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ABSTRACT

We present a new-generation, AI-agent-powered digital assis-
tant featuring four specialized engines for satellite imagery:
search by image, search by caption, visual question answer-
ing, and knowledge graph question answering. At the core
of the system is a Task Interpreter, designed as a multi-agent
system, which coordinates these engines to address complex
user requests for Earth observation data. The Task Interpreter
comprises four agents: an Engine Routing Agent that selects
the appropriate engine or rejects unmanageable requests; a
Conversational Agent that handles general or out-of-scope
queries; an Argument Extraction Agent that identifies image
type parameters for retrieval tasks; and a Tool Feasibility
Agent that assesses the applicability of tools for domain-
specific queries. This multi-agent system enables seamless
interaction with Digital Twins of Earth, with an emphasis on
modularity and extensibility to adapt to the rapid evolution of
remote sensing technologies.

Index Terms— Multi-agent systems, digital assistant,
digital twins, search by image, search by caption, visual
question answering, knowledge graph question answering

1. INTRODUCTION

In Artificial Intelligence (AI), an agent is an autonomous en-
tity capable of perceiving its environment, making decisions,
and acting upon it to achieve specific goals. Multi-agent sys-
tems (MAS) is a subarea of AI studying societies of agents
in cooperative or competitive settings and has a long tradition
of outstanding research results. With the recent revolution of
large language models (LLMs) and foundation models (FMs),
the area of MAS is receiving again a lot of attention with the
proposal of LLM-powered agent frameworks such as Auto-
Gen [14], LangChain and CrewAI.

As part of these recent developments, we have seen the
proposal of agent and multi-agent system architectures pow-
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ered by LLMs in the Remote Sensing (RS) area [4, 9, 10,
11, 15]. Remote Sensing ChatGPT [4] introduces a system
where ChatGPT interprets user requests and sequentially
invokes specialized RS models for tasks such as object de-
tection and land use classification. RescueADI [11] focuses
on disaster interpretation, employing a LLM-driven agent to
dynamically plan and execute multiple specialized tasks like
damage assessment and rescue pathfinding. RS-Agent [15]
extends this paradigm by integrating high-performance tools
and a retrieval-augmented knowledge base to support pro-
fessional geospatial analysis. GlobeFlowGPT [9] applies a
multimodal LLM orchestrator to facilitate complex geospa-
tial workflows, including flood forecasting and vegetation
monitoring, with containerized tool integration. Similarly,
GeoLLM-Squad [10] adopts a MAS, using an orchestra-
tor to coordinate specialized agents for a broad range of
remote sensing tasks, such as urban monitoring, climate anal-
ysis, forestry protection, and agricultural studies. Like our
approach, it emphasizes modularity, extensibility, and the
separation of orchestration from task-solving components.

Parallel to these developments, the emergence of Digital
Twins of Earth (DTEs) —high-fidelity, dynamic digital repre-
sentations of the Earth’s systems—has created new demands
for intelligent, continuous interaction with massive Earth ob-
servation (EO) datasets. DTEs require the ability to access,
interpret, and integrate diverse data streams in a flexible, scal-
able, and context-aware manner. MAS are particularly well
suited to meet these needs, enabling specialized tools to work
together dynamically to support the complex data require-
ments of DTEs.

However, despite recent advances, there is currently no
EO data provider that offers a digital assistant capable of guid-
ing users in finding the EO data they seek. This is a crit-
ical functionality gap, especially as the volume of EO data
made available through initiatives like Copernicus and Land-
sat continue to expand. Without intelligent assistance, this
wealth of data remains difficult to access for both expert and
non-expert users, such as journalists searching for timely EO



imagery of environmental disasters or policymakers monitor-
ing climate events.

To address this challenge, we introduce the Digital As-
sistant for Digital Twins of Earth (DA4DTE), an AI-powered
multi-agent digital assistant designed to facilitate seamless
interaction with EO datasets. In DA4DTE, a Task Inter-
preter operates as a multi-agent system comprising special-
ized agents that collaboratively interpret user requests and
orchestrate the activation of appropriate search engines or
tools. We distinguish between the specialised engines serving
EO tasks, the multi-agent Task Interpreter with its agents—
autonomous functional components responsible for specific
subtasks—and the assistant, the overall user-facing system
deployed to fulfill complex information retrieval workflows.

2. MULTI-AGENT SYSTEM FOR ORCHESTRATION

DA4DTE enables a user to pose multi-modal requests, that —
in addition to text— can include RS images, either uploaded
or selected on the User Interface map. The assistant’s toolset
allows for a variety of requests including geospatial or visual
queries, requests for images by describing their visual context
or metadata, image search requests, and queries for explana-
tion on image similarity results. Between the user and the
DA4DTE engines lies the Task Interpreter: a MAS respon-
sible for engine orchestration and the mediation between the
user and individual engines. The architecture is illustrated
in Figure 1, which highlights the collaborative roles of each
agent module and their interactions with the user interface and
underlying engine components.

To ensure future extensibility, we categorize orchestration
responsibilities into two types: core and assistant tasks. Core
tasks are permanent and fundamental to any version of the as-
sistant, regardless of the tools or data sources integrated. In
contrast, assistant tasks are tailored to the current implemen-
tation state and may evolve as functionalities and resources
expand. Each task is assigned to a dedicated agent, forming
a MAS, implemented using the AutoGen [14] framework and
currently comprising the following four agents.

The first agent is the Engine Routing Agent (Core). This
agent is a zero-shot prompted LLM that selects the most ap-
propriate engine to activate based on the user request. It also
has the capability to reject requests that fall outside the scope
of all available engines.

The second agent is the Conversational Agent (Core).
This is a fallback conversational agent designed to handle
general, ambiguous, or out-of-domain queries. Although it
is a capable LLM, it is specifically prompted not to respond
to irrelevant requests, ensuring that the assistant remains task-
focused.

The third agent is the Argument Extraction Agent (As-
sistant). This is an agent dedicated to extracting key param-
eters required by specific tools. In the current implementa-
tion, it identifies the requested image type (e.g., Sentinel-1 or

Sentinel-2) when the Search-by-Image engine is activated.
Finally, the fourth agent is the Tool Feasibility Agent

(Assistant). This is a utility agent responsible for validat-
ing whether a requested operation is feasible under current
system capabilities. For example, the Search-by-Text engine
presently supports only vessel-related queries. If a user re-
quest falls outside this domain, the agent triggers a relevant
explanatory message to the user.

3. ENGINES AND THEIR FUNCTIONALITIES

DA4DTE integrates four specialized engines, tailored to spe-
cific Question Answering (QA) or retrieval tasks.

The first engine is the Knowledge Graph QA Engine
TerraQ [8]. TerraQ1 is a QA system that is designed to pro-
cess natural language requests that include spatiotemporal or
metadata related criteria and satisfy the request by retrieving
data from a Knowledge Graph (KG). User requests can in-
clude references to image metadata (e.g., snow percentage in
an image), geoentities (e.g., the country France), administra-
tive divisions (e.g., municipalities, regions), as well as spa-
tiotemporal constraints.

For example, users can make requests like “Give me a
hundred images of rivers near ports in France, with less than
20% snow coverage and more than 10% cloud coverage,
taken in 2021”. The engine then takes this request as input,
translates it into a semantically equivalent SPARQL query.
To do so, it employs a pipeline of components for natural
language understanding and KG grounding. First, relevant
entities and classes are extracted from the KG [13]. Then,
relations between the retrieved entities and classes are iden-
tified, including spatial and temporal relations. At this stage,
the core of the query is complete, and the expected return val-
ues are identified by a finetuned Llama 2 model. The query
generator then produces the complete, executable SPARQL
query. This query is subsequently enhanced by a finetuned
on SPARQL Mistral-7b-v2 model, and rewritten by GoST2

to optimize execution efficiency. GoST rewrites queries to
replace GeoSPARQL functions with equivalent materialized
topological predicates. In the end, the query is executed over
a GraphDB endpoint, and the QA process is complete.

The second egine is the Search-by-Image Engine. This
engine takes a query image and computes the similarity func-
tion between the query image and all archive images to find
the most similar images to the query in a scalable way. This
is achieved based on two main steps: i) the image description
step, which characterizes the spatial and spectral information
content of RS images; and ii) the image retrieval step, which
evaluates the similarity among the considered hash codes and
then retrieves images similar to a query image in the order
of similarity. Our Search-by-Image Engine is defined based

1https://terraq.di.uoa.gr/
2https://github.com/AI-team-UoA/GoST
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Fig. 1. High-level architecture of the digital assistant (DA4DTE), showing the user interface, multi-agent Task Interpreter, and
the specialized engines (figure inspired by Figure 1 of [15]).

on two self-supervised methods: 1) deep unsupervised cross-
modal contrastive hashing (DUCH) [12]; and 2) cross-modal
masked autoencoder (CM-MAE) [6]. For both methods, the
image description step is composed of two modules: 1) a fea-
ture extraction module, which learns deep feature represen-
tations of RS images by exploiting visual transformers (ViT);
and 2) a deep hashing module, which learns to map image rep-
resentations into hash codes. The first module of the DUCH
method is based on contrastive self-supervised image rep-
resentation learning, while that of the CM-MAE method is
based on unsupervised masked image modelling. The second
module of each method employs a hashing subnetwork with
binarization loss functions. Our engine has both the single-
modal (also known as uni-modal) and cross-modal content-
based image retrieval capability due to the consideration of
the modality-specific encoders.

A key feature of the search-by-image engine is the inte-
gration of the Explainability tools to understand and explain
the decision of the engine in retrieving a particular image
given a query image. To this end, we incorporate two ex-
plainability tools: Layer-wise Relevance Propagation (LRP)
[1] and BiLRP [3]. The LRP highlights areas in the in-
put image supporting a specific class decision by generating

heatmaps. Since CM-MAE is self-supervised and lacks class
predictions, we train an auxiliary classification head to esti-
mate class probabilities for each image pair. These predic-
tions enable the generation and interpolation of class-specific
LRP heatmaps, which emphasize semantically similar regions
across image pairs. BiLRP, while more computationally in-
tensive, identifies in the image pairs shared regions without
needing a classification head.

The third engine is the Search-by-Text Engine. This
engine takes a text sentence as a query and efficiently re-
trieves the most similar images to the query text, achieving
scalable cross-modal text-image retrieval. The Search-by-
Text Engine is developed by adapting the above-mentioned
self-supervised DUCH [12] to be operational on text based
queries. To this end, the feature extraction module is adapted
to extract feature representations of image-text pairs by ex-
ploiting bidirectional transformers (e.g., BERT [2]) as text-
specific encoders together with ResNet-152 [7] as image-
specific encoders. The second module of each method is
adapted to learn cross-modal binary hash codes for image and
text modalities by simultaneously preserving semantic dis-
crimination and modality-invariance in an end-to-end manner.

To evaluate DUCH, we constructed a vessel captioning



dataset, consisting of vessel text-image pairs generated via
a template-based image captioning approach. This approach
consists of creating predefined sentence templates with empty
slots. The slots are then filled using semantic cues from vessel
bounding boxes (e.g., count, size) and contextual data from
OpenStreetMap, particularly coastline proximity (i.e., vessel
locations relative to harbors or coastlines). Vessel sizes, de-
rived from bounding box dimensions, were categorized into
five classes (very small to very big) and mapped to two vessel
types: boats (very small to medium) and ships (big and very
big), reflecting typical usage and navigational context.

Finally, the fourth engine is the Visual QA Engine. This
engine enables users to ask questions about the content of
RS images in a free-form manner, extracting valuable in-
formation. It employs the LiT-4-RSVQA [5] model, which
has been trained and evaluated on RSVQAxBEN3. The LiT-
4-RSVQA architecture focuses on achieving state-of-the-art
performance, while also providing rapid response times. To
do so, it employs the following modules: i) a lightweight text
encoder module; ii) a lightweight image encoder module; iii)
a fusion module; and iv) a classification module. A RS image
I and a question Q about this image are considered as input.
The encoder modules produce vector representations which
are subsequently passed to the fusion module. The feature fu-
sion module consists of two linear projections and a modality
combination. The projections map the two modalities with
dimensions dt and dv into a common dimension df, where
dt and dv denote the dimensions of the flattened output of
the text and image encoder modules, respectively. The value
of dv differs depending on the used lightweight transformer.
The projected features are then elementwise multiplied. The
classification module is defined as an MLP projection head.

4. DA4DTE IN ACTION

We now consider a use case scenario for the digital assistant.
The assistant welcomes the user and asks them to pose a re-
quest. The user asks for a Sentinel-1 image from France dur-
ing 2020, with snow coverage of more than 50%. Then, the
Engine Routing Agent of the Task Interpreter decides that this
is a request that should be fulfilled by the Knowledge Graph
QA Engine which returns the appropriate image. The inter-
action goes on with the user asking for a similar Sentinel-2
image and then the Search-by-Image Engine is selected by
the Engine Routing Agent. The term “Sentinel-2” is extracted
by the Argument Extraction Agent as the modality argument,
so the engine is activated and returns the appropriate image.
Having selected that Sentinel-2 image, the user asks whether
it presents a rural area and the answer by the Visual QA En-
gine is presented. Finally, the user closes the interaction with
the assistant and the Engine Routing Agent of the Task Inter-
preter calls the Conversational Agent to answer appropriately.

3https://zenodo.org/records/5084904

5. FUTURE WORK

We plan to explore several research directions to further im-
prove the capabilities of the system. First of all, we aim to im-
plement an alternative Engine Routing Agent using the Func-
tion Calling paradigm in LLMs, to improve control over en-
gine invocation compared to the current zero-shot prompting
setup. We also plan to extend the assistant’s capabilities to
multi-step requests where multiple engines can be activated
in a sequence. As the complexity of the system increases, we
intend to integrate a Manager Agent to oversee and coordinate
the behavior of all other agents within the Task Interpreter.
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