O,

headi = Att(QWQ
i ,KWK

i , V W V
i )

(4)
In this work, following the implementation of

the BERT-Large model, we consider a Transformer
built by stacking 24 identical encoder blocks, with
each block consisting of two residual modules,
containing a MHA and a FFN modules followed
by a normalization layer (Ba et al., 2016). The
MHA mechanism is modeled using four matrices,
WQ,WK ,WV ,WO ∈ Rh×h with the first three
being the concatenation of the head matrices de-
fined in (4) with du = dk = h/nheads and with
h = 1024. The FFN is a 2-layer fully connected
network with weight matrices W1 ∈ Rh×4h,W2 ∈
R4h×h and a non-linearity between them. Since
the MHA matrices are of the same dimensionality,
we can construct a high order tensor by grouping
each set of weight matrices in each MHA present
in every layer of the transformer encoder.

Concretely, we first collect and parameter-
ize the multi-head self-attention weight matrices
WQ,WK ,WV ,WO ∈ Rh×h of a transformer pre-
trained on large amounts of data into a 4-way ten-
sor W ∈ RI0×I1×I2×I3 . Mode I0 points to layers

in the network, I1 to the index of each of the 4
matrices in the MHA mechanism, and I2, I3 to
the dimension of input and output features of the
layers respectively. Specifically, for the BERT-
Large model which is the basis of our experiments,
W ∈ R24×4×1024×1024. We can then express the
above tensor in Tucker form by applying a full rank
Tucker decomposition to it:

W = G ×1 F
(1) ×2 F

(2) ×3 F
(3) ×4 F

(4). (5)

The core tensor G can be thought of as the collec-
tion of the principal components of the task agnos-
tic model’s weights, and it is shared among tasks.
Since the decomposition is full rank, i.e., F (n) ∈
RRk×Ik and Rk = Ik, the factor matrices act as
weight-modulating components and transform the
core tensor G along its modes. Intuitively, the first
two factors capture layer-wise and component-wise
interactions between weight matrix elements with
the same position. F (3), F (4) function as shared
linear projections for all the WQ

i ,WK
i ,W V

i atten-
tion head weight matrices. The factors scale with
the hidden size h of the pretrained model since the
total number of parameters for the Tucker tensor is
given by:

Nt =
4∏

k=0

Rk +
4∑

k=0

Rk × Ik (6)



where R3, R4 = h. During training, we adapt the
pretrained core tensor G to each new task S by
freezing the core and training the factor matrices
with the task-specific data. We do not train any
other part except the final classification head of the
network leading to extensive parameter savings.

Inference. Our method can be viewed as a spe-
cial form of a tensor contraction layer (Kossaifi
et al., 2020) where the resulting output tensor is
of the same dimensions as the input. During the
forward pass the core tensor G is multiplied along
each mode with the corresponding task factor ma-
trix F (N). The resulting weight tensor holds the
weight matrices of each MHA layer in the form of
slices Wi0,i1,:,: obtained by fixing all but the two
last indices of the tensor. Once the weight tensor
is formed, the slices are passed to their respective
layers and inference is performed as in the standard
version of the model.

4 Experimental Evaluation

In this section, we provide implementation details
and discuss our experiments. Our models are based
on the existing open source PyTorch implementa-
tion of a well-known Transformer model1, while
TensorLy (Kossaifi et al., 2019) is used for the ten-
sor operations.

4.1 Implementation Details.

We construct a high-order tensor by collecting the
MHA weight matrices of a pretrained BERT-Large
model with h = 1024 and 24 layers, leading to a
4-way tensor as described in Section 3. We then
decompose this tensor and use it to initialize train-
ing on each task. We then freeze all the layers
except the biases, the normalization layers and the
final classification layer which consists of a fully
connected layer and a classification head. Classifi-
cation is done as in (Devlin et al., 2019) by passing
a special [CLS] token from the encoder output se-
quence to the final classification head.

4.2 Experiments with GLUE.

We experimented with GLUE (Wang et al., 2019)
since it is a well-known benchmark utilized in
the majority of previous works on multitask
and incremental learning in order to assess
performance. The dataset itself consists of 9 NLP
text-classification tasks: CoLA (Warstadt et al.,
2018) and SST2 (Socher et al., 2013) are single

1https://huggingface.co/bert-large-uncased

sentence classification tasks focusing on linguistic
acceptability and binary sentiment classification
respectively. MRPC (Dolan and Brockett, 2005),
STS-B (Cer et al., 2017) and QQP (Quora Question
Pairs) are semantic similarity tasks (STS-B is
treated as a regression task with scores 1-5). The
remaining tasks are all related to inference. MNLI
(Williams et al., 2018) and RTE are hypothesis
entailment classification tasks. QNLI (Rajpurkar
et al., 2016) requires the model to predict whether
the piece of text following a given question con-
tains the answer to that question. Finally, WNLI
(Levesque et al., 2012) is a reading comprehension
task where the task is to predict the reference of a
pronoun appearing in a sentence. Following other
works (Devlin et al., 2019; Houlsby et al., 2019;
Stickland and Murray, 2019), we exclude this task
from our results and calculate the test set using a
naive majority class label classification.

We performed a hyperparameter search to select
the best learning rate, among {10−5, 2 · 10−5, 3 ·
10−5, 2 · 10−4, 3 · 10−4}, and batch size 16 or 32
for each task. We train for 10 epochs. Contrary to
adapter-based approaches, our method is straight-
forward and does not require further architecture
search to decide on the best size-performance trade-
off and optimal adapter placement within the net-
work. We use the Adam optimizer (Loshchilov
and Hutter, 2019) with β1 = 0.9, β2 = 0.999 and
a weight decay of 0.01. Finally, we linearly in-
creased the learning rate to the specified value for
the first 10% of the training steps. All of our train-
ing runs were done using a single computing node
with four NVIDIA V100 GPUs.

4.3 Collective FFN factorization.

We are interested in investigating the performance
of our method when applied using the second FFN
weight matrix of each encoder block and compar-
ing it to the factorized multi-head attention variant
that we presented in Sec. 3. It is noted that other
works (Lu et al., 2021; Houlsby et al., 2019; Tay
et al., 2020b) have suggested that fine-tuning or ap-
plying adaptation methods only to the second fully
connected layer yields better results than applying
the same methods to the MHA modules. In order to
test this hypothesis in an multi-task adaptation set-
ting, we utilise the strategy of folding layer weight
matrices and decomposing them using tensor de-
compositions (Sec. 3). Using that same strategy,
we can incorporate collective FFN factorization



Model Total
Parameters

Trainable
Parameters

CoLA SST MRPC STS-B QQP MNLIm MNLImm QNLI RTE GLUE Score

(Devlin et al., 2019) 9x 100% 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7 85.9 92.7 70.1 80.5
(Houlsby et al., 2019) 1.3x 3.6% 59.2 94.3 88.7/84.3 87.3/86.1 71.5/89.4 85.4 85.0 92.4 71.6 80.2
Ours-MHA 1.075x 1% 61.6 93.6 88.6/84.5 87.1/85.8 72.1/89.1 85.7 85.4 92.3 70.9 80.3
Ours-FFN 1.075x 1% 61.9 93.6 86.8/82.5 84.9/83.8 71.7/89.0 85.6 84.7 92.1 67.1 79.4

Table 1: GLUE test-set results reported from the official GLUE website. We report Mathew’s Correlation for CoLA,
Pearson/Spearman Correlation for STS-B, F1/Accuracy for MRPC and QQP and Accuracy for all other tasks.

Task Factorized Attention Factorized Linear

CoLA 64.3 60.4
SST-2 92.2 93.0
MRPC 87.6 87.8
STS-B 90.0 87.6
QQP 89.4 88.9

MNLI 85.8 85.5
QNLI 91.7 91.8
RTE 72.6 70.0

Average 84.2 83.1

Table 2: Comparison of factorized MHA and factorized
FFN methods. For tasks with two metrics we report
the unweighted average. The average score is reported
without including the WNLI task.

into our framework by folding the second FFN
weight matrix W2 ∈ R4h×h of each encoder block
into a 3-way tensor W ∈ R4×h×h. We then collec-
tively factorize the tensor of all the layers, similarly
to the MHA case (Sec. 3). Note that even though
the weight matrices of the layers were reshaped to
tensors, our decomposition factors F (n) operate in
much the same way as in the MHA attention case.
We can then employ a similar training process as
the one described in Sec. 4.2.

4.4 Rank Ablation.

As mentioned in Sec. 3 we opt for a full-rank
decomposition rather than a low-rank one. Our hy-
pothesis is that a low-rank decomposition would
lead to the loss of useful information, hindering
the effective adaptation to different tasks given our
low parameter budget. We have empirically ver-
ified this hypothesis by reducing the rank of our
decomposition during the training procedure ini-
tialization. Concretely, even slight dimensionality
reduction (e.g. from 1024 to 768) leads to a signif-
icant decrease in performance (e.g. from 61% to
35% in the CoLA dataset/task), with performance
becoming gradually worse when further reducing
dimensionality.

4.5 Results and Discussion

For the first set of experiments, our results in ta-
ble 1 show that our MHA variant yields competi-
tive results on the GLUE dataset, being compara-
ble or better than the adapter-based alternative of
(Houlsby et al., 2019), albeit requiring significantly
less total and trainable parameters. In fact, given
that the large version of BERT consists of 330M
parameters, our approach requires four times less
total parameters for all of the GLUE tasks and, for
each task, we train at most 1% of the initial model’s
parameters. Compared to adapters, this leads to
an almost four times reduction in the number of
training parameters - without relying on extensive
parameter search, on which adapters are heavily
reliant (Stickland and Murray, 2019; Houlsby et al.,
2019). Our method does not introduce extra hy-
perparameters since the decomposition is always
full rank, thus it is also simpler to implement and
optimize.

Our second set of experiments is related to recent
findings that the fully connected modules of the
transformer architecture tend to be more important
for a model’s performance (Kitaev et al., 2020; Tay
et al., 2020a). A number of works have confirmed
this claim under different settings (Houlsby et al.,
2019; Tay et al., 2020b; Lu et al., 2021), where
either the network is trained by remaining frozen
except for the FFN module or the second fully
connected layer of the FFN is chosen for some
weight modulation method. We also selected the
second fully connected layer of the FFN module
and applied our collective factorization scheme to
it. However, when comparing the two variants of
our method, the MHA module variant seems to
consistently be the better method when it comes
to both the Glue test set (table 1) and the dev set
(table 2).

5 Conclusions and Future Work

We introduced a collective weight factorization
method for adapting a pre-trained transformer to



multiple NLP tasks in an efficient manner. The
proposed method is more efficient in terms of total
parameters needed and percentage of model param-
eters trained and stored for each new task. Fur-
thermore, we investigated the effect of our method
when applied to different components of the Trans-
former. The results indicate that the multi-head
attention mechanism can effectively adapt to dif-
ferent tasks and achieve competitive results when
it is the only trained component, leading to the
conclusion that more research needs to be done on
the contribution of the different parts of the Trans-
former to its performance, and the correlation of
the performance to the data used for training.

A limitation of out work is that the proposed
factorization scheme operates on a single type of
module, i.e. requiring same number of weight ma-
trices and matrix dimensions. We plan to extend
our method in order to be able to incorporate differ-
ent types of modules (such as the FFN and MHA)
in a joint factorization scheme. Taking into account
recent advances in the extension of pretrained trans-
formers to different modalities (Lu et al., 2021),
one can also investigate the extension of the pro-
posed method to adapt pretrained Transformer net-
works to new modalities, incorporating diverse
tasks while maintaining a minimum overhead in
terms of additional trainable and total parameters.
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