
Supervised Scheduling for Geospatial Interlinking
Maria Despoina Siampou

siampou@usc.edu

Dept. of Computer Science

University of Southern California, USA

George Papadakis

gpapadis@di.uoa.gr

Dept. of Informatics & Telecommunications

National and Kapodistrian University of Athens, Greece

Nikos Mamoulis

nikos@cs.uoi.gr

Dept. of Computer Science

University of Ioannina, Greece

Manolis Koubarakis

koubarak@di.uoa.gr

Dept. of Informatics & Telecommunications

National and Kapodistrian University of Athens, Greece

ABSTRACT
Geospatial Interlinking constitutes a crucial data integration task

that associates pairs of geometries with topological relations. Its

high computational cost, though, scales poorly to voluminous datasets.

Progressive methods were recently proposed to reduce this cost by

sacrificing recall to an affordable extent. They operate in a learning-

free manner that relies on mere heuristics, which can be conser-

vative (i.e., retaining too many unrelated pairs) or aggressive (i.e.,

discarding too many related pairs). In this work, we extend them

with Supervised Scheduling, a quick and principled way of defining

the processing order of the candidate geometry pairs that are likely

to be topologically related, based on their classification probability.

Our approach leverages generic features with low extraction cost

but high discriminatory power. We integrate Supervised Sched-

uling into a progressive end-to-end algorithm that automatically

labels the required training instances at a low computational cost.

Thorough experiments verify the high performance and robustness

of our features as well as the limited size of the training set that suf-

fices for learning an accurate classification model. Our experiments

also verify the superior performance of our approach in comparison

to existing learning-free ones over five real, large datasets.

KEYWORDS
Geospatial Interlinking, DE-9IM Relations, Supervised Scheduling

ACM Reference Format:
Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis

Koubarakis. 2023. Supervised Scheduling for Geospatial Interlinking. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Geospatial data constitutes the cornerstone in numerous applica-

tions, especially on the Web. For example, OpenStreetMap alone

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

contains data about the entire globe that amounts to 1.5 terabyte
1
.

GeoNames describes more than 12 million locations
2
. There are

also geospatial knowledge graphs such as YAGO2
3
, YAGO2geo

4
,

WorldKG
5
and KnowWhereGraph

6
. YAGO2 has been built using

data from GeoNames, thus focusing on point geometries (latitude

and longitude) [10], but YAGO2geo extends it with millions of lines,

polygons and multipolygons, drawing on OpenStreetMap and data

sources with administrative divisions [12]. WorldKG is built us-

ing data from OpenStreetMap and contains around 113.4 million

geographic entities [5]. KnowWhereGraph is the latest effort in

this area, with pilot applications in disaster relief, agricultural land

use and food-related supply chains [11]; in more than 12 billion

RDF triples, it includes polygons and multipolygons. Finally, well-

known, cross-domain knowledge graphs, such as DBpedia
7
and

Wikidata
8
, also contain their fair share of geospatial information.

Despite the prominence and volume of geospatial data on the

Web as witnessed by the above examples, its sources are inade-

quately interlinked on the Linked Open Data (LOD) cloud
9
. Al-

though the geospatial data corresponds to almost 20% of the LOD

cloud triples, only 7% of the links between the various data sources

pertain to geometries [16]. For example, only 0.52% of the Open-

StreetMap geometries were linked to Wikidata as of April, 2021 [5].

To address this shortage, Geospatial Interlinking aims to automat-

ically connect the geometric entities (geometries in the following)

between the various data sources of the (Semantic) Web [19, 21].

In more detail, Geospatial Interlinking takes as input a source and

a target dataset, 𝑆 and 𝑇 , respectively, and its objective is to inter-

link 𝑆 and 𝑇 by identifying all geometry pairs in 𝑆 ×𝑇 that satisfy

a topological relationship, except for the trivial disjoint one. As
an example of such relations consider the geometries in Figure 1:

LineString 𝑔4 intersects LineString 𝑔3, which touches Polygon
𝑔1, which contains Polygon 𝑔2. The topological relations between

two geometries can be encoded by the DE-9IM model [3, 4, 6],

which essentially builds an intersection matrix based on the rela-

tion between the interior, the boundary and the exterior of the two

geometries (see Section 3 for more details). The time complexity of

1
https://wiki.openstreetmap.org/wiki/Planet.osm

2
https://www.geonames.org/about.html

3
https://yago-knowledge.org/

4
https://yago2geo.di.uoa.gr/

5
https://www.worldkg.org

6
https://knowwheregraph.org/

7
https://www.dbpedia.org/

8
https://www.wikidata.org/

9
https://lod-cloud.net

https://orcid.org/0009-0006-1646-3618
https://orcid.org/0000-0002-7298-9431
https://orcid.org/0000-0003-3423-4895
https://orcid.org/0000-0002-1954-8338
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://wiki.openstreetmap.org/wiki/Planet.osm
https://www.geonames.org/about.html
https://yago-knowledge.org/
https://yago2geo.di.uoa.gr/
https://www.worldkg.org
https://www.dbpedia.org/
https://www.wikidata.org/
https://lod-cloud.net

Conference’17, July 2017, Washington, DC, USA Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis Koubarakis

g1
g2

g3

g4

Figure 1: An example of topologically related geometries.

this operation is 𝑂 (𝑛 log𝑛), where 𝑛 stands for the total number of

boundary points in the two geometries [2].

Geospatial Interlinking is a demanding task that involves two

main challenges [19, 21]: (i) its inherently quadratic time complex-

ity, given that the brute-force approach has to examine all pairs

of geometries, and (ii) the time-consuming identification of the

topological relationship for each pair of geometries.

The first challenge is addressed through the Filtering-Verification

framework that lies at the core of all relevant techniques [1, 17,

19, 21]. The source and target datasets, 𝑆 and 𝑇 respectively, are

fed to the Filtering step, which efficiently computes the set 𝐶 ⊆
𝑆 × 𝑇 : |𝐶 | ≪ |𝑆 | × |𝑇 | with pairs that are candidates, i.e., likely
to have a non-trivial topological relation, because their Minimum

Bounding Rectangles (MBRs) are intersecting. The Filtering step

can efficiently be computed by a spatial intersection join algorithm

for MBRs (e.g., [24]); 𝐶 is then forwarded to the Verification step,

which examines every geometry pair to identify whether the pair

has non-trivial topological relations and, if yes, which ones.

If the Verification step is applied to all pairs of geometries in

𝐶 , Geospatial Interlinking may take too long to complete; for this

reason, progressive approaches [17, 18] were recently proposed to

address the second challenge of Geospatial Interlinking. Such ap-

proaches, turn Geospatial Interlinking into an approximate proce-
dure, where not all geometry pairs in 𝐶 are processed, but a subset

of 𝐶 , which is anticipated to include most pairs having non-trivial

topological relationships. Hence, progressive approaches sacrifice

recall to a small extent to reduce the run-time by orders of magni-

tude for applications with limited resources. Such applications are

typically cloud-based, having a limited budget for services like the

AWS Lambda functions [20], which charge whenever used.

To make the most of the applications’ budget, progressive meth-

ods aim to determine the processing order of candidate pairs such

that the topologically related ones take precedence. After Filter-

ing, Scheduling associates every candidate pair with a score that

is proportional to the likelihood that its geometries are topologi-

cally related. During Verification, only the top-𝑘 weighted pairs are

examined, with 𝑘 configured according to the available resources.

On the downside, the existing progressive methods weigh the

candidate pairs according to learning-free heuristics that are typi-

cally based on the tiles that intersect the MBR of each geometry;

e.g., the number of common tiles or their Jaccard similarity [17]. Yet,

they prune the search space in a way that might be either too ag-

gressive, missing many related pairs, or too conservative, verifying

many non-related pairs. Their performance depends greatly on the

weighting scheme and the characteristics of the geometries at hand,

when the best scheme for a specific dataset is a-priori unknown.

In this work, we argue that supervised learning provides a princi-

pled framework that distinguishes between related and non-related

geometry pairs by leveraging multiple sources of evidence, instead

of a single weighting scheme. We formalize Supervised Scheduling
as a probabilistic binary classification task that orders in decreasing

classification probability the candidate pairs that are labeled as

“likely related”. To solve this task, we propose 31 features that

represent every pair of geometries. These features are generic and

able to be applied on both LineStrings and Polygons, while their

extraction cost is very low (few milliseconds). Our objective is to

identify the smallest set of features that achieves high accuracy. We

experimentally verify its robustness, despite using a tiny training

set, and examine its sensitivity to the classification algorithm.

We also propose Supervised Progressive GIA.nt, an end-to-end al-

gorithm that builds the required training set on the fly, without any

human intervention, learns the classification model for Supervised

Scheduling, and uses it to feed Verification with the best candi-

dates. Extensive experiments show that this approach significantly

outperforms the existing progressive methods.

Overall, this paper makes the following contributions:

•We define Supervised Scheduling, a probabilistic binary classi-

fication task trading slightly lower recall for much higher precision.

•We define four categories of generic, efficient, and effective

classification features, with each one further divided into two sub-

categories, and populate them with 31 features.

•We propose Supervised Progressive GIA.nt, a learning-based

algorithm that builds a small training set 𝑡𝑟 on-the-fly, after the first

pass over all input data, learns a binary classifierM over 𝑡𝑟 and

appliesM during the second pass over the input data, significantly

reducing the candidate pairs and the run-time.

•We perform feature selection and demonstrate the robustness

of the resulting features when trained over a few instances.

• We experimentally compare our approach to the existing

learning-free progressive methods, demonstrating its superiority

in terms of effectiveness and robustness.

2 RELATEDWORK
Geospatial Interlinking is a core task in the process of populating the

Semantic Web with links between its geospatial entities [1, 17, 21].

The first relevant technique is Silk-spatial [22]. Its Filtering di-

vides the surface of the Earth into a user-defined number of tiles.

Its Verification examines the candidate pairs inside every tile in

parallel, leveraging Apache Hadoop (http://hadoop.apache.org).

To go beyond Silk-spatial, RADON [21] enhanced Filtering with

a fine-grained Equigrid, whose dimensions depend on data char-

acteristics. Every geometry is placed in all tiles that intersect its

MBR and, thus, some candidate pairs co-occur in different tiles.

The Verification step stores in a main-memory hash-map all pairs

examined so far for deduplication purposes, i.e., in order to avoid

verifying the same pair more than once.

stLD [19] enhances RADON in fourways: (i) its Filtering supports

a series of indices, such as R-Tree, Equigrid and a hierarchical

grid; (ii) Apache Flink (https://flink.apache.org) is used for massive

parallelization; (iii) MaskLink [19] estimates the overlap of every

geometry with every tile to check whether it is contained in the

space left empty by the other geometries in the tile. If this is true, the

entire tile is skipped, without generating any candidate pairs; (iv)

http://hadoop.apache.org
https://flink.apache.org

Supervised Scheduling for Geospatial Interlinking Conference’17, July 2017, Washington, DC, USA

• GIA.nt: Geospatial Interlinking at lArge

• Progressive GIA.nt

Filtering Verification
C

S

T

L

Filtering Verification
C

Scheduling
C’

S

T

L

Figure 2: Learning-free Progressive Geospatial Interlinking.

only one of the two input datasets is indexed, reducing the memory

requirements and treating the second input dataset as a stream of

geometries. This means that only one dataset is loaded in the main

memory, while the second can be read from the disk on-the-fly.

These works operate at the level of a single topological relation,

repeating the entire processing for every topological relation of

interest. This is addressed by RADON2 [1], which simultaneously

extracts all relations from the intersection matrix of two geometries.

GIA.nt [17] combines the advantages of all the above works.

During Filtering, it loads only the smallest dataset 𝐷𝑆 in main

memory and indexes it with an Equigrid, whose granularity depends

on the characteristics of 𝐷𝑆 . During Verification, it reads the largest

dataset from the disk, one geometry at a time. For each geometry,

it retrieves the candidate pairs from the Equigrid and verifies those

with intersecting MBRs. Massive parallelization on Apache Spark

(http://spark.apache.org) minimizes the run-time.

The above approaches operate in a batch manner that produces

exact results (in an arbitrary order) only after processing the entire

input. This is incompatible with geospatial applications of limited

computational and/or temporal resources (e.g., cloud-based apps).

To accommodate them, progressive methods were proposed in [17],

turning Geospatial Interlinking into an approximate process that

promotes precision at the expense of recall. As shown in Figure 2,

they extend the Filtering-Verification framework with an interme-

diate step, called Scheduling, which orders the set of candidate pairs

𝐶 such that the related ones are processed before the non-related.

This is achieved through a weighting scheme that considers the

tiles intersecting the MBR of every geometry, assigning higher

scores to pairs that are more likely to be related. Given a user- or

application-defined budget of 𝑘 verifications, Progressive GIA.nt

performs a global sorting so as to verify the top-𝑘 weighted pairs. In

contrast, Progressive RADON orders the tiles according to their size

and performs a local sorting of geometry pairs inside every tile, until

consuming the budget. None of them leverages machine learning to

enhance the effectiveness and robustness of Geospatial Interlinking.

Both Progressive GIA.nt and Progressive RADON yield a static

processing order, which is not affected by the results of Verification.

This order can become dynamic through the algorithm presented

in [18]: whenever two geometries 𝑠 and 𝑡 are detected as topo-

logically related, the weight𝑤 of all non-verified candidate pairs

that include 𝑠 or 𝑡 , is updated according to the following formula:

𝑤 ′ = 𝑤 × (1 + 𝑞), where 𝑞 is the number of times a geometry of

this candidate pair has been qualified as topologically related. This

is useful in specific cases, such as when interlinking a dataset with

long LineString geometries like roads or rivers with another one

that entails Polygon geometries like buildings or cities; the more

buildings a road has touched, the higher the weight of the rest of

the candidate buildings should be, denoting its likelihood to be

a main road. This means that Dynamic Scheduling has a limited

scope and, thus, we disregard it in this work.

Note also that (batch) Geospatial Interlinking seems similar to a

spatial join [15], but in reality, the latter addresses only the Filtering

#Examined Pairs

#R
el

at
ed

 P
ai

rs

Batch method

Progressive method

|S|∙|T|

Figure 3: PGR for batch and progressive algorithms.

step of the former since it aims to detect nearby points or pairs of

geometries that intersect. Instead, the Verification step of Geospa-

tial Interlinking aims to detect a series of topological relations, as

explained in Section 3. There are no spatial join algorithms that per-

form Verification in a pay-as-you-go manner, i.e., by scheduling the

processing order of geometry pairs. The progressive computation

of spatial joins has only been examined in the context of stream

processing [13, 23], which is irrelevant to this work.

3 PRELIMINARIES
Our work focuses on two types of geometries: (i) LineStrings or
Polylines, which are sequences of connected line segments, and

(ii) Polygons, which, in the simplest case, are two-dimensional ge-

ometries specified by a loop sequence of points, where the first

and the last one coincide. In Figure 1, examples of LineStrings are

geometries 𝑔3 and 𝑔4, while Polygons are represented by 𝑔1 and 𝑔2.

Both types of geometries consist of three parts: (i) the interior, (ii)

the boundary, and (iii) the exterior (i.e., the rest of the points).

For these two types of geometries, the Dimensionally Extended
Nine-Intersection Model (DE-9IM) [3, 4, 6] defines the following

topological relations between two geometries 𝐴 and 𝐵:

(1) Equals(𝐴, 𝐵): 𝐴 and 𝐵 have identical interiors and boundaries.

(2) Disjoint(𝐴, 𝐵):𝐴 and 𝐵 share no point of their boundaries nor

of their interiors.

(3) Intersects(𝐴, 𝐵): 𝐴 and 𝐵 are not disjoint, sharing at least
one point of their interiors or boundaries.

(4) Touches(𝐴, 𝐵): 𝐴 and 𝐵 have common points in their bound-

aries, but not in their interiors.

(5) Within(𝐴, 𝐵): 𝐴 resides in the interior of 𝐵.

(6) Contains(𝐴, 𝐵): within(𝐵,𝐴).
(7) Covers(𝐴, 𝐵): 𝐵 resides in 𝐴’s interior or boundary.

(8) Covered-by(𝐴, 𝐵): covers(𝐵,𝐴).
(9) Crosses(𝐴, 𝐵): 𝐴 and 𝐵 share part of their interior points, and

𝑑𝑖𝑚(𝐴)<𝑑𝑖𝑚(𝐵) or 𝑑𝑖𝑚(𝐵)<𝑑𝑖𝑚(𝐴).
(10) Overlaps(𝐴, 𝐵):𝐴 and 𝐵 share part of their interior and bound-

ary points, and 𝑑𝑖𝑚(𝐴) = 𝑑𝑖𝑚(𝐵).
Note that 𝑑𝑖𝑚(𝑔) is 0, 1 or 2 if 𝑔 is a point, a line segment or an

area, respectively. Note also that all topological relations can be

extracted from the intersection matrix of the given geometry pair

[1, 17].
10

We disregard, though, the relation Disjoint, because
it is not informative, as it typically applies to the vast majority

of geometry pairs [17]. We denote the set of the nine non-trivial
topological relations by R. If a geometry pair is found to satisfy

none of these relations, it is assumed to satisfy Disjoint.
Overall, Geospatial Interlinking is an exact task that misses no

non-trivial topological relations between the given geometries [17]:

10
See examples in https://en.wikipedia.org/wiki/DE-9IM#Matrix_model.

http://spark.apache.org
https://en.wikipedia.org/wiki/DE-9IM#Matrix_model

Conference’17, July 2017, Washington, DC, USA Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis Koubarakis

Problem 1 (Geospatial Interlinking). Given a source and a
target dataset, 𝑆 and𝑇 respectively, compute all non-trivial topological
relations between their geometries 𝐿R = {(𝑠, 𝑟, 𝑡) ⊆ 𝑆×R×𝑇 : 𝑟 (𝑠, 𝑡)}.

3.1 Progressive Geospatial Interlinking
An approximate solution to Problem 1 is provided by progressive

algorithms, which operate in a pay-as-you-go manner [17] to max-

imize the throughput of applications with limited resources. Com-

pared with the exact (batch) solutions to Problem 1, the progres-

sive ones have two goals [17]: (i) to yield the same outcome when

processing all input data, and (ii) to yield substantially more topo-

logically related pairs, when terminating prematurely.

These requirements are reflected in the diagram of Figure 3,

which is formed by the number of verifications on the horizontal

axis and the number of related geometries on the vertical one.

The gist of progressive algorithms is that they place the related

pairs before the non-related ones in the processing order. This

is in contrast to the batch algorithms, which define an arbitrary

processing order. More formally, the progressive algorithms aim to

maximize the area under their curve in Figure 3. This evaluation

measure is called Progressive Geometry Recall (PGR) and is defined

in [0, 1], with higher values indicating higher effectiveness.

In this context, progressive methods tackle this task [17]:

Problem 2 (Progressive Geospatial Interlinking). Given a
source and a target dataset, 𝑆 and 𝑇 respectively, along with a budget
𝐵𝑈 on the maximum calculations (or running time), compute as many
non-trivial topological relations between 𝑆 and 𝑇 as possible so that
the PGR is maximized within 𝐵𝑈 .

The progressive algorithms are also evaluated with respect to: (i)

run-time, (ii) precision, i.e., the ratio between the detected related

pairs and the verified ones, and (iii) recall, the ratio between the

detected and the existing related pairs.

3.2 (Supervised) Scheduling
The experiments in [17, 18] demonstrate that the global sorting

of Progressive GIA.nt consistently outperforms the local one of

Progressive RADON. For this reason, our approach to Supervised

Scheduling employs a global sorting, too.

Also crucial for the performance of progressive methods is the

weighting scheme that is used in Scheduling. Every scheme pro-

duces positive values that are proportional to the likelihood that

two geometries 𝑠 and 𝑡 are topologically related. More specifically:

W1) Co-occurrence frequency (CF) measures the number of tiles

shared by 𝑠 and 𝑡 [17].

W2) Jaccard similarity (JS) normalizes CF by the number of distinct

tiles containing 𝑠 and 𝑡 [17].

W3) Pearson’s 𝜒2
test (𝜒2

) checks whether the distribution of tiles

intersecting 𝑠 remains the same if we exclude the tiles inter-

secting 𝑡 , and vice versa. That is, it assesses whether the two

geometries appear independently in the tiles of the grid index

based on the number of tiles intersecting 𝑠 , 𝑡 and both [17].

W4) MBR overlap (MBRO) is the portion of the area shared by the

MBRs of 𝑠 and 𝑡 :𝑀𝐵𝑅𝑂 (𝑠, 𝑡)=|𝑀𝐵𝑅(𝑠∩𝑡) |/𝑀𝐵𝑅(𝑠∪𝑡) | [18].
W5) Inverse sum of points (ISP) assigns higher scores to pairs with

a lower sum of boundary points, i.e., 𝐼𝑆𝑃 (𝑠, 𝑡) = 1/(𝑏 (𝑠)+𝑏 (𝑡)),

where 𝑏 (𝑥) is the function returning the number of boundary

points for geometry 𝑥 [18].

The best performing weighting scheme depends on the dataset

at hand and the characteristics of its geometries (e.g., the type of

topological relations they satisfy) [17, 18]. Our goal is to use these

schemes along with additional evidence as features that represent

the geometry pairs fed to a probabilistic classifier. We argue that

sorting the candidate pairs in decreasing matching probability con-

sistently outperforms the individual schemes. We also demonstrate

that this can be achieved without requiring any human intervention

for the training or the configuration of the probabilistic classifier.

Scheduling in Figure 2 operates in a learning-free manner that

associates every pair of geometries with a single heuristic score

[17]. We argue that this is not sufficient for addressing Problem 2.

Instead, we introduce Supervised Scheduling as the task of associat-

ing every pair with a probability that its constituent geometries are

topologically related through a principled approach. More formally:

Problem 3 (Supervised Progressive Geospatial Interlink-

ing). Given a source and a target dataset, 𝑆 and𝑇 respectively, along
with a budget 𝐵𝑈 on the maximum calculations (or running time),
learn a probabilistic binary classifier that associates every geometry
pair (𝑠 , 𝑡) with the likelihood that 𝑠 and 𝑡 are topologically related so
that ordering all pairs in decreasing weight maximizes PGRwithin𝐵𝑈 .

Our goal is to address Problem 3without any human intervention

while improving the effectiveness of progressive algorithms.

4 APPROACH
4.1 Features for Supervised Scheduling
Supervised Scheduling essentially associates every geometry pair

with a feature vector, where every dimension is a separate numerical

score. The desiderata of these features are: (i) They should be generic,
applying seamlessly to LineStrings and Polygons and ideally, to any

indexing scheme used by the Filtering step in Figure 2. (ii) They

should be effectivewith high discriminatory power. (iii) They should

be efficient, involving a low extraction cost so that the classification

of a pair is much faster than its verification.

In this context, we propose 31 features for Supervised Filter-

ing. To facilitate their description and understanding, we organize

them into four complementary categories: (i) The area-based fea-
tures consider the space occupied by the MBR of each geometry.

(ii) The boundary-based features stem from the characteristics of

each geometry’s boundary. (iii) The grid-based features emanate

from Filtering’s index. (iv) The candidate-based features rely on the

candidates associated with every geometry after Filtering.

The first two categories depend exclusively on the character-

istics of the geometries comprising every candidate pair, but the

remaining two rely on the Filtering step. For Filtering, we use the

space tiling of the state-of-the-art algorithm GIA.nt [17], which

builds an Equigrid, whose dimensions correspond to the average

width and height of the source geometries.

Every category includes two types that allow for exploring the

impact of feature complexity on Supervised Filtering: (i) atomic
features, which pertain to core characteristics of a single geome-

try, and (ii) the composite features, which encompass combinations

Supervised Scheduling for Geospatial Interlinking Conference’17, July 2017, Washington, DC, USA

of atomic features that typically normalize their values in [0, 1],
with higher values implying a stronger likelihood for topological

relatedness. Next, we delve into the features per category and type.

Area-based features. To be generic, this category considers the
area occupied by the MBR of a geometry – the area occupied by the

geometry itself does not apply to LineStrings, where the interior

coincides with the boundary. The atomic features are:

F1) source MBR area

F2) target MBR area

F3) intersection MBR area

The first two features assume that the larger the MBR of a geom-

etry is, the more likely it is to be related with its candidates. The

third feature assumes that the larger the overlap of two MBRs is,

the more likely are the respective geometries to satisfy at least one

non-trivial topological relation.

The composite features normalize the atomic ones in [0, 1]:
F4) intersection MBR normalized by source MBR = F3/F1

F5) intersection MBR normalized by target MBR = F3/F2

F6) Jaccard MBR overlap = F3/(F1+F2-F3), i.e.,𝑊 4 in Section 3.2.

We assume that these features produce scores proportional to

the likelihood that two geometries are topologically related.

Boundary-based features. This category includes the two

atomic features per geometry that characterize the border of LineStrings

and Polygons, i.e., their points, and their length:

F7) number of source boundary points

F8) number of target boundary points

F9) source boundary length

F10) target boundary length

Note that F7 and F8 capture the complexity of a geometry, as

higher values indicate more complicated boundaries. Therefore, the

rationale behind F7-F10 is that the more complex and longer the

boundary of a geometry is, the more likely it is to satisfy at least

one topological relation.

The composite features are normalized measures of complexity,

expressing the average boundary points per length unit:

F11) normalized source boundary complexity = F7/F9

F12) normalized target boundary complexity = F8/F10

For both features, higher values indicate higher complexity and

possibly greater chances for topological relations.

Grid-based features. Using GIA.nt’s Filtering, a uniform grid

(Equigrid) is built, based on the average dimensions of the source

geometries. Every geometry is then placed into all tiles that intersect

its MBR, defining the following atomic features:

F13) number of tiles intersecting the source MBR

F14) number of tiles intersecting the target MBR

F15) number of common tiles, i.e.,𝑊 1 in Section 3.2.

We assume that all these features are proportional to the like-

lihood that a geometry (pair) is topologically related. The same

applies to the composite features, which normalize the atomic ones:

F16) common tiles normalized by source tiles = F15/F13

F17) common tiles normalized by target tiles = F15/F14

F18) Jaccard common tiles = F15/(F13+F14-F15), i.e.,𝑊 2 in Sec. 3.2.

F19) Pearson’s 𝜒2
test [17], i.e.,𝑊 3 in Section 3.2.

Candidate-based features. This category considers the con-

tents of the tiles intersecting the MBR of a geometry 𝑔 through:

(i) the total number of candidates, i.e., the geometries of the other

input dataset that participate in the same tiles, (ii) the number of dis-
tinct candidates, i.e., the cardinality of the set of candidates, which
disregards multiple appearances of the same geometry, and (iii) the

number of distinct real candidates, which intersect MBR(𝑔), too.

Overall, the following atomic features are defined:

F20) total candidates for source geometry

F21) distinct candidates for source geometry

F22) real candidates for source geometry

F23) total candidates for target geometry

F24) distinct candidates for target geometry

F25) real candidates for target geometry

For all these features, we assume that higher values correspond

to a stronger likelihood for topological relatedness. This applies to

the composite features, too:

F26) source distinct candidates normalized by total = F21/F20

F27) source real candidates normalized by total = F22/F20

F28) source real candidates normalized by distinct = F22/F21

F29) target distinct candidates normalized by total = F24/F23

F30) target real candidates normalized by total = F25/F23

F31) target real candidates normalized by distinct = F25/F24

4.2 Supervised Progressive GIA.nt
We now describe the algorithm that implements the pipeline in

Figure 2, by replacing Scheduling with Supervised Scheduling. Fol-

lowing GIA.nt [17], Algorithm 1 first indexes the smallest input

dataset, i.e., the source dataset (Lines 2-4). The dimensions of the

grid cells are specified in Line 1 as Δ𝑥 = 𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠) .𝑤𝑖𝑑𝑡ℎ
and Δ𝑦 = 𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠).ℎ𝑒𝑖𝑔ℎ𝑡 . Based on these dimensions,

the lower left MBR point (𝑥1 (𝑠), 𝑦1 (𝑠)) and the upper right MBR

point (𝑥2 (𝑠), 𝑦2 (𝑠)) of every source geometry 𝑠 together with Δ𝑥
and Δ𝑦 determine the tiles that intersect𝑀𝐵𝑅(𝑠) and should con-

tain 𝑠 in Line 3. Assuming Δ𝑥 = 4, Δ𝑦 = 3 and a geometry

𝑃𝑂𝐿𝑌𝐺𝑂𝑁 (20 90, 20 93, 16 93, 16 90, 20 90), the lower left MBR

point is (16, 90) and the upper right one is (20, 93); this geometry

participates in the tiles with ⌊16/Δ𝑥 ⌋ = 4 ≤ 𝑖 ≤ 5 = ⌈20/Δ𝑥 ⌉ and
⌊90/Δ𝑦⌋ = 30 ≤ 𝑗 ≤ 31 =

⌈
93/Δ𝑦

⌉
. Index 𝐼 is ready after Line 4.

The training of the probabilistic binary classification model is

carried out in Lines 5-32. The first step is the sampling of the ge-

ometry pairs that will form the training set. No ground-truth is

required because Geospatial Interlinking involves an exact verifica-

tion function that always decides with perfect accuracy whether

two geometries are topologically related or not. Therefore, the goal

of sampling is to pick the geometry pairs that will be verified and,

thus, labeled during this stage. Two requirements should be met

by this process: (i) The considered pairs should involve geometries

with intersecting MBRs, because pairs with disjoint MBRs are ig-

nored during Supervised Scheduling. (ii) The selected pairs should

be representative of all geometry pairs with intersecting MBRs.

Geospatial Interlinking is a (heavily) imbalanced classification

task, because the disjoint geometry pairs usually outnumber the

topologically related ones to a significant extent (see Table 1). The

latter requirement is thus addressed in one of the following ways

[9, 14]: (i) oversampling, which randomly resamples the minor-

ity class until both classes have the same size, (ii) undersampling,
which randomly samples a subset of equal size from both classes,

(iii) cost-sensitive learning, which trains a classifier with a high mis-

classification cost for the minority class, or (iv) ensemble learning,

Conference’17, July 2017, Washington, DC, USA Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis Koubarakis

Algorithm 1: Supervised Progressive GIA.nt.

input : the source dataset 𝑆 , the target dataset𝑇 , the feature set 𝐹 , the

maximum sample size𝑚, the class size 𝑁 , the probabilisic

classification algorithm𝐴

output : the links 𝐿R = { (𝑠, 𝑟, 𝑡) ⊆ 𝑆 × 𝑇 × R : 𝑟 (𝑠, 𝑡) }
1 𝐼 ← {}; (Δ𝑥 ,Δ𝑦) ← defineIndexGranularity(𝑆);

2 foreach geometry 𝑠 ∈ 𝑆 do // filtering
3 𝐼 .addToIndex(𝑠);

4 end
5 𝐷 ← |𝑆 | × |𝑇 | ; 𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑎𝑡𝑠←{}; 𝑖𝑑←0; 𝑠𝑎𝑚𝑝𝑙𝑒←{};

6 𝑠𝑎𝑚𝑝𝑙𝑒𝐼𝑑𝑠←randomGenerator(𝑚,𝐷);

7 foreach geometry 𝑡 ∈ 𝑇 do // first pass
8 𝐶𝑆 ← {} ; // the set of source candidates

9 (𝑥1 (𝑡), 𝑦1 (𝑡), 𝑥2 (𝑡), 𝑦2 (𝑡)) ← getDiagCorners(𝑡);

10 for 𝑖 ← ⌊𝑥1 (𝑡) · Δ𝑥 ⌋ to ⌈𝑥2 (𝑡) · Δ𝑥 ⌉ by 1 do
11 for 𝑗 ← ⌊𝑦1 (𝑡) · Δ𝑦 ⌋ to ⌈𝑦2 (𝑡) · Δ𝑦 ⌉ by 1 do
12 𝐶𝑆 .add(𝐼 .getTileContents(𝑖 , 𝑗));

13 end
14 end
15 foreach geometry 𝑠 ∈ 𝐶𝑆 do
16 𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑎𝑡𝑠 ← updateTotalDistinctPairs(𝑠);

17 if intersectingMBRs(𝑠 , 𝑡) then
18 𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑎𝑡𝑠 ← updateRealPairs(𝑠);

19 if 𝑠𝑎𝑚𝑝𝑙𝑒𝐼𝑑𝑠 .contains(𝑖𝑑) then 𝑠𝑎𝑚𝑝𝑙𝑒 .add({𝑠, 𝑡 }) ;
20 𝑖𝑑 ← 𝑖𝑑 + 1;

21 end
22 end
23 end
24 𝑛𝑒𝑔𝑃𝑎𝑖𝑟𝑠←{}; 𝑝𝑜𝑠𝑃𝑎𝑖𝑟𝑠←{}; 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒(sample);

25 foreach pair {𝑠, 𝑡 } ∈ 𝑠𝑎𝑚𝑝𝑙𝑒 do // labelling
26 𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑 ← verifyPair({𝑠, 𝑡 });
27 if 𝑖𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑 then 𝑝𝑜𝑠𝑃𝑎𝑖𝑟𝑠 .add({𝑠, 𝑡 }) ;
28 else 𝑛𝑒𝑔𝑃𝑎𝑖𝑟𝑠 .add({𝑠, 𝑡 }) ;
29 if 𝑁 ≤ |𝑝𝑜𝑠𝑃𝑎𝑖𝑟𝑠 | & 𝑁 ≤ |𝑛𝑒𝑔𝑃𝑎𝑖𝑟𝑠 | then break ;

30 end
31 𝐿← getFeatures(𝑝𝑜𝑠𝑃𝑎𝑖𝑟𝑠∪𝑛𝑒𝑔𝑃𝑎𝑖𝑟𝑠 ,𝐹 ,𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑎𝑡𝑠 ,𝐼);
32 M←train(𝐿); 𝐿R←{};𝑚𝑖𝑛𝑤=0;𝑇𝐶←{};

33 foreach geometry 𝑡 ∈ 𝑇 do // second pass
34 ... ; /* Same as Lines 9-14 */

35 foreach geometry 𝑠 ∈ 𝐶𝑆 do
36 if intersectingMBRs(𝑠 , 𝑡) then
37 𝑣← getFeatureVector(𝑠 , 𝑡 , 𝐹);

38 𝑤𝑠,𝑡 ←M.getClassificationProbability(𝑣);

39 if𝑚𝑖𝑛𝑤 < 𝑤𝑠,𝑡 then
40 𝑇𝐶 .add({𝑠, 𝑡 }, 𝑤𝑠,𝑡);

41 if 𝐵𝑈 < 𝑇𝐶 .size() then
42 𝑚𝑖𝑛𝑤 =𝑇𝐶 .pop().getWeight();

43 end
44 end
45 end
46 end
47 end
48 while𝑇𝐶 ≠ {} do // verification
49 𝑡𝑎𝑖𝑙 =𝑇𝐶 .popLast();

50 𝐼𝑀 ← verify(𝑡𝑎𝑖𝑙 .𝑠 , 𝑡𝑎𝑖𝑙 .𝑡);

51 𝐿R ← 𝐿R ∪ 𝐼𝑀 .getRelations();

52 end
53 return 𝐿R ;

which trains several classifiers such that they collectively label

every instance. Oversampling may yield very large training sets

that foster overfitting, due to the repetition of the minority class

instances, while cost-sensitive and ensemble learning may produce

complex, time-consuming classification models. Undersampling

allows for minimizing the training and prediction time, leveraging

small training sets that learn simple, fast, albeit effective classifiers.

Hence, Supervised Progressive GIA.nt relies on undersampling.

Using undersampling, the representative training set is created

by the randomGenerator function in Line 6, which requires two ar-

guments: (i) the maximum number𝑚 of pairs to be verified/labelled

during training, which ideally is 2 · 𝑁 , where 𝑁 is the input pa-

rameter that specifies the required number of labelled instances

per class. In practice, though,𝑚 is two orders of magnitude larger

than 𝑁 , i.e.,𝑚 = 100 · 𝑁 , to make up for class imbalance in favor of

disjoint geometries and for the fact that some of the selected ids

will not correspond to pairs with intersecting MBRs (see Exp. 2 in

Section 5 for experimentally fine-tuning 𝑁). (ii) the total number of

geometry pairs with intersecting MBRs,𝐷 , which requires checking

the MBRs of all candidate pairs resulting after Filtering. Given that

this is time-consuming, 𝐷 is set to the maximum possible range of

candidate pairs, i.e., the Cartesian product |𝑆 | × |𝑇 | (Line 5). Overall,
Line 6 randomly selects𝑚 pair ids in the range [0, |𝑆 | × |𝑇 |].

Next, for every target geometry 𝑡 , the tiles that intersect its MBR

are inferred from its lower left and upper right MBR points (Lines 9-

11). The source geometries participating in these tiles are aggregated

into the set of candidates 𝐶𝑆 (Line 12). Every source geometry

appears in𝐶𝑆 just once, but a counter measures its actual frequency

across the tiles intersecting𝑀𝐵𝑅(𝑡) (we omit the details for brevity).

This counter is used for updating the candidate-based features F20

and F21 for every candidate source geometry 𝑠 ∈ 𝐶𝑆 (Lines 15-16).

If 𝑀𝐵𝑅(𝑠) intersects 𝑀𝐵𝑅(𝑡), feature F22 is updated, too (Lines

17-18). The two geometries are added to the random sample of pairs

to be verified if their id is among the selected ones (Line 19).

Subsequently, the sampled pairs are shuffled, to randomize their

order (Line 24), because not all of them will be verified. Verification

extracts the class labels in Line 26 and terminates in Line 29 as soon

as the necessary number of instances is gathered for both classes.

Only the first 𝑁 pairs from each class are taken into account, but

we omit this for brevity. The topologically related pairs are added

to the positive pairs and the rest to the negative ones (Lines 27-28).

Next, the feature vectors of the sampled pairs are generated in

Line 31. Most features rely on characteristics of the geometries,

but features F15-F19, F23-F25, and F29-F31 require that Lines 9-14

are repeated for every sampled target geometry (we omit this for

brevity). The resulting training set 𝐿 is then fed to the selected

algorithm to learn the classification modelM (Line 32).

Then, the algorithm iterates once more over the target dataset,

and for each geometry 𝑡 , it gathers the source candidates from the

tiles intersecting 𝑀𝐵𝑅(𝑡), as in Lines 9-14. During this process,

the features F23-F25 are computed for 𝑡 , if necessary (we omit the

details). Subsequently, for every source candidate 𝑠 with 𝑀𝐵𝑅(𝑠)
intersecting𝑀𝐵𝑅(𝑡), a feature vector 𝑣 is generated (Lines 35-37).

The vector is fed toM, which predicts the classification probability

for the pair {𝑠, 𝑡},𝑤𝑠,𝑡 (Line 38). If𝑤𝑠,𝑡 exceeds the probability cor-

responding to𝑚𝑖𝑛𝑤 , {𝑠, 𝑡} is added to the priority queue𝑇𝐶 , which

maintains the most likely related pairs that fit within the given

budget 𝐵𝑈 (Lines 39-40) –𝑚𝑖𝑛𝑤 is updated to the probability of the

(𝐵𝑈 + 1)𝑡ℎ top-weighted pair, whenever the size of 𝑇𝐶 exceeds the

specified budget (Lines 41-43). Finally, the overall top-𝐵𝑈 weighted

pairs are verified in decreasing classification probability, adding

their topological relations to the set of links 𝐿R (Lines 48-51).

Supervised Scheduling for Geospatial Interlinking Conference’17, July 2017, Washington, DC, USA

Table 1: Real dataset pairs for Geospatial Interlinking. CP stands for
the Cartesian product, |𝐶 | for the geometry pairs with intersecting
MBRs and |𝑄 | for the topologically related (qualifying) pairs.

D1 D2 D3 D4 D5

𝑆 AREAWATER AREAWATER Lakes Parks ROADS

𝑇 LINEARWATER ROADS Parks Roads EDGES

|𝑆 | 2,292,766 2,292,766 8,326,942 9,831,432 19,592,688

|𝑇 | 5,838,339 19,592,688 9,831,432 72,339,926 70,380,191

CP 1.34 · 1013
4.49 · 1013

8.19 · 1013
7.11 · 1014

1.38 · 1015

|𝐶 | 6,310,640 15,729,319 19,595,036 67,336,808 430,597,631

|𝑄 | 2,401,396 199,122 3,841,922 12,145,630 163,982,138

The pairs verified in Line 26 are also included in the output 𝐿R .
A hash map is checked between Lines 36 and 37 to avoid redundant

verifications, but we omit these details for brevity.

Overall, Supervised Progressive GIA.nt has the same time com-

plexity as Progressive GIA.nt, 𝑂 (|𝑆 | + |𝑇 | · |𝐶𝑆 | · log |𝐵𝑈 | + |𝐵𝑈 |),
where |𝐶𝑆 | stands for the average number of source candidates per

target geometry and log |𝐵𝑈 | for the maximum cost of inserting

a candidate pair in the priority queue. The first part corresponds

to Filtering (Lines 1-4), the second one to Supervised Scheduling

(Lines 5-47), and the last one to Verification (Lines 48-52). The

time required by Lines 24-32 to label the sample of candidate pairs

and train the classification model, is negligible (cf. Exp. 4 in Sec-

tion 5). Its space complexity is also equivalent to Progressive GIA.nt,

𝑂 (|𝑆 | + |𝐵𝑈 |), given that the space occupied by the learned model

and the candidate pairs that are automatically labeled is constant,

due to the parameter configuration in Exp. 1-2 in Section 5.

5 EXPERIMENTAL ANALYSIS
Setup. All experiments were carried out on a server with Intel

Xeon Gold 6238R CPU @ 2.2 GHz with 28 cores and 256GB RAM.

In all cases, a single CPU was used. All experiments were imple-

mented and performed in Java 15, usingWeka 3.9.6 [8] as the library

providing the classification algorithms.

Our experiments rely on publicly available
11
, large-scale, real-

world datasets that are popular in the literature [7, 17, 24] and

involve LineStrings and Polygons. They comprise data imported

from the US Census Bureau TIGER files, namely USA’s Area Hy-

drography (AREAWATER), Linear Hydrography (LINEARWATER),

roads (ROADS), and edges (EDGES), as well as data extracted from

OpenStreetMap, representing lakes (Lakes), parks (Parks) and roads

(Roads) from the whole world. They are combined into the five pairs

in Table 1, 𝐷1-𝐷5, that cover all possible combinations of geometry

types: 𝐷1, 𝐷2 and 𝐷4 interlink Polygons with LineStrings, while 𝐷3

and 𝐷5 involve only Polygons and only LineStrings, respectively.

We assess effectiveness through precision, recall, and PGR. For

time efficiency, we consider the run-time per workflow step.

The first three experiments fine-tune the main parameters of

Supervised Progressive GIA.nt, i.e., the feature set, the class size,

and the classification algorithm. For brevity, they apply to the three

smallest dataset pairs, i.e., 𝐷1-𝐷3. Their conclusions, though, apply

to the two largest datasets, too, as shown by the high performance

of Supervised Progressive GIA.nt in the fourth experiment.

Exp. 1: Feature Selection. The more features that describe

a labeled instance, the more complex and time-consuming is the

11
https://zenodo.org/record/6384164#.ZFdQrupBxD8

resulting classifier. To minimize the features of Supervised Sched-

uling, we analytically experiment with every category and type of

feature, considering their effectiveness and time efficiency. These

experiments assume that all candidate pairs are labeled.

For each dataset, 𝐷1-𝐷3, we formed a balanced training set

that comprises a random sample with 1% of the positive instances

and an equal number of randomly selected negative ones. The re-

maining candidate pairs formed the testing set. All features were

rescaled with min-max normalization. We considered the average

performance across all established probabilistic classifiers offered

by Weka: Naive Bayes, Random Forest, Logistic Regression, and

Bayesian Networks. We repeated every experiment five times and

took the average for every evaluation measure. The resulting per-

formance appears in Figure 4, where the training and the prediction
time capture the time required to learn the classification model and

to apply it to the set of candidates with intersecting MBRs, 𝐶 , resp.

Regarding the effectiveness of the feature types, we observe

that the atomic features consistently outperform the composite

ones with respect to recall and PGR. On average, across all datasets

and feature categories, their recall is higher by 9.6% and their PGR

by 10%. This situation is reversed in half the cases for precision,

but still, the composite features underperform by 2.3%, on average.

Combining both feature types yields mixed results, with the atomic

features taking the lead in terms of recall and PGR in at least half

the cases and by ∼1%, on average, for both evaluation measures.

However, the highest precision in practically all cases is achieved

by the combination of both feature types, which outperform the

atomic features by 8.8%, on average.

Regarding the time efficiency of the feature types, the atomic

features are faster than the composite ones by 19.3% and 25.3%,

on average, with respect to the training and the prediction time,

respectively. This indicates that more complex patterns are learned

from the composite features, probably due to their lower discrimi-

nativeness. The only exception corresponds to the boundary-based

features over 𝐷3, where the composite is an order of magnitude

faster than the atomic ones, because of the rather simple classifica-

tion model, which exhibits much lower effectiveness with respect

to all evaluation measures. Finally, the combination of both feature

types is slower than the atomic features with respect to training and

prediction time by 36.2% and 8.4%, respectively. This is expected be-

cause the higher number of features typically yields more complex

and time-consuming classification models.

These patterns advocate the superiority of atomic features. To

select the best category among them, we observe that there are

minor differences in terms of recall: the minimum is lower than

the maximum one by just 5.1% (𝐷1), 6.7% (𝐷2) and 2.8% (𝐷3). For

precision and PGR, we observe that the use of all atomic features

consistently achieves the best performance (which also corresponds

to the maximum PGR across all feature types and categories in all

three datasets). The boundary-, grid- and candidate-based features

underperform by more than 5% in practically all cases. The area-

based is the second best feature category, with its precision and

PGR lower than the best one by just 2.2% and 3.1%, on average, resp.

Regarding time efficiency, using all atomic features almost dou-

bles the training time of the area-based ones. However, this situation

is reversed in the case of the prediction time, which actually consti-

tutes the bottleneck of Supervised Scheduling, being an order of

https://zenodo.org/record/6384164#.ZFdQrupBxD8

Conference’17, July 2017, Washington, DC, USA Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis Koubarakis

Figure 4: Average performance of area-based (ABF), boundary-based (BBF), grid-based (GBF), candidate-based (CBF) and all (All)
features across all classifiers over 𝐷1-𝐷3. In each case, we consider atomic and composite features as well as their combination.

Figure 5: Average precision, recall, PGR, training and prediction time over 𝐷1-𝐷3 when combining all atomic features with Naive
Bayes, Random Forest, Logistic Regression and Bayesian Networks w.r.t. class size (i.e., the input parameter 𝑁 of Algorithm 1).

magnitude higher than the training time: all atomic features are

faster than the area-based ones by 7.3%, on average. This means that

combining the atomic features from all categories yields slightly

simpler and faster classification models (e.g., shorter decision trees

in Random Forest) than relying exclusively on the area-based ones.

For these reasons, we exclusively couple Supervised Scheduling
with all atomic features in the following.

Exp. 2: Class Size Selection.We now examine how sensitive

our feature set with respect to the size of the training set is. The

labeled instances are generated automatically, but restricting their

number lowers the cost of Supervised Scheduling because: (i) the

training time decreases, (ii) the resulting classifier is simpler and,

thus, the prediction time is lower, and (iii) the time required for

building the training set is reduced.

We experiment with 𝐷1-𝐷3, assuming that the labels of all candi-

date pairs are available. We consider seven training set sizes: 50, 100,

and 500-2,500 instances per class with a step of 500. In every case,

the training set is balanced, due to undersampling. We use the same

four classification algorithms and report the average performance

of five repetitions per algorithm in Figure 5.

We observe that for each dataset, the effectiveness improves

substantially for up to 500 labeled instances per class, but remains

practically stable for larger training sets. In particular, precision,

recall, and PGR rise by 9.3%, 4.0%, and 7.7%, respectively, on average,

across all datasets, when increasing the training set from 50 to

500 instances per class. From 500 to 2,500 labeled instances, these

measures rise by at most 1.1%, 0.8%, and 1.9%, respectively. Given

that the training and the prediction time increase linearly with the

size of the training set (due to the higher complexity of the learned

models), we can conclude that 500 labeled instances per class offer the

Table 2: Performance per classification algorithm. The best
performance per evaluation measure is highlighted in bold.

Precision Recall PGR 𝑡𝑟 (ms) 𝑡𝑝 (sec)

(a) D1

NB 0.744±0.014 0.840±0.008 0.488±0.010 5±3 24±0.2
RF 0.818±0.009 0.841±0.006 0.476±0.006 181±3 67±1.1
LR 0.668±0.007 0.863±0.005 0.520±0.003 59±4 3±0.1
BN 0.745±0.014 0.840±0.009 0.489±0.009 4±1 16±0.2

(b) D2

NB 0.034±0.003 0.740±0.020 0.507±0.023 4±0 59±1.5
RF 0.047±0.001 0.783±0.009 0.548±0.006 221±5 188±4.3
LR 0.035±0.001 0.808±0.010 0.573±0.010 39±7 6±0.1
BN 0.034±0.003 0.742±0.020 0.509±0.025 4±0 40±0.5

(c) D3

NB 0.474±0.003 0.851±0.011 0.462±0.007 3±0 76±1.7
RF 0.474±0.007 0.875±0.013 0.520±0.008 201±9 217±4.0
LR 0.413±0.005 0.950±0.015 0.553±0.015 74±5 8±0.3
BN 0.474±0.003 0.851±0.011 0.462±0.007 3±0 51±1.7

best trade-off between effectiveness and time efficiency, minimizing
the run-time for high and robust performance.

Exp. 3: Algorithm Selection. Table 2 reports the average per-
formance after 5 iterations per classification algorithm over 𝐷1-𝐷3,

when using all atomic features and 500 labeled instances per class.

Regarding effectiveness, we observe that Logistic Regression (LR)

consistently exhibits very low precision, but achieves the highest

recall and PGR in all cases. The opposite is true for Naive Bayes

(NB), Random Forest (RF) and Bayesian Networks (BN), i.e., they

emphasize precision at the cost of significantly lower recall and

PGR – their relative performance depends on the dataset, except

that NB and BN exhibit an almost identical effectiveness in all cases.

Regarding time efficiency, RF is by far the slowest algorithmwith

respect to training time (𝑡𝑟); NB and BN are the fastest approaches,

with LR lying in themiddle of these two extremes. For the prediction

Supervised Scheduling for Geospatial Interlinking Conference’17, July 2017, Washington, DC, USA

Figure 6: Performance of Supervised Progressive GIA.nt (SPGI), the learning-free Progressive GIA.nt (PGCF, PGJS, PGX2, PGMBRO and PGISP)
and the optimal approach (OPTI) over all dataset pairs in Tb. 1 using as budgets all portions of candidate pairs in [0.05, 1.00] with a step of 0.05.

time (𝑡𝑝), RF remains the most time-consuming approach, with LR

being the most efficient one – 27 times faster, on average, than RF.

Overall, LR underperforms w.r.t. precision and training time but

excels in all other performance measures. Given that Problem 2

emphasizes PGR and prediction time, Logistic Regression constitutes
the best choice among the four probabilistic classification algorithms.

Exp. 4: Comparison to state-of-the-art. We now compare

the proposed end-to-end supervised approach (i.e., Algorithm 1)

with the state-of-the-art learning-free algorithm, i.e., Progressive

GIA.nt, in combination with all weighting schemes proposed in

the literature (cf. Section 3.2): the co-occurrence frequency (PGCF),
the Jaccard similarity (PGJS), the Pearson 𝜒2

test (PGX2), the MBR

overlap (PGMBRO) and the inverse sum of points (PGISP). Note
that the first four algorithms exclusively consider features F15, F18,

F19, and F6, respectively, verifying the top-𝐵𝑈 weighted pairs in

decreasing order. Following the previous experiments, Supervised

Progressive GIA.nt (SPGI) trains a Logistic Regression classifier on

500 labeled instances per class using all (16) atomic features, out of

which only F15 is used by the learning-free baseline methods.

We also report the performance of the optimal progressive algo-

rithm (OPTI), i.e., the ideal approach that verifies all topologically

related pairs before the non-related ones, achieving the maximum

possible value for PGR in each dataset.

Unlike [17, 18], which merely examine two budgets that are

common to all datasets (5M and 10M verifications), we consider

20 different budgets per dataset, tailored to the characteristics of

each dataset pair in Table 1. These are all budgets in the interval

[0.05 · |𝐶 |, 1.00 · |𝐶 |] with a step of 0.05, where |𝐶 | denotes the set
of geometry pairs with intersecting MBRs. Thus, the largest budget

is equivalent to batch verification. The results with respect to all

evaluation measures appear in Figure 6.

For effectiveness, we observe the following patterns:

• The first verifications of SPGI target both positive and negative
instances in order to build the training set for its probabilistic

classifier. This results in lower scores for all effectiveness measures

for the smallest budget in all datasets. However, this is compensated

by the high performance of the learned model in the larger budgets.

• For the two largest budgets, all methods converge to the same

performance, approximating the batch algorithm, as they all process

the same pairs of candidates. They only differ in the run-time for

the maximum budget (|𝐶 |), as explained in the Appendix.

• The best weighting scheme for Progressive GIA.nt differs

widely per dataset. In 𝐷1 and 𝐷5, the top performer is the Jac-

card similarity, with the Pearson 𝜒2
test following in close distance.

In 𝐷2, the MBR overlap is by far the most effective scheme, in

𝐷3, these three features exhibit very similar performance and in

𝐷4, the co-occurrence frequency (CF) is the clear winner. This is

Conference’17, July 2017, Washington, DC, USA Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis Koubarakis

Table 3: The average distance per progressive algorithm from the
best performance per budget across all dataset pairs. Lower distance
indicates better performance, i.e., higher effectiveness. The best per-
formance per evaluation measure and dataset is highlighted in bold.
The last column shows the mean distance from the ideal solution.

PGCF PGJS PGX2 PGMBRO PGISP SPGI OPTI

Prec. 49.4% 2.2% 3.0% 21.9% 6.0% 0.7% 8.5%

Rec. 49.4% 2.2% 3.0% 21.9% 6.0% 0.6% 8.4%

PGR 65.3% 1.4% 2.3% 21.2% 5.7% 1.4% 10.2%

(a) D1
Prec. 14.2% 3.8% 6.4% 2.4% 36.9% 1.4% 15.1%

Rec. 14.5% 4.2% 6.7% 2.7% 37.1% 1.0% 14.7%

PGR 16.9% 9.3% 13.5% 1.0% 52.8% 2.0% 33.5%

(b) D2
Prec. 43.6% 13.0% 12.9% 15.7% 18.6% 0.8% 14.4%

Rec. 43.6% 13.0% 13.0% 15.7% 18.6% 0.8% 14.3%

PGR 56.3% 18.1% 19.8% 18.1% 25.8% 1.9% 27.5%

(c) D3
Prec. 11.2% 33.1% 34.2% 21.6% 40.1% 0.0% 29.5%

Rec. 11.2% 33.1% 34.2% 21.6% 40.1% 0.0% 29.5%

PGR 12.2% 45.1% 47.2% 26.7% 55.1% 0.0% 47.3%

(d) D4
Prec. 42.5% 0.0% 0.2% 25.6% 1.5% 1.5% 10.4%

Rec. 42.5% 0.0% 0.2% 25.6% 1.5% 1.5% 10.4%

PGR 57.4% 0.3% 0.5% 24.3% 1.6% 3.3% 12.4%

(e) D5

highlighted in Table 3, which reports the average distance of each

algorithm from the top performance per evaluation measure and

dataset across all 20 budgets. Note that these patterns verify the

experimental results in [17, 18], as they depend on the topological

relations that are detected in every dataset [18]. Overall, we can

conclude that the learning-free Progressive GIA.nt is hard to fine-tune,
requiring expert knowledge about both the weighting schemes and
the most frequent topological relations in the data at hand.
• In contrast, SPGI’s configuration exhibits quite stable effective-

ness, which matches or achieves the best performance in practically

all cases. In 𝐷1, it outperforms all baseline methods for all budgets

greater or equal to 0.4· |𝐶 | with respect to PGR and from 0.3· |𝐶 | with
respect to precision and recall. The same applies to𝐷2. Hence, SPGI
achieves the lowest average distance from the top for precision and

recall, while for PGR, its difference with the best weighting schemes

(JS in 𝐷1 andMBRO in 𝐷2) is statistically insignificant (𝑝 > 0.05).

In 𝐷3 and 𝐷4, SPGI achieves the highest performance with respect

to all evaluation measures across all budgets – except for the two

smallest ones in 𝐷3, due to the creation of the training set, as ex-

plained above. Finally, in 𝐷5, SPGI matches the best performance

only from 0.7 · |𝐶 | on, but is consistently within reach from the

three best weighting schemes with the differences being statistically

insignificant. Therefore, SPGI is a parameter-free, high-performing
progressive method requiring no human/user intervention.

Comparison to Optimal Approach. We now examine how

well the considered progressive methods perform with respect to

the ideal solution, i.e., OPTI. This can be deduced from the right-

most column in Figure 3, which reports the average distance of

the best performing progressive method per budget and dataset

from OPTI. We observe that for 𝐷1 and 𝐷5, the existing progressive

methods lie within reach of the optimal solution. This should be

attributed to the large portion (>1/3) of qualifying geometry pairs

among the candidate ones, as shown in Table 1. In 𝐷3 and 𝐷4, the

portion of qualifying pairs is much lower, <1/5, thus increasing

the distance from the optimal solution. In 𝐷2, only 1 out of 100

candidate pairs is qualifying, yet the distance from OPTI is lower
than that in 𝐷4. The reason is that most disjoint geometry pairs

with intersecting MBRs share just one tile, thus receiving low scores

by all progressive methods.

Time Efficiency Experiments. This section continues the com-

parison with the state-of-the-art in Exp. 4 in Section 5, discussing

the relative run-time of the considered techniques.

The time efficiency of progressive methods is determined by the

run-time of their three constituent workflow steps, i.e., Filtering,

(Supervised) Scheduling and Verification. The first step is shared

with the state-of-the-art batch algorithm, GIA.nt [17] (cf. Section 2),

because all progressive methods apply the same dynamic approach

for indexing the source dataset through an Equigrid. The last step

is also shared with GIA.nt when the budget includes the entire set

of candidate pairs 𝐶 , i.e., all geometries with intersecting MBRs.

The reason is that all geospatial interlinking algorithms: (i) apply

the same algorithm for computing the intersection matrix of two

geometries, and (ii) verify the same pairs of geometries, when the

available budget is equal to |𝐶 |.
The run-times of these two steps are reported in Table 4. As

expected, Filtering accounts for a tiny portion of the overall run-

time – up to 0.5% (𝐷1). Verification is slower by at least two orders
of magnitude, thus justifying the need for progressive methods.

The (Supervised) Scheduling time, 𝑡𝑠 , per progressive method

is reported in Table 5. Note that it is independent of the available

budget, as it is determined by the number of candidate pairs (with

intersecting MBRs) in each dataset. We observe that there are minor

differences between the learning-free baseline methods, as they

essentially perform the same operation, i.e., they assign a score

to every candidate pair and sort all of them in decreasing weight.

In absolute numbers, 𝑡𝑠 is comparable to the filtering time in the

smallest dataset(s), but increases substantially, even by a whole

order of magnitude, for the largest ones. In any case, though, it

accounts for a small portion of the total run-time even for the

smallest considered budget (i.e., 0.05 · |𝐶 |). The larger the budget is,
the less significant is the cost of Scheduling.

Compared to its learning-free counterparts, Supervised Sched-

uling is from 2.4 to 5.5 times slower (the former applies to 𝐷5,

when compared with 𝜒2
, and the latter to 𝐷3, when compared with

𝐶𝐹). This means that despite its complex operations (i.e., feature

generation, sampling, and labeling), the cost of Supervised Sched-

uling remains negligible when compared with the verification time,

especially for larger budgets. Therefore, the higher effectiveness of
Supervised Progressive GIA.nt comes at an acceptable cost in run-time.

The main variation in the total run-time of the progressive meth-

ods stems from their verification time per budget, which depends

on the different complexity of the pairs verified by each algorithm.

This run-time is reported in the rightmost column of Figure 6 in

the form of the relative run-time with respect to batch GIA.nt, i.e.,

the run-time of each algorithm per budget is divided by the time

required for verifying all candidate pairs in the dataset. This means

that the batch algorithm corresponds to the point (1.0, 1.0) in each

diagram. In this case,OPTI represents an ideal approach that evenly

distributes the batch run-time among the available budgets.

Supervised Scheduling for Geospatial Interlinking Conference’17, July 2017, Washington, DC, USA

Table 4: The filtering (𝑡𝑓), verification (𝑡𝑣) and total (𝑡𝑡) run-
time of batch GIA.nt per dataset.

Dataset ti (sec) tv (sec) tt
𝐷1 13 2,389 40.0 min

𝐷2 13 5,159 86.2 min

𝐷3 48 16,397 4.6 hrs

𝐷4 34 55,905 15.5 hrs

𝐷5 38 37,490 10.4 hrs

We observe the following patterns:

• The most significant differences in the relative run-time of

the progressive algorithms pertain to low budgets because, for

larger ones, all methods basically verify the same geometry pairs.

In other words, progressive methods make little sense when combined
with large budgets that include almost all candidate pairs. Instead,
they are more useful in applications with low budgets, i.e., limited

computational and/or temporal resources.

• The fastest progressive method is PGISP in practically all cases

(except for the largest budget). The reason is that it promotes simpler

candidate pairs, with few boundary points, whose verification is

rather efficient.

• PGJS and PGX2 follow PGISP in close distance because both

promote candidate pairs that participate in a few tiles. These pairs

typically involve small geometries, whose verification is also quite fast.

• The opposite is true for PGCF, which promotes candidate pairs

that participate in many tiles. These typically involve large and

complex geometries, with a time-consuming verification. As a result,

PGCF is consistently the slowest progressive method, exhibiting

much higher relative run-times than OPTI in all datasets, but 𝐷4,

where they coincide.

• Similar to PGMBRO, our supervised approach fluctuates be-

tween the two extremes of PGCF and PGJS/PGX2, being closer to

the latter in most cases. The more effective is SPGI in comparison

to PGJS/PGX2, the higher is their difference in run-time, which

indicates that the simple and small geometries selected by the

learning-free baselines are not sufficient for achieving high PGR.

For example in 𝐷4, PGJS and PGX2 are much faster than SPGI,
but their effectiveness is rather poor. With the exception 𝐷2, SPGI
is also consistently faster than OPTI to a significant extent. This

indicates that its run-time scales sublinearly with the increase of the
verified pairs This also means that the cost of Supervised Scheduling
is insignificant in comparison to its benefit.
• For the largest budget, all progressive methods are slower than

batch GIA.nt to a minor extent (∼5%). This additional cost is at-
tributed to their (supervised) scheduling step, which is superfluous

when processing (almost) all candidate pairs.

6 CONCLUSIONS
We proposed Supervised Scheduling as a new means of maximizing

the throughput of Geospatial Interlinking (PGR) within a specific

budget of verifications. We incorporated it into Supervised Progres-

sive GIA.nt, an end-to-end approach that automatically learns a

generic, effective, and fast probabilistic binary classifier. Using five

pairs of large, real-world datasets, we experimentally demonstrated

that combining Logistic Regression with 16 generic atomic features

Table 5: The run-time in seconds of the (Supervised) Sched-
uling step per progressive algorithm and dataset.

PGCF PGJS PGX2 PGMBRO PGISP SPGI

𝐷1 23 25 21 23 22 64

𝐷2 40 37 35 37 36 118

𝐷3 65 67 72 70 66 353

𝐷4 437 456 489 405 428 1,596

𝐷5 354 368 394 391 373 953

and 500 labeled instances per class, randomly selected across all can-

didate pairs with intersecting MBRs, suffices for achieving higher

performance than the existing learning-free progressive methods at

a small cost in run-time. In the future, we will parallelize Supervised

Progressive GIA.nt on Apache Spark.

Ackowledgements. This work was supported by the first and

second call for H.F.R.I. Research Projects to support faculty mem-

bers and researchers and the procurement of high-cost research

equipment grant (HFRI-FM17-2351 and Project No. 2757, respec-

tively). It was also partially supported by the ESA project DA4DTE

(subcontract 202320239), the Horizon 2020 projects AI4Copernicus

(GA No. 101016798) and DeepCube (GA No. 101004188), and Hori-

zon Europe project STELAR (GA No. 101070122).

REFERENCES
[1] Abdullah Fathi Ahmed, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga

Ngomo. 2018. RADON2 - a buffered-intersection matrix computing approach to

accelerate link discovery over geo-spatial RDF knowledge bases. In OAEI.
[2] Edward P. F. Chan and Jimmy N. H. Ng. 1997. A General and Efficient Implemen-

tation of Geometric Operators and Predicates. In SSD, Vol. 1262. 69–93.
[3] Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. 1993. A Small Set

of Formal Topological Relationships Suitable for End-User Interaction. In SSD.
[4] Eliseo Clementini, Jayant Sharma, and Max J. Egenhofer. 1994. Modelling topo-

logical spatial relations: Strategies for query processing. Comput. Graph. (1994).
[5] Alishiba Dsouza et al. 2021. WorldKG: A World-Scale Geographic Knowledge

Graph. In CIKM. 4475–4484.

[6] Max J Egenhofer and Robert D Franzosa. 1991. Point-set topological spatial

relations. International Journal of Geographical Information System 5, 2 (1991).

[7] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce

framework for spatial data. In ICDE. 1352–1363.
[8] Eibe Frank, Mark Hall, and Ian Witten. 2016. The WEKA Workbench. Online

Appendix for” Data Mining: Practical Machine Learning Tools and Techniques.

https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf.

[9] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and
Techniques, 3rd edition. Morgan Kaufmann.

[10] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.

2013. YAGO2: A spatially and temporally enhanced knowledge base from

Wikipedia. Artif. Intell. 194 (2013), 28–61.
[11] Krzysztof Janowicz et al. 2022. Know, KnowWhere, Knowwheregraph: A Densely

Connected, Cross-Domain Knowledge Graph and Geo-Enrichment Service Stack

for Applications in Environmental Intelligence. AI Mag. 43, 1 (2022), 30–39.
[12] Nikolaos Karalis, Georgios Mandilaras, and Manolis Koubarakis. 2019. Extending

the YAGO2 Knowledge Graph with Precise Geospatial Knowledge. In ISWC.
[13] Oje Kwon and Ki-Joune Li. 2011. Progressive spatial join for polygon data stream.

In SIGSPATIAL. 389–392.
[14] Rushi Longadge and Snehalata Dongre. 2013. Class Imbalance Problem in Data

Mining Review. CoRR abs/1305.1707 (2013).

[15] Nikos Mamoulis. 2011. Spatial data management. Synthesis Lectures on Data
Management 3, 6 (2011), 1–149.

[16] Axel-Cyrille Ngonga Ngomo. 2013. ORCHID - Reduction-Ratio-Optimal Compu-

tation of Geo-spatial Distances for Link Discovery. In ISWC. 395–410.
[17] George Papadakis, Georgios Mandilaras, Nikos Mamoulis, and Manolis

Koubarakis. 2021. Progressive, Holistic Geospatial Interlinking. In WWW.

[18] George Papadakis, George Mandilaras, Nikos Mamoulis, and Manolis Koubarakis.

2022. Static and dynamic progressive geospatial interlinking. ACM Transactions
on Spatial Algorithms and Systems (TSAS) 8, 2 (2022), 1–41.

https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf

Conference’17, July 2017, Washington, DC, USA Maria Despoina Siampou, George Papadakis, Nikos Mamoulis, and Manolis Koubarakis

[19] Georgios M. Santipantakis, Apostolos Glenis, Christos Doulkeridis, Akrivi Vla-

chou, and George A. Vouros. 2019. stLD: towards a spatio-temporal link discovery

framework. In SBD@SIGMOD. 4:1–4:6.
[20] Peter Sbarski and Sam Kroonenburg. 2017. Serverless architectures on AWS: with

examples using Aws Lambda. Simon and Schuster.

[21] Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, and Axel-

Cyrille Ngonga Ngomo. 2017. Radon - Rapid Discovery of Topological Relations.

In AAAI. 175–181.
[22] Panayiotis Smeros and Manolis Koubarakis. 2016. Discovering Spatial and Tem-

poral Links among RDF Data. In Workshop on Linked Data on the Web, LDOW.

[23] Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee. 2006. Progressive Spatial

Join. In SSDBM. 353–358.

[24] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis.

2019. Parallel In-Memory Evaluation of Spatial Joins. In SIGSPATIAL. 516–519.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Progressive Geospatial Interlinking
	3.2 (Supervised) Scheduling

	4 Approach
	4.1 Features for Supervised Scheduling
	4.2 Supervised Progressive GIA.nt

	5 Experimental Analysis
	6 Conclusions
	References

