A Visual Query Builder for DBpedia*

Dimitrios Soumis', George Stamoulis!®9, and Manolis Koubarakis'»?

! National and Kapodistrian University of Athens, Greece
{cs2200018,gstam,koubarak}@di.uoa.gr
2 Archimedes/Athena RC, Greece

Abstract. In the last years we have seen a huge effort to extract struc-
tured content from the information created in various Wikimedia projects.
This wealth of information is acquired with the use of linked data. One
such example is DBpedia, that allows to perform complex searches on
Wikipedia datasets as well as linking them to data from other sources
(e.g., data from a domain such as agrifood). While the data are avail-
able publicly, knowledge of SPARQL and ontologies is mandatory to
search and analyse them. This paper presents an application for Android
devices, aimed at familiarizing the average user to generate successful
searches and extract desired data from DBpedia, without pre-existing
knowledge in semantic web technologies.

Keywords: linked data - DBpedia - visual query builder - knowledge
graph - Android.

1 Introduction

As the world moves further into the digital age, smartphones are becoming the
primary access points to media and information for both advanced and novice
users [3]. People need fast and abundant results from simple searches in the
shortest possible time using quick access systems without having to use a com-
puter to satisfy their needs and without prior sophisticated background in order
to use a system [2]. In this paper we present an Android application that enables
non-experts to create SPARQL queries over DBpedia [1], for simplified informa-
tion retrieval. This is especially useful to non-expert users from other domains
(such as agrifood) that are not familiar with semantic web technologies. The
DBpedia Visualizer offers a graphical user interface and key word search over
DBpedia resources, that allows the creation of a visual graph based on user feed-
back and automatically translates it to a SPARQL query in order to retrieve the
information for the user.

* This work has received funding from the project STELAR/ (101070122), under the
European Union’s Horizon Europe research and innovation programme. This work
has also been partially supported by project MIS 5154714 of the National Recovery
and Resilience Plan Greece 2.0 funded by the European Union under the NextGen-
erationEU Program.


https://stelar-project.eu/

2 Dimitrios Soumis, George Stamoulis®?, and Manolis Koubarakis
2 Related work

Traditional SPARQL querying can be challenging for users unfamiliar with the
syntax or structure of RDF data. To address this, RDF Explorer [4] offers a
visual interface that allows users to construct queries intuitively, lowering the
barrier for querying RDF data. The tool aims to make the Semantic Web more
accessible to a broader range of users, particularly those without extensive tech-
nical expertise. RDF Explorer enables users to query and retrieve specific infor-
mation from RDF datasets using SPARQL, a query language tailored for this
purpose. This makes it ideal for extracting insights from interconnected data
sources, such as knowledge graphs or web-based linked data repositories. This
is achieved by using a visual query language in which users can express queries
on graphs through simple interactions. The proposed visual query language is
formulated in terms of a visual query graph. Visual query graphs are designed as
a visual metaphor for the basic SPARQL graph patterns, where the translation
is therefore mostly direct and natural. This visual approach enables users to un-
derstand the structure of their data and build complex queries without needing
to write SPARQL code manually. RDF Explorer also incorporates features that
guide users through the process of query formulation, such as auto-completion,
which further enhances its usability. This makes it a powerful tool for both novice
and experienced users working with linked data and knowledge graphs.

3 The DBpedia Visualizer

DBpedia Visualizer is an Android application designed to support non-expert
users in the creation and execution of queries over DBpedia utilizing a graphical
interface. The system is based on the tool RDF Explorer, but runs as a native
Android application to make it more accessible to the broaded audience, that
could lead to more widespread adoption of RDF-based data analysis in various
fields, including data science, artificial intelligence, and agrifood.

The application utilizes the public SPARQL endpoint of DBpediaﬁto extract
information through HTTP requests, based on user input. The user first provides
a search term used to pose an HTTP request to the DBpedia lookup service EL
The results are presented as a list to the user to select an entity of interest as
a starting point. User can expand on the properties of the entity by tapping on
it and select a value. Both the property and its value are stored in application
memory and drawn on the interface. The property is drawn in the box of the
original entity and the value in a new one. The connection between them is
represented with by an arrow. In order to introduce variables, users can double-
tap on any number of entities to convert them into variables.

All HTTP requests are implemented with OkHttp client and are used to pose
to DBpedia the automatically generated SPARQL queries based on the graph

3 http://dbpedia.org/sparql
* https://www.dbpedia.org/resources/lookup/



A Visual Query Builder for DBpedia 3

the user has constructed. Results from DBpedia are retrieved in XML and JSON
format and are integrated in the application using a table format.

4 Demonstration

In this section we demonstrate how to use the application in a scenario to retrieve
notable ideas of people that influenced Albert Einstein.

The user begins by entering a search term into the designated field within
the application. The application then automatically generates an HTTP request
directed to the DBpedia Lookup service. The DBpedia Lookup Service is partic-
ularly useful for resolving entities, meaning it helps users find resources within
the DBpedia database by offering keyword-based search. This service can be
used to look up entities, terms and concepts based on the input, utilizing a
semantic search mechanism. The service responds with search results in XML
format, which the application displays in a list format using a ListView, ensur-
ing a user-friendly presentation. The user selects an entity from the list, and
this selection is saved in the application’s memory and displayed in the initial
user interface. In our demonstration we provide the name of the physicist Albert
FEinstein and select it in the results to create the starting node of our graph as
shown in Figure

Einstein SEARCH Albert Einstein Einstein SEARCH
DBPEDIA DBPEDIA

Photoelectrochemical process
Einstein manifold

Bose-Einstein correlations

Albert Einstein Institute
Hamilton—-Jacobi-Einstein equation

Einstein@Home

Albert

Einstein solid Einstein

Einstein field equations
Einstein relation
Baby Einstein
I1zzy Einstein and Moe Smith
Albert Einstein Award
Einstein (US-CERT program)
RUN RUN

QUERY Einstein—de Haas effect QUERY

Albert Brooks

Fig. 1. Search DBpedia for Albert Einstein



4 Dimitrios Soumis, George Stamoulis®?, and Manolis Koubarakis

The user then performs a long-click on the desired entity displayed in the in-
terface. The application detects this long-click, generates a corresponding SPARQL
query, and sends an HTTP request to the DBpedia API to retrieve the entity’s
properties and values. The results are returned in XML format and are presented
by the application in an expandable list format. The user can then expand any
property by tapping on it and select a value. Both the selected property and
value are stored in the application’s memory and displayed, with the property
linked to the original entity and the value depicted as an independent entity.
The connection between them is represented by an arrow, visually connecting
the original entity to its value. In our scenario, we can view all the properties of
the resource Albert Finstein and select the property influencedBy to choose one
of the values to create a new node in the application. Now using the new node,
we can view again its properties and select the noteableldea attribute and one
of the values as shown in Figure

I D
academicAdvisor Einstein SEARCH Einstein SEARCH
academicDiscipline DEPEDIA DEPEDIA
award
birthDate
birthPlace nhu;,Sch
child — e
citizenship oneniatey o
deathDate
deathPlace
doctoralAdvisor
influenced
influencedBy E'w\r:ls’teernln E:'::te:n
David_Hume T i P
Arthur_Schopenhauer
Bernhard_Riemann
Ernst_Mach
Gottfried_Wilhelm_Leibniz
James_Clerk_Maxwell
Baruch_Spinoza
Isaac_Newton
Moritz_Schlick
Hendrik_Lorentz
Hermann_Minkowski RUN RUN
QUERY QUERY
Thomas_Young_(scientist)
Michele_Besso

Fig. 2. Select properties and values to build our graph

In addition, the user can rearrange entities to create a desired visual layout
and repeat the process as many times as needed. The user can also double-
click on entities to turn them into variables, which will be used in the final
SPARQL query. The application detects this action, replaces the entity text
with a variable name like ZvarX and updates the diagram, with X representing
a numbered sequence of variables. Utilizing this feature, we can tap on the



A Visual Query Builder for DBpedia 5

nodes of the influencer and his notable idea to change them into variables. After
designing the diagram, the user clicks the Run Query button, and the application
automatically formats the final SPARQL query based on the diagram as shown
in Figure [3| The query is sent to the DBpedia API, and the application receives
the results in XML format, displaying the SPARQL query and the retrieved
variable values in a table for clear and user-friendly presentation.

SEARCH
DBPEDIA

Einstein|

YvarQ

notablelde
a

Albert
Einstein
influenced Pvarl
By

RUN
QUERY

https://dbpedia.org/sparql?default-graph-uri=http://dbpedia
org&query=

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rdfs: <http://w v3.0rg/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmins.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX : <http://dbpedia.org/resource/>

PREFIX dbpedia2: <http://dbpedia.org/property/>

PREFIX dbpedia: <http://dbpedia.org/>

PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
SELECT DISTINCT ?var0 ?varl

WHERE {

Albert_Einstein dbo:influencedBy ?varQ

?var0 dbo:notableldea ?var1

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

http://dbpedia.org/resource
/David_Hume

I
|

http://dbpedia.org/resource
/Deductive_reasoning

http://dbpedia.org/resource
/Constant_conjunction

http://dbpedia.org/resource
/Hume's_fork

http://dbpedia.org/resource
/Moral_sense_theory

http://dbpedia.org/resource
/Idea

http://dbpedia.org/resource
/Fact-value_distinction

http://dbpedia.org/resource
/Is—ought_problem

http://dbpedia.org/resource
/A_Treatise_of_Human
_Nature

http://dbpedia.org/resource
/Causality

http://dbpedia.org/resource
/Association_of_ideas

P

Fig. 3. Change nodes to variables and run the query



6 Dimitrios Soumis, George Stamoulis®™®, and Manolis Koubarakis

5 Conclusion and Future work

In this paper we demonstrated the DBpedia Visualizer, that offers a graphi-
cal interface for non-expert users to build SPARQL searches for streamlined
information retrieval over DBpedia. For future work we plan to enhance both
the functionality and interface design of the application. We will add an auto-
complete service to the search field based on the available ontology of DBpedia.
Since search results contain URIs we would like to offer access to these resources
from DBpedia by redirecting to the device’s browser. Furthermore, we plan to
support more SPARQL functionality such as filters and aggregates to enable the
creation of more complex search queries.

References

1. DBpedia: About dbpedia. https://www.dbpedia.org/about/

2. Hoelzle, U.: The google gospel of speed. Think with Google,
https://www.thinkwithgoogle.com /future-of-marketing/digital-
transformation/the-google-gospel-of-speed-urs-hoelzle/ (2012)

3. PECB: How smartphones are ‘killing’ pcs. https://insights.pecb.com/smartphones-
killing-pcs/ (2018)

4. Vargas, H., Buil-Aranda, C., Hogan, A., Lépez, C.: Rdf explorer: A visual sparql
query builder. In: The Semantic Web — ISWC 2019: 18th International Semantic
Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part
I. p. 647-663. Springer-Verlag, Berlin, Heidelberg (2019)



	A Visual Query Builder for DBpedia

