
Can Large Reasoning Models Reason about Spatial Relations?
Eirinaios Odysseas Gardelakos∗

Vasileios Kyriakopoulos∗
cs2210008@di.uoa.gr
cs22200017@di.uoa.gr
Dept. of Informatics and
Telecommunications

National and Kapodistrian University
of Athens

Athens, Greece

Despina-Athanasia Pantazi
dpantazi@di.uoa.gr

Dept. of Informatics and
Telecommunications

National and Kapodistrian University
of Athens and

Archimedes/Athena Research Center
Athens, Greece

Orestis-Minas Kapopoulos
sdi2000066@di.uoa.gr

Dept. of Informatics and
Telecommunications

National and Kapodistrian University
of Athens

Athens, Greece

Maria Tsourma
mtsourma@iti.gr

Dept. of Informatics and
Telecommunications

National and Kapodistrian University
of Athens and

Information Technologies Institute
Centre for Research and Technology

Hellas
Athens, Thessaloniki, Greece

Manolis Koubarakis
koubarak@di.uoa.gr

Dept. of Informatics and
Telecommunications

National and Kapodistrian University
of Athens and

Archimedes/Athena Research Center
Athens, Greece

Abstract
Spatial reasoning has been an established area of research since
around 1990 with the proposal of the 9-intersection model and RCC-
8. Since then, a lot of interesting related work has been carried out
by researchers in Geography, AI and Databases. With the arrival of
large language models, there has also been research on evaluating
their geospatial knowledge and spatial reasoning capabilities, and
extending them so that they can be used to solve spatial reasoning
problems. In this paper, we contribute to this emerging area of
research and evaluate 7 large reasoning models (OpenAI models
o1, o3, and o4-mini, deepseek-r1, grok-3-mini, claude-3.7-sonnet
with extended thinking mode and gemini-2.5-flash) on the tasks of
reasoning with topological and cardinal direction relations.

CCS Concepts
• Computing methodologies→ Spatial and physical reason-
ing.
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1 Introduction
Spatial reasoning is a critical element of human cognition and has
many real-world applications, for example, in Geographic Informa-
tion Systems [10] (used to define the concepts of the common sense
geographic world upon which such systems can be developed), Im-
age and Vision systems (video analysis and spatial representation
of moving objects) [7], natural language understanding (used for
the interpretation of spatial issues included in natural language
text such as the fitting of objects into containers) [8] and Robotics
(used for the enhancement of the robot perception) [44]. Spatial
reasoning has been an established area of research since around
1990 with the proposal of the 9-intersection model by Egenhofer [9]
and the Region Connection Calculus [55] by Randell, Cohn and
Cui. Since then a lot of interesting related work has been carried
out by researchers in Geography, AI and Databases (see survey
papers [6, 56]).

With the arrival of large language models (LLMs), there has
been recent interesting work on evaluating their geospatial knowl-
edge [1, 15, 16, 21, 24, 26, 28, 29, 31, 32, 34, 36–39, 51–53, 57] and
spatial reasoning capabilities [4, 5], and extending them so that
they are able to solve spatial reasoning problems for various pro-
posed benchmarks [49, 50]. The questions studied in these works
are important since LLMs have been advertised for their powerful
reasoning capabilities by many and even as one possible avenue for
achieving Artificial General Intelligence (AGI) by some. Another
related avenue of research is the development of foundation models
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for multimodal geospatial data [3, 17–19, 23, 33, 36, 40–42]. Collec-
tively, these recent studies may be regarded as contributing to the
emerging area of Geospatial Artificial Intelligence (GeoAI) [20].

In this paper, we follow the lead of [4, 5] and evaluate the capa-
bilities of seven large reasoning models on two spatial reasoning
tasks. Large reasoning models (LRMs) [35] are the most recent breed
of LLMs that have shown strong capabilities in coding tasks and
in solving logical and arithmetic problems (see e.g., OpenAI’s o1
model [14] and Deep Mind’s Gemini Advanced 2.5 model1). In this
paper we use six commercial models (the OpenAI models o1, o3, and
o4-mini, grok-3-mini, claude-3.7-sonnet with extended thinking
mode and gemini-2.5-flash) and one open-weight model (deepseek-
r1). We choose these models since they represent the state of the
art in LRMs and have not been evaluated in prior research on the
spatial reasoning tasks of interest. We mainly chose commercial
LRMs as opposed to open-weight LRMs (e.g., the Llama 3 family of
models [11]) since they are known to exhibit top performance on
benchmarks for arithmetic, logical reasoning and coding (see for
example [13] and [43]).

The first spatial reasoning task we investigate is reasoning with
cardinal directions based on the calculus CDC [45, 46, 59] and, in
particular, computing the transitivity (or composition) table for
CDC. We perform 3 experiments for this task. In the first exper-
iment, we prompt the models with a complete definition of the
CDC calculus. In the second experiment, following the methodol-
ogy of [4], we use a similar prompt with the first experiment but
now with anonymized context. The last experiment evaluates how
the models perform without providing any context regarding the
CDC calculus in the prompt (i.e., how they perform based only on
the knowledge of cardinal direction relations obtained during their
pretraining and stored in their parameters).

The second task that we study is reasoning based on the calculus
RCC-8 [55] following the ideas of [4]. Again, we investigate whether
the chosen LRMs can correctly compute the composition table. We
perform 2 experiments; in the first one we prompt the models with
the definition of RCC-8, while in the second one we use a similar
prompt with the first experiment but nowwith the context provided
to the model anonymized.

Our results on the composition table of CDC are original; this
problem has not been studied in the literature so far. Our results
on RCC-8 complement the results of [4]; in this study we focus on
more recent and more powerful LRMs and we demonstrate that
these perform better than the LLMs tested in [4].

In more detail, our experimental results show the following
contributions:

• For both tasks introduced above, the tested LRMs signifi-
cantly outperformed the LLMs tested previously in the liter-
ature (where, for example, for reconstructing the transitivity
table of RCC-8 [4] claude-3-5-sonnet was the best perform-
ing model). In our experiments, we used the updated version
claude-3-7-sonnet, which was outperformed in most cases
by the model o3 which achieves a mean Jaccard index of

1https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-
march-2025/

99.41% and 99.66% for the CDC and the RCC-8 tasks respec-
tively when the prompts included context. o3 outperforms
the other 6 models in most of the other experiments as well.

• In the second experiment of both tasks, where the context
of the prompt was anonymized, the evaluated LRMs could
provide answers but not as accurate as in the first experiment.
The observed performance drop suggests that the LRMs
struggle to accurately interpret anonymized relations, likely
due to the absence of context information in the prompt. If
no context is provided in the prompt and the models are
expected to rely on knowledge encoded in their parameters,
the models perform poorly (we conducted this experiment
only for the CDC task).

• For both tasks, we examined the presence of inductive bias
in the LRMs when predicting specific relations. We conclude
that no bias is present in the process of predicting any specific
spatial relation, as the correct and incorrect predictions are
shown to be almost equally distributed.

The remainder of the paper is organized as follows. Section 2
discusses the related work, section 3 analyzes the technical details
of our experimental evaluation, section 4 presents our results on the
calculus CDC, while section 5 presents our results for the calculus
RCC-8. Finally, in section 6 we report our conclusions and discuss
future work.

Our code and supplementary materials are available as open
source at https://github.com/AI-team-UoA/LRMs-spatial-reasoning.

2 Related Work
The introduction section set the stage for our work and introduced
the main papers in the relevant research areas. In this section we
discuss in some detail only papers [4, 5, 49, 50] that are most closely
related to our work. The reader can also view the AAAI 2025 invited
plenary talk by Tony Cohn2.

[5] investigates whether LLMs can reason about cardinal direc-
tion relations. Their methodology is to create two question and
answer datasets which they call small and large. To create the small
dataset, they have used ChatGPT to co-create 100 simple questions
where the answer is a cardinal direction (North, South, East and
West). Two example questions are: “You are watching the sun set.
Which direction are you facing?” and “If the South Pole is behind you,
which direction are you facing?”. The second dataset is generated
from a set of templates and it is meant to test comprehensively an
LLM’s ability to determine the correct cardinal direction given a
particular scenario. An example question template from this dataset
is “You are walking [south] along the [east] shore of a lake and then
turn around to head back in the direction you came from, in which
direction is the lake?”. Even with a temperature setting of 0, the
experiments of [5] demonstrate that although LLMs are able to
perform well in the small (simpler) dataset, in the second more
complex dataset, no LLM is able to reliably determine the correct
cardinal direction.

[4] investigates whether LLMs can reason about mereotopologi-
cal relations in RCC-8. They concentrate on three problems: getting

2https://underline.io/events/473/sessions/19422/lecture/115523-can-large-language-
models-reason-about-spatial-informationquestion
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an LLM to reconstruct the transitivity table of RCC-8, evaluating the
alignment of LLM answers to human composition preferences, and
reconstructing the conceptual neighbourhood of RCC-8 relations.
[4] show that LLMs do not perform well on the above tasks; this is
not surprising given that, e.g., for the computing the transitivity
table, even humans might have difficulty performing this task.

[49] studies the StepGame benchmark [58] as a means to test
the spatial reasoning abilities of LLMs. The StepGame benchmark
contains story-question pairs where the question refers to spatial
relations between two specified entities. For example, the story can
be “J is diagonally above B to the right at a 45-degree angle.” and the
question can be “What is the spatial relation of agent J to agent B?”.
This is called 1-hop spatial reasoning in the benchmark but, as one
can imagine, there can be stories and questions that require multi-
hop reasoning to be answered. The contributions of [49] are the
following. First, they point out some inconsistencies in the original
StepGame benchmark and they correct them. Secondly, they adopt
the approach of [47] and combine GPT-3 with a spatial reasoner im-
plemented using Answer Set Programming (ASP) to solve instances
of the StepGame benchmark. In this approach, GPT-3 is employed
to parse spatial expressions into symbolic representations, which
are then passed to the ASP reasoner to obtain an answer. This neu-
rosymbolic approach results in perfect accuracy in the benchmark.
Thirdly, they customize the Tree-of-Thoughts approach of [30] to
deal with the important subproblem of object-linking chain build-
ing for reasoning in StepGame. With this approach, which uses the
LLM as a native spatial reasoner, [49] are able to demonstrate up to
90% accuracy even in complex tasks when the LLM used is GPT-4.

[50] first provides a detailed analysis of existing spatial reason-
ing benchmarks (bAbI [22], StepGame [58], SpartQA [27] and Spar-
TUN [54]) and their limitations. Then, it develops a more realistic
benchmark by developing scenarios derived from 3D simulation
data andmoving away from emphasizing logical expressions and go-
ing towards stories that mirror everyday communication. [50] also
presents a consistency checking tool, developed using Constraint
Programming, for evaluating whether a spatial relation predicted
by an LLM is feasible, given a set constraints. The paper also tests
the capabilities of various LLMs on the benchmark and demon-
strates that GPT-4 achieves the best performance. Finally, the paper
shows that all tested models face difficulties in multi-hop spatial
reasoning scenarios and that their performance improves as the
story’s constraint graph becomes more complete.

Finally, the recent paper [48] investigates whether LLMs can
understand the widely-used Well-Known-Text representation of
geometries and whether spatial relations (e.g., topological) are pre-
served during spatial reasoning when the corresponding vector data
is passed to LLMs. [48] experiments with GPT-3.5-turbo, GPT-4, and
DeepSeek-R1-14B and reports their accuracy in the identification of
spatial relations when using geometry embedding-based, prompt
engineering-based, and everyday language-based approaches. In
particular, the GPT-based reasoner studied can understand inverse
topological spatial relations. In addition, GPT-4 can translate cer-
tain vernacular descriptions about places into formal topological
relations, and adding the geometry-type or place-type context in
prompts may improve inference accuracy, although this varies by
instance.

3 Experimental Setting
This section presents the experimental setting of our work. We
assume that the reader is familiar with the concepts of the cardinal
direction calculus CDC [59] and the region connection calculus RCC-
8 [55].

The LRMs that we evaluated are shown in Table 1. Like their
LLM predecessors, LRMs are also stochastic. Each LRM API pro-
vides various options for reducing stochasticity. Despite following
the suggested actions to reduce the stochastically (using a fixed
seed and setting the temperate to 0), some models produced varied
outputs. This behaviour is not surprising since some APIs may
add variability due to caching, load balancing, or dynamic model
updates. In the following analysis, experiments in which neither
the seed was set to a random number nor the temperature was set
to 0 will be referred to as the default experiments. That is, these ex-
periments were conducted using the default configuration specified
in the documentation provided by each API vendor.

Regarding the configuration of the experiments with reduced
stochasticity, the seed was set to a random number (same for all
repetitions of eachmodel/experiment) for everymodel tested except
gemini-2.5-flash and claude-3.7-sonnet, where it was not supported.
Furthermore, the temperature was set to 0 for all models, except o1,
o3 and o4-mini, where it was not applicable. It should be mentioned
that in order to set the temperature to 0 for claude-3.7-sonnet, we
needed to disable the thinking mode of the model. In the following
analysis, the experiments with reduced stochasticity will be referred
to as the fixed seed experiments. In Sections 4 and 5 we quantify
the uncertainty of the LRMs answers using prediction intervals as
proposed in [2].

The experiments described in the following two chapters evalu-
ate the compositional reasoning capabilities of the selected LRMs.
To compute each cell of a composition table, the LRMs under eval-
uation were prompted using appropriate prompt templates. Each
prompt template consists of two parts; the first part is the back-
ground information (context) which defines the relevant calculus
and its basic spatial relations, and the second part is the question
posed by the user to compute the composition table. Due to space
constraints, the precise definitions of all the prompt templates con-
structed are provided in our GitHub repository.

Similarly to [4], since the answers of the prompts which recon-
struct the cells can contain more than one spatial relation, we use
the Jaccard index to compute the accuracy of the predicted response
compared to the expected answer. The Jaccard index is computed by
counting the size of the intersection of the predicted set of relations
with the expected set of relations and dividing it by the number of
relations in the union of the two sets. When only a single relation
is predicted and the expected answer is also a single relation, the
Jaccard index reduces to a binary 1 or 0 measure of accuracy.

We repeat each experiment 3 times for all models evaluated in
Section 4, and at least 3 times in all the experiments conducted
in Section 5. This approach allows us to calculate and employ the
average prediction accuracy of each model as a comparative metric.
All experiments were conducted using the APIs provided by the
vendors of the evaluated models.

To quantify the variability introduced by repeated runs, we fol-
low the statistical methodology of [2], which involves computing
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Vendor Model Abbreviation Released API Number of Parameters Context
OpenAI o1-2024-12-17-high o1 Dec 2024 OpenAI Undisclosed 200K
OpenAI o3-2025-04-16-high o3 Apr 2025 OpenAI Undisclosed 200K
OpenAI o4-mini-2025-04-16-high o4-mini Apr 2025 OpenAI Undisclosed 200K
DeepSeek deepseek-reasoner deepseek-r1 May 2025 DeepSeek API 671B (≈ 37B activated) 128K
xAI grok-3-mini grok-3-mini Feb 2025 xAI API Undisclosed 131072
Anthropic claude-3-7-sonnet-20250219-thinking claude-3-7-sonnet Feb 2025 Anthropic Undisclosed 200K
Google gemini-2.5-flash-preview-04-17 gemini-2.5-flash Apr 2025 Gemini API Undisclosed 1M In - 65536 Out

Table 1: The evaluated LRMs referred to by their abbreviation henceforth. Context is the context window size in tokens.

prediction intervals rather than relying solely on mean scores. The
methodology of [2] can be described briefly as follows (we take
definitions almost verbatim from [2]). Let 𝑞 be the number of bench-
mark questions, and let𝑋𝑖, 𝑗 denote the score for question 𝑖 in repeat
𝑗 (0 for incorrect answer and 1 for correct answer). The mean score
for the 𝑗-th repeat is 𝑥 𝑗 = 1

𝑞

∑𝑞

𝑖=1 𝑋𝑖, 𝑗 .
Let 𝑛 be the number of repeats. The overall mean score across

all repeats is 𝑥 = 1
𝑛

∑𝑛
𝑗=1 𝑥 𝑗 .

To estimate the range in which a future repeat’s mean score

might fall, we use the prediction interval 𝑥 ± 𝑡𝛼/2,𝑛−1 · 𝑠 ·
√︃

1
𝑛 + 1

𝑛′

where 𝑠 is the sample standard deviation of the repeat means 𝑥 𝑗 ,
𝑡𝛼/2,𝑛−1 is the critical value from the Student’s t-distribution with
𝑛−1 degrees of freedom,𝑛′ is the number of future repeats (typically
set to 1), and 𝛼 is the significance level (e.g., 0.05 for a 95% prediction
interval).

As explained in [2], a prediction interval is wider than its cor-
responding confidence interval. A prediction interval provides an
estimated range that future observations or their averages are ex-
pected to fall into, while a confidence interval indicates the range
that is likely to contain the true population parameter derived from
the sample data. Since we aim the reproducibility of benchmark
scores, we use prediction intervals where 𝑛′ = 𝑛 as in [2].

4 Reconstructing the Transitivity Table of the
Calculus CDC using LRMs

In this section we evaluate whether the tested LRMs can recon-
struct the transitivity table of the calculus CDC by performing three
experiments. In the first experiment, we prompt the models with
the definition of the CDC calculus and we evaluate their accuracy
in reconstructing the transitivity table. In the second experiment,
following the methodology of [4], we employ a prompt similar to
that used in the first experiment, but with the contextual informa-
tion provided to the model anonymized. In the final experiment,
we examine the models’ performance on the same task without
providing contextual information in the prompts, relying solely on
their pre-existing knowledge of cardinal direction relations.
First Experiment. For the first experiment, eachmodel is prompted
with background information (the context) that defines the CDC
calculus using the default setting. Then, we pose to the models a set
of questions which compute the cells of the transitivity table (one
question per cell, for a total of 9× 9 = 81 questions). An example of
such a prompt is provided in the appendix A. The context informa-
tion of each prompt concludes with the following sentences: "You
are a helpful assistant. I will now give you a question

regarding the cardinal direction relations I defined
above. The possible answer can be one or more of N, NE,
SE, S, E, NW, W, SW, B. No yapping.". The sentences about
possible answers and “No yapping.” were appended because we
observed that the models’ answers exhibited greater precision in
this setting (also observed in the methodology of [5]). The questions
posed have the following format: "Let 𝑅1 and 𝑅2 be cardinal
direction relations. If region 𝑥 is 𝑅1 of region 𝑦

and region 𝑦 is 𝑅2 of region 𝑧, then which could the
possible relations between region 𝑥 and region 𝑧 be?".
In the above question, variables 𝑅1 and 𝑅2 are relations from the
set {N, NE, SE, S, E, NW, W, SW, B}.

In this experiment o3 achieved the best accuracy across all 3 re-
peats, achieving 99.66 % mean Jaccard index, compared to the worst
performing model, grok-3-mini, which achieved 89.13%. Figure 1
shows the mean Jaccard coefficient for 4 models. The models cho-
sen to be further displayed were the best, worst and two models of
different vendors, Google and Anthropic. We have detailed results
for all the other models of Table 1 as well included in our GitHub
repository, but we omit them due to space considerations. We also
performed experiments using the ‘fixed seed’ configuration which
is described in Section 3, but were not displayed again due to space
limitations. However, all information regarding the results for each
model is presented in Figure 4.

Figure 1: CDC transitivity table shaded by the mean Jaccard
Index (n=3 repeats) for o3 (best performing model), gemini-
2.5-flash, claude-3.7-sonnet and grok-3-mini (worst perform-
ing model), using the default input parameters.

Figure 2 depicts the total counts of all the answers provided by
each model per each cardinal direction categorized as: correctly
predicted (true positive), correctly not predicted (true negative),
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incorrectly predicted (false positive) and incorrectly not predicted
(false negative). The aim is to identify possible inductive biases
of the models when predicting specific relations. We show the
counts for the models o3 (best performing model), gemini-2.5-flash,
claude-3.7-sonnet and grok-3-mini (worst performing model), using
default input parameters. The model o3, which achieved 99.66%
mean Jaccard index, has 1 incorrectly not predicted relation by
predicting𝑊 ◦ 𝑁 = 𝑁𝑊 instead of the correct {𝑁𝑊 , 𝑁 }, and 1
incorrectly predicted relation by predicting𝑊 ◦ 𝑆 = {𝑆, 𝑆𝑊 ,𝑊 }
instead of the correct {𝑆, 𝑆𝑊 }. Upon closer examination of the
first four bars for o3 (relation 𝑁 ), we can observe that the model
predicted correctly the relation 𝑁 74 times across all answers for
all 3 repetitions that were conducted. Thereafter, it correctly did
not predict the relation 𝑁 168 times. Finally, it failed to predict the
relation 𝑁 1 time, and it did not predict incorrectly the relation
𝑁 at all (0 times). The same comments hold for the rest of the
models regarding the default CDC experiment. Overall, Figure 2
illustrates the models’ good performance on this experiment, as
shown in Table 2. We can conclude the lack of bias in any relation,
as the correctly and incorrectly predictions are somewhat equally
distributed. However, we should mention that the worst model
(grok-3-mini) has incorrectly not predicted the relation 𝐵 15 times,
the most out of all the relations for all models, which indicates the
model’s incapacity to manage this relation.

Figure 2: Relation statistics for the CDC transitivity table
computation. for the models o3 (best performing model),
gemini-2.5-flash, claude-3.7-sonnet and grok-3-mini (worst
performing model), using the default input parameters.

An additional point of interest is the duration needed for each
model to process a prompt. This is critically important in our setting
since most of the models tested are commercial ones, hence, longer
execution times incur higher fees. Figure 3 depicts the average time
in seconds per prompt for each of the models. We can observe
clearly that deepseek-r1 is the slowest, followed by claude-3.7-
sonnet. This is primarily due to the large amount of reasoning
tokens used by the model for each prompt. More specifically, 8280
reasoning tokens were used per each prompt on the average for
deepseek-r1, using default parameters, compared to o3, which used
3535 i.e., less than half of deepseek-r1. The model claude-3.7-sonnet
with fixed seed consumed the least amount of time because the
thinking mode was disabled in order to be able to set a fixed seed.

Figure 3: Average time (in seconds) per prompt when com-
puting the CDC table (left) and the RCC-8 table (right).

Finally, Figure 4 shows a precise sense of the stochasticity of the
tested models using prediction intervals as explained in Section 3.
The figure includes two columns for each model; the left column
shows the prediction interval of the mean Jaccard index for each
repeat for the default setting, while the right column shows the
same values when a fixed random seed and a temperature equal to
zero are used for the models that this setting was permitted. For the
models o1 and o3, the experiment with the fixed seed was repeated
only twice, as our focus lies mainly to models with default values
and the monetary cost of each repetition was high.

Figure 4: Prediction intervals for the CDC calculus.

Second Experiment.Our second experiment investigates whether
the tested LRMs can reconstruct the transitivity table of the calculus
CDC when prompted with anonymized CDC-specific definitions
(e.g., the relation names). For comparison purposes, we present the
results of the four LRMs discussed in the first experiment.

Figure 5 presents the transitivity table shaded by mean Jaccard
index for these four LRMs. By comparing these results with the
ones presented in Figure 1, we observe that all LRMs perform bet-
ter when the complete context of the first experiment is provided.
Specifically, gemini-2.5-flash achieved the highest mean Jaccard
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index (86.14%) having achieved 74.15%, 92.11%, and 92.18% in each
experiment, while the lowest was achieved by claude-3.7-sonnet
(30.25%) as presented in Table 2. claude-3.7-sonnet achieved 30.12%,
35.16%, 25.47% in each of the experiments conducted. The grok-3-
mini and o3 LRMs achieved mean Jaccard index between 68.00% and
62.56%, respectively. Generally, the evaluated LRMs could provide
answers but not as accurately as in the first experiment. The per-
formance drop observed suggests that the LRMs cannot interpret
accurately anonymized relations without semantics due to the lack
of background information on the prompt. Moreover, it should be
highlighted that claude-3.7-sonnet failed to answer in some ques-
tions. This might be due to the lack of associations created between
its prior knowledge and the given information.

As in the first experiment, Figure 6 examines the presence of
inductive bias in the LRMs when predicting specific relations. The
figure shows that the highest percentages correspond to the cor-
rectly not predicted label. Meanwhile, each LRM exhibits different
distributions across the other three labels. Specifically, o3 has a
higher percentage of incorrectly predicted in three out of the nine
relations, while gemini-2.5-flash-default records the lowest false
positive counts, with 18 instances in two relations. Also, gemini-
2.5-flash shows better generalization by identifying more actual
relations compared to claude-3.7-sonnet which has achieved very
low correctly predicted counts (18-29), indicating difficulty in de-
tecting positive compositions. From the incorrectly not predicted
relations, we can conclude that this model misses several valid rela-
tions. We do not show graphs regarding the time consumption of
the above experiments due to space considerations.
Third Experiment.We proceed to investigate if the models can
reconstruct the transitivity table of CDC relying solely on the knowl-
edge obtained during their pretraining. Comparing the results de-
picted in Figure 8 with the ones in Figure 1, we observe a significant
drop in accuracy for all models. o3, gemini-2.5-flash, claude-3.7-
sonnet and grok-3-mini achieved a mean Jaccard index of 21.27%,
21.4%, 19.9% and 16.6% respectively. This performance drop sug-
gests that the tested models do not include prior knowledge about
CDC, so if they are not prompted with the relevant context, they
cannot provide correct answers. Finally, it is interesting to note that
3 out of 4 models, achieve 100% accuracy when computing 𝐵 ◦ 𝑁 ,
𝐵 ◦ 𝐵, 𝑆𝐸 ◦ 𝑁𝑊 and 𝑁𝑊 ◦ 𝑆𝐸 (presumably by chance).

Model Context No context Anonymized
o3 99.66 21.27 62.56

gemini-2.5-flash 93.83 21.4 86.14
claude-3.7-sonnet 90.4 19.9 30.25

grok-3-mini 89.13 16.6 68.00
Table 2: Comparison of mean Jaccard index achieved for the
CDC experiment in the three settings.

Similarly to Figure 2, Figure 8 examines the possibility of induc-
tive bias when the models predict specific relations. We observe
that all of the models exhibit relatively high percentages of cor-
rectly not predicted relations compared to correctly predicted ones.
For instance, grok-3-mini returns 155 correctly not predicted re-
lations versus only 6 correctly predicted relations in direction 𝑆 ,

Figure 5: CDC transitivity table shaded bymean Jaccard index
for the experiment with anonymized relations.

Figure 6: Relation statistics for the CDC transitivity table
computation for the experiment with anonymized context.

Figure 7: CDC transitivity table shaded bymean Jaccard index
for the experiment without context.

while claude-3.7-sonnet concludes 47 correctly not predicted rela-
tions but only 7 correctly predicted relations for the direction 𝐵.
In addition, we observe high percentages of incorrectly predicted
relations, which indicates that the models make numerous incorrect
predictions. In particular, gemini-2.5-flash shows 110 incorrectly
predicted relations in the 𝑁𝐸 direction and 99 in the 𝑆𝐸 direction,
while o3 reaches 32 incorrectly predicted relations in the 𝑆𝑊 direc-
tion and 21 in 𝑆𝑊 . These high incorrectly predicted values imply
that the positive predictions issued are not always reliable.
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Table 3: The CDC transitivity table for the best (o3) and the
worst (grok-3-mini) performing models when the context is
used.

Figure 8: Relation statistics for the CDC transitivity table
computation for the experiment without context.

Finally, the transitivity table created by the best (o3) and worst
(grok-3-mini) performingmodels for the first repetition of the exper-
iment with context used and default input parameters is depicted in
Table 3. Each answer provided is highlightedwith black for correctly
predicted, red for incorrectly predicted and blue for incorrectly not
predicted answers.

5 Reconstructing the Composition Table of
RCC-8 using LRMs

In this section we perform two experiments to evaluate whether
the tested LRMs of Table 1 can reconstruct the RCC-8 composition
table. In the first experiment, following the methodology of [4],
we prompt the models with the definition of each one of the 8
RCC-8 spatial relationships, and then we evaluate their accuracy in
reconstructing the composition table. In the second experiment, we
employ a prompt similar to that used in the first experiment, but
with the contextual information anonymized. Since the third exper-
iment of the CDC calculus provided poor results, we decided not
to perform the corresponding experiment for the RCC-8 calculus.
First Experiment. As in [4], each model is prompted with back-
ground information that defines the RCC-8 calculus. Then, we pose
to the models a set of questions which compute the cells of the
composition table (one question per cell, for a total of 8 × 8 = 64
questions). The prompt used for the experiment follows the same
template used at [4] for a fair comparison. The prompt starts with
defining each RCC-8 binary relation and then questions are posed

to compute the transitivity table. The questions posed have the
following format: If 𝑅1(x,y) and 𝑅2(y,z) then what are
the possible relationships between 𝑥 and 𝑧?". In the above
question, variables 𝑅1 and 𝑅2 are relations from the set {DC, EC,
PO, TPP, NTPP, TPPi, NTPPi, EQ}.

In this experiment, we show clearly that the LRMs tested out-
perform the older LLMs tested in the same task by [4] (GPT-3.5
Turbo 0125, Llama 3 70B Instruct, Gemini 1.5 Pro preview-0409,
GPT-4 Turbo 2024-04-09, GPT-4o 2024-05-13 and Claude 3.5 Sonnet
20240620). In our case, o3 achieved the best accuracy across all re-
peats, with a mean Jaccard index of 99.57%, compared to the worst
performing model, gemini-2.5-flash, which achieved 88.55%. Figure
9 depicts the mean Jaccard coefficient for 4 models (best, worst and
two models of different vendors, xAI and DeepSeek). In addition,
we observe that gemini-2.5-flash provided an empty response due
to exceeding the 65536-token context window (as also indicated
by the heatmap), which constitutes a significant factor affecting
the results. We computed the results for all the other models of
Table 1 as well but we omit them due to space considerations. We
also performed experiments using the fixed seed configuration, as
described in Section 3, but these are not shown again due to space
limitations. However, all the models’ results can be seen in Figure 10
and in our GitHub repository.

Figure 9: The RCC8 Composition Table shaded by the mean
Jaccard index for the models o3 (best performing model),
grok-3-mini, deepseek-r1 and gemini-2.5-flash (worst per-
forming model), using the default input parameters.

Figure 11 depicts the total counts of all the answers provided by
each model per each topological relation categorized as: correctly
predicted (true positive), correctly not predicted (true negative),
incorrectly predicted (false positive) and incorrectly not predicted
(false negative). The best performing model is o3 and achieved
a mean Jaccard index of 99.57%. Upon closer examination of the
first four bars of o3 (relation 𝐷𝐶), we can observe that the model
predicted correctly the relation 𝐷𝐶 93 times across all answers for
all 3 repetitions that were done. Thereafter, it correctly did not
predict the relation 𝐷𝐶 1443 times. Finally, it avoided to predict
the relation incorrectly and it did not predicted it incorrectly at
all (0 times). The same comments hold for the rest of the models
and the RCC-8 relations. Overall, Figure 11 illustrates the models’
good performance on this experiment, as shown in Table 4, since
they all demonstrated high correctly predicted and correctly not
predicted scores over the incorrectly predicted and incorrectly not
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Figure 10: Prediction intervals by repeat for for theRCC-8 cal-
culus. We discontinue further iterations when the prediction
interval width approaches values close to 3-6%. We observe
that, depending on a model’s architecture, some models such
as gemini-2.5-flash, o3, o1 need fewer repeats to converge to
a narrow prediction interval, while others like claude-3.7-
sonnet demand more repeats.

predicted ones. We can conclude the lack of bias in any relation,
as the correctly and incorrectly predictions are somewhat equally
distributed. However, we should highlight that the worst model
(gemini-2.5-flash) has incorrectly predicted the relation 𝑁𝑇𝑃𝑃 35
times, the most out of all the relations for all models, which shows
the model’s incapacity to manage this relation.

In relation to prior work, our results shown in Figure 11 in-
dicate a noticeable improvement over those reported in Figure 3
of [4], where there are many incorrectly predicted and incorrectly
not predicted relations in their statistics (3 digit numbers), while
our highest incorrectly predicted relations are 35 and our highest
incorrectly not predicted ones are 25.
Second Experiment.Our second experiment investigates whether
the tested LRMs can reconstruct the composition table of the RCC-8
calculus when prompted with anonymized RCC-8 specific defini-
tions (e.g., the relation names). For comparison purposes, we present
results for the four LRMs discussed in the first experiment.

Figure 12 presents the transitivity table shaded by mean Jaccard
index for these four LRMs. By comparing these results with the ones
presented in Figure 9, we observe that in contradiction to [4] and our
previous experiment, some LRMs exibit comparable performance,
whereas others underperform. Specifically, o3 achieved the highest
mean Jaccard index on the anonymized and the non-anonymized
experiment by achieving a mean Jaccard index of 99.41% and 99.57%

Figure 11: Relation statistics for the RCC-8 composition ta-
ble for the models o3 (best performing model), grok-3-mini,
deepseek-r1 and gemini-2.5-flash (worst performing model),
using the default input parameters.

Figure 12: The RCC8 Composition Table shaded by the mean
Jaccard index for the anonymized context.

Figure 13: Relation statistics for the composition table for
RCC-8 for the anonymized context.

respectively. These comparable results suggest that the LRM that
exibit comparable results are trained on the RCC-8 calculus context.
An additional noteworthy observation is about the model gemini-
2.5-flash which achieved 97.21% on the anonymized experiment and
88.55% on the non-anonymized one. This outcome can be justified
if we consider that in the anonymized experiment, the tokens used
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(17690) were allowed from the context window of the model, while
in the non-anonymized experiment, the model run out of tokens.
The exceedance of this limit affected the mean Jaccard index greatly
since empty sets were produced as the answer.

As in the first experiment, Figure 13 examines the presence of
inductive bias in the LRMs when predicting specific relations. The
figure illustrates that themagnitudes for each relation are consistent
with those observed in the previous experiment, thereby confirming
the similarity of the results between the two experiments.

In Figure 3, we show the average time in seconds per prompt for
each model. We can observe clearly that the deepseek-r1 model is
the slowest compared to the other models due to the large amount
of reasoning tokens used for each prompt. Moreover, in the RCC-8
experiments many models demanded more time to complete the
tasks compared to the CDC calculus. We hypothesize that this is
the reason for the improved results obtained in these experiments.

Finally, the composition table created by the best (o3) and worst
(gemini-2.5-flash) performing models for the first repetition of the
experiment with context used and default input parameters is de-
picted in Table 5. Each answer provided is highlighted with black
for correctly predicted, red for incorrectly predicted and blue for in-
correctly not predicted answers. From the tables 3 and 5 we observe
the significant improved accuracy of the evaluated LRMs compared
to the previous LLMs tested by [4].

Model With context Anonymized
o3 99.57 99.41

grok-3-mini 98.21 98.68
deepseek-r1 97.25 93.71

gemini-2.5-flash 88.55 97.21
Table 4: The mean Jaccard index for RCC-8.

Table 5: The RCC-8 composition table for the best (o3) and
worst (gemini-2.5-flash) performing models when the con-
text is provided.

6 Conclusions
In this paper we evaluated the capabilities of 7 state-of-the-art LRMs
on the tasks of the cardinal directions transitivity table computation
and the RCC-8 composition table computation. Our results show
that the LRMs outperform the LLMs previously evaluated in the
literature. o3 excels in both tasks, by achieving a mean Jaccard
index of 99.41% and 99.66% respectively when the prompts include
context, while it outperforms the other models in most of the other
experiments as well. Moreover, when evaluating if the LRMs exhibit

inductive bias when predicting specific relations, we concluded that
there is none since the correct and incorrect predictions were evenly
distributed across the relation types.

In future work, we intend to evaluate more open-weight LRMs
such as the ones of the Llama 3 family [11], the Phi family [25] and
OpenThinker-32B3 on the two problems studied in this paper. In
addition, we would like to explore neurosymbolic approaches and
LRMs extensions using Chain-of-Thoughts and Tree-of-Thoughts
ideas on our problems in the spirit of the papers [49, 50]. Finally, we
aim to experiment with more qualitative calculi, e.g., the one which
combines topological and cardinal direction information [12].
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A Prompts’ template for the CDC experiment
In this appendix we present the template of the prompts for the ex-
periments on the calculus CDC for the default setting. The complete
definitions of all the prompt templates constructed are provided in
our GitHub repository.

Background information (context): Given a region a, the
greatest lower bound or infimum of the projection of
a on the x-axis (resp. on the y-axis) is denoted by
infx(a) (resp. infy(a)). The least upper bound or the
supremum of the projection of a on the x-axis (resp. on
the y-axis) is denoted by supx(a) (resp. supy(a)). These
bounds define the minimum bounding box of a region a,
which is the box formed by the straight lines x=infx(a),
x=supx(a), y=infy(a) and y=supy(a). Let us now consider
regions that are homeomorphic to the closed unit disk
{(𝑥,𝑦) : 𝑥2 + 𝑦2 <= 1}. The set of these regions will be
denoted by REG. Regions in REG are closed, connected
and have connected boundaries. A cardinal direction
relation between regions in REG is one of the following
relations: B (bounding box), S (South), SW (South West),
W (West), NW (North West), N (North), NE (North East), E
(East) and SE (South East). These relations are defined
as follows: a B b if and only if infx(b) <= infx(a),
supx(a) <= supx(b), infy(b) <= infy(a) and supy(a) <=
supy(b). a S b if and only if supy(a) <= infy(b), infx(b)
<= infx(a) and supx(a) <= supx(b). a SW b if and only
if supx(a) <= infx(b) and supy(a) <= infy(b). a W b
if and only if supx(a) <= infx(b), infy(b) <= infy(a)
and supy(a) <= supy(b). a NW b if and only if supx(a)
<= infx(b) and supy(b) <= infy(a). a N b if and only
if supy(b) <= infy(a), infx(b) <= infx(a) and supx(a)
<= supx(b). a NE b if and only if supx(b) <= infx(a)
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and supy(b) <= infy(a). a E b if and only if supx(b)
<= infx(a), infy(b) <= infy(a) and supy(a) <= supy(b).
a SE b if and only if supx(b) <= infx(a) and supy(a)
<= infy(b). You are a helpful assistant. I will now
give you a question regarding the cardinal direction
relations I defined above. The possible answer can be
one or more of N, NE, SE, S, E, NW, W, SW, B. No yapping.

Question. Let 𝑅1 and 𝑅2 be cardinal direction relations.
If region 𝑥 is 𝑅1 of region 𝑦 and region 𝑦 is 𝑅2
of region 𝑧, then which could the possible relations
between region 𝑥 and region 𝑧 be?.

In the above question, variables 𝑅1 and 𝑅2 are relations from the
set {N, NE, SE, S, E, NW, W, SW, B}.
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