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Abstract—TerraQ is a spatiotemporal question-answering en-
gine for satellite image archives. It is a natural language
processing system that is built to process requests for satellite
images satisfying certain criteria. The requests can refer to image
metadata and entities from a specialized knowledge base (e.g.,
the Emilia-Romagna region). With it, users can make requests
like “Give me a hundred images of rivers near ports in France,
with less than 20% snow coverage and more than 10% cloud
coverage”, thus making Earth Observation data more easily
accessible, in-line with the current landscape of digital assistants.

Index Terms—Question-Answering, Knowledge Graph,
Geospatial, Temporal, Earth Observation, SPARQL

I. INTRODUCTION

The field of Natural Language Processing is undergoing
major advancements caused by the rapid development of
Language Models [1–3]. An outcome of this development
is the proliferation of digital assistants and natural language
interfaces for all manners of systems and knowledge reposito-
ries (e.g., Alexa from Amazon, Siri from Apple, ChatGPT
from OpenAI, and Claude from Anthropic). The resulting
increase in accessibility enables non-technical users to in-
tuitively interact with computer systems and access high-
quality information, while also improving efficiency for expert
users. In this climate, the task of Knowledge-Graph Question-
Answering (QA), also known as Text-to-SPARQL, is as rele-
vant as ever [4, 5].

QA systems take as input queries in natural language
and generate semantically equivalent SPARQL queries over
a specific knowledge graph (KG). These SPARQL queries are
subsequently executed on an RDF store, which in turn returns
the answer. The answer can be i) directly presented to the
user, ii) integrated into a larger system [6], iii) used as part of
a Retrieval-Augmented Generation [7] pipeline, as is the case
with digital assistants that rely on knowledge grounding.

In our work, we are developing TerraQ a spatiotemporal QA
engine for satellite image archives. User requests can refer to
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image metadata and geographic entities (e.g., the Loch Ness
Lake or the city of Munich) both of which are included in the
target knowledge graph. For example, “Show me images of
Athens with VV polarization”. The goal of our research is to
make Earth Observation data archives accessible via natural
language, to the benefit of both novice and expert users.

TerraQ belongs to the same family of engines as
GeoQA2 [8] and EarthQA [9]. GeoQA2 is a geospatial QA
engine, and EarthQA is a satellite-image archive QA engine
that reuses some components of GeoQA2 while also adding
some additional specialized components. In comparison to
these two systems, TerraQ has a number of advantages. First, it
does away with template-based query generation. As a result,
it is able to answer a wider array of questions and provides
better accuracy. Second, TerraQ targets a purpose-built KG
with high-quality geospatial information, allowing for more
fine-grained results, which was one of the limitations of the
original EarthQA paper. Third, unlike EarthQA, the engine
does not use specialized components. All thematic information
can be integrated into the core engine architecture, making the
engine easier to adapt to different domains.

In this paper, we make the following original contributions:
1) We present a specialized knowledge graph that interlinks

geospatial information about natural features and admin-
istrative divisions with satellite image metadata. Knowl-
edge graph resources are integrated into a hierarchical
structure, making it easier to expand with additional
geospatial information or thematic knowledge.

2) We develop TerraQ, a spatiotemporal QA engine for
image archives. The engine is able to answer simple and
complex queries both reliably and quickly in dynamic
fashion, while also avoiding the use of query-templates
or computationally demanding neural models.

The first version of TerraQ has been developed in the
context of the European Space Agency project DA4DTE:
Demonstrator Precursor Digital Assistant Interface for Digital
Twin Earth1. The version of TerraQ presented in this paper
has been developed in the FAIR2Adapt2 project, and a demo
is available publicly at http://terraq.di.uoa.gr/.

1http://da4dte.e-geos.earth/
2https://fair2adapt-eosc.eu/
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II. KNOWLEDGE GRAPH

To provide TerraQ with a powerful geospatial knowledge
base, we compiled information from various sources and
combined them under a common KG. Our aim was to create
a polymorphic database of spatial resources, by integrating
natural features and administrative geo-entities under a com-
pact, non-complex ontology, that better facilitates the task of
geospatial question answering. The aforementioned facts were
collected from the following sources:

• GADM: We collected geospatial features from the Global
Administrative Areas (https://gadm.org/) dataset, focusing
on features located in Europe. Utilized features from
this dataset include countries, cities, regional units, and
national administrative divisions.

• Rivers, Points of Interest, and Ports: This dataset is
provided by our partners in the DA4DTE project e-
GEOS (https://www.e-geos.it/) and includes spatial char-
acteristics for various features within these categories.
In addition to spatial data, the dataset also contains
comprehensive metadata for each feature.

• Sentinel-1 Images: We incorporated Sentinel-1 satellite
image data, including metadata about the images and the
satellite’s location at the time each image was captured.
Links to the images are stored in the knowledge graph,
ensuring that they are easily accessible by the Question-
Answering engine and external sources. Sentinel-1 im-
ages were collected for the years 2020 and 2021.

• Sentinel-2 Images: Similarly to the Sentinel-1 satellite
images, we included image links and metadata from
Sentinel-2 image collections to enhance the information
available in our data model. Sentinel-2 images were
collected for the years 2020, 2021 and 2022.

• Sea sectors: A collection of sea sectors covering global
water spaces and oceans A total of 101 sea sectors along
with their polygons were integrated into the knowledge
graph of the Marine Regions [10] data source.

Ontology. We built our ontology on top of well-known and
standardized ontologies, namely the YAGO2geo [11] ontology
and the GeoSPARQL [12] ontology. The main class of the
knowledge graph is named Feature. The Feature class is
extended by various subclasses that represent the knowledge
provided by the various datasets that we examined previously,
namely, rivers, ports, pois (points of interest), Sentinel-1 and
Sentinel-2 images and GADM geoentities.

Translation of named location labels to English. While
integrating our data, we noticed that many geospatial features
were named only in their original languages, with no English
labels provided. For instance, the city of Rome was listed
only as ”Roma” in Italian within the metadata. To provide a
consistent framework and to simplify the task of recognizing
labels for our engine, we implemented a comprehensive trans-
lation pipeline. Using the Mistral-7b LLM [3], we were able
to identify and translate a total of 56657 labels from various
European languages with high accuracy.

III. THE TERRAQ ENGINE

TerraQ consists of a number of components, each of which
performs a specific task. Information is propagated from one
component to the next. This pipeline is split in four distinct
conceptual steps.

First, the WHERE clause is generated by combining basic
SPARQL/GeoSPARQL building blocks. This is subsequently
passed as additional input to the components responsible for
the generation of the SELECT/ASK clause. When both clauses
have been constructed, the query generator merges them
and makes any necessary additions to construct a complete
SPARQL query. In the last step, the query is rewritten to make
use of materialized geospatial relations.

The complete architecture of TerraQ is shown in Figure 1.
Below, we present the functionality of the system in detail. As
our running example we use the request “Show me all images
taken in January 2021 with rivers less than 2km away from
towns and forests in the Emilia Romagna region, having cloud
coverage less than 10%”.

Dependency Parse Tree Generator. This module generates
a dependency parse tree of the input question using Stanford-
CoreNLP [13]. The dependency parse tree is used to identify
and store information.

Instance Identifier. This module does named-entity recog-
nition and disambiguation. In the example question, it identi-
fies the entity “Emilia Romagna” and maps it to the resource
yago:Emilia (region of Italy) in the KG. The mapping to the
KG resource happens in two steps. First, WAT [14] links
the named entity to a Wikipedia page. Subsequently, the
component searches the Knowledge Graph for the resource
that best matches the entity returned by WAT. In addition
to identifying the instance, this component is responsible for
creating the block that will be used in the WHERE clause for
the identified instance. The generated block is the following:

<URI> geo : hasGeometry / geo : asWKT ?iWKTID .

Concept Identifier. This module identifies and maps con-
cepts present in the input question to the appropriate resource
of the KG ontology. For instance, from the example question, it
will identify and map the concepts Image, River, Town, Forest.
The mapping is done using a class label dictionary and string
similarity based on n-grams. Additionally, this component is
responsible for creating the block that will be used in the
WHERE clause for the identified concepts:

? cID a <URI> ;
geo : hasGeometry / geo : asWKT ?cWKTID .

At the end of the concept identification stage, and after
all instances have been identified, we employ a heuristic of
consolidation between concepts and instances. Concepts and
instances that are not separated by any token are consolidated
to reduce the complexity of the generated WHERE-clause and
help the query generator produce a correct query. For example,
in the question “Where is the Tagus river located?” only the
Instance of Tagus is kept and the river concept is consolidated
into it.

https://gadm.org/
https://www.e-geos.it/


Fig. 1. The conceptual architecture of the TerraQ system

Property Identifier. The property identifier identifies at-
tributes of features or types of features specified by the user in
input questions and maps them to the corresponding properties
in the knowledge graph. In the example question, the property
“cloud coverage” of the Image concept will be identified
and mapped to the corresponding property in the KG. For
each identified concept, we try to match its properties to
the words in the sentence using string similarity on n-grams.
Matched properties are identified as candidate properties for
this concept. Multiple concepts might have the same candidate
property. To resolve this conflict, we introduced a heuristic
that selects the syntactically closest concepts as the targets to
the properties. This process is similar for instances inside the
question.

Again, this component is also responsible for generating the
block that will be used in the WHERE clause for the identified
properties:

INSTANCE / CONCEPT VARIABLE <URI> ? pID .

In addition, this component uses the dependency parse tree
and Part-of-Speech tags to identify words that denote the
use of comparatives and superlatives. These are subsequently
matched to the appropriate Concept or Property, using a node-
distance heuristic on the dependency parse tree.

Spatial relation Identifier. This module identifies spatial
relations present in the input question and maps them to
appropriate stSPARQL/GeoSPARQL functions. For instance,
in the example question, it will identify the spatial relations
“in” and “away from” and map them to geof:sfWithin and
geof:distance respectively. Then these relations are mapped to
the appropriate previously identified Instances and Concepts
by using the following heuristic:

distance = dependency parse tree distance+
(

word distance
100

)
Again, this component is also responsible for generating the

block that will be used in the WHERE clause:

FILTER (<URI> ( FIRST FEATURE ,
SECOND FEATURE ) )

and

FILTER ( geo f : d i s t a n c e ( FIRST FEATURE ,
SECOND FEATURE, uom : met re )
{< , >, <=, >=, = , ˜} DISTANCE)

Numeric Solver. This module is responsible for identifying
numbers, understanding their use in the input question and
enhancing the previously identified elements with additional
information. For this purpose we utilize Part-of-Speech tags
and the previously described distance heuristic.

In our working example, “less than 2km” is matched to the
spatial function of distance and “less than 10%” is matched
to the cloud coverage property.

Conjunction Solver. The Conjunction Solver is responsible
for handling conjunctions, as those are identified by the depen-
dency parse tree. To that end, it selects all edges of the parse
tree tagged as “conj:and”. The vertices connected by each of
those edges are checked for meaningful conjunctions. Number-
to-Property, Number-to-Number and Geospatial-to-Geospatial
conjunctions are supported. For Geospatial-to-Geospatial con-
junctions additional spatial relations are generated and stored,
as if they were created by the Geospatial Relation Identifier,
according to the information provided by the vertices. In our
example, this is the case with “towns and forests”. Number
and Property conjunctions function similarly.

Temporal Identifier. This module uses HeidelTime [15] to
identify temporal keywords in the input question and annotates
them with the appropriate date and/or duration. For instance,
in the example input question it will identify “January 2021”
and map it to 2021-01.

Return Type Identifier. This module is responsible for
identifying the expected form/type of the answer to the ques-
tion. The supported types are Name, Coordinates, Number-
Property, Number-Count, Image . For our example, Image is
the most appropriate return type. For identifying the expected
return types, this component leverages the sophisticated lan-
guage understanding of Llama 2 [2]. We fine-tune our model
to output correctly formatted answers. A fallback mechanism
that uses heuristics is provided to enable using TerraQ without
hardware acceleration (GPU).



Query Form Identifier. This component is responsible for
generating the final ASK/SELECT clause, which will be used
by the query generator. It takes as input the list of return
types generated by the Return Type Identifier and the user
request. For each elemnt of the list, we do the following: If
the type is Name, we search for the next concept. If the type is
Coordinates, we seek the next concept or instance. When the
return type is Number-Property, we look for the next property,
and if it’s Number-Count, we search for the next concept.
Additionally, we enhance the query by introducing a COUNT
aggregation and the necessary GROUP BY clauses. In the
case of Image, we insert the appropriate code in the query.
To determine the “next” object, we traverse the dependency
parse tree.

Query Generator. The query generator is responsible for
generating the final query. Within this stage of the pipeline,
it assimilates all the information provided by the preceding
components and combines them into a suitable, executable
SPARQL or GeoSPARQL query. Information about superla-
tives, limits and other structures is taken into account in the
generation process.

Query Enhancer. The query enhancer is an optional com-
ponent responsible for modifying the query produced by the
Query Generator to fix any mistakes and/or oversights. It
is implemented using the Mistral-7b LLM fine-tuned on the
dataset GeoQuestions1089 [16]. It serves as a performance-
enhancement module that increases the capacity of TerraQ to
answer complex questions following the Execution Refinement
paradigm [17].

GoST. The GoST transpiler [16] takes the query generated
by the Query Generator and rewrites it to use materialized
geospatial relations if that is possible. Because geospatial
relations like geof:sfWithin are computationally expensive we
do offline materialization using the tool JedAI-Spatial [18].

IV. EVALUATION

To the best of our knowledge, there is no publically available
dataset that is suitable for evaluating systems on the task
of Text-to-SPARQL for Earth Observation archives. For this
reason, we decided to deploy our engine as a pure geospatial
QA engine and run an evaluation on the geospatial QA dataset
GeoQuestions1089 [16]. Although this did require some tin-
kering, since GeoQuestions1089 targets the YAGO2geo on-
tology, the process was straightforward and painless, and we
believe that the resulting evaluation is useful for measuring the
performance of most dimensions of our engine. Unfortunately,
the questions in GeoQuestions1089 do not include temporal
information.

To accept an answer as correct, it must match the gold result
(included in GeoQuestions1089) exactly. We do not consider
partially correct answers as correct. Likewise, for supersets of
the answers in the gold set.

The results of our evaluation can be seen in Table I. We
benchmark TerraQ with the Query Enhancer disabled, since
the model was fine-tuned on the same dataset, which would

skew the results. We also compare our engine to GeoQA2 and
the engine of Hamzei et al [19].

TABLE I
EVALUATION ON GEOQUESTIONS1089c V1.1

Category GeoQA2 Accuracy Hamzei Accuracy TerraQ Accuracy
A 53.52% 28.16% 60.56%
B 62.68% 55.22% 73.13%
C 48.36% 30.06% 47.71%
D 9.09% 4.54% 22.73%
E 24.81% 6.56% 23.36%
F 28.57% 14.28% 38.10%
G 36.30% 12.32% 28.77%
H 23.07% 33.33% 40.17%
I 21.73% 8.69% 26.00%

ALL 40.33% 25.92% 44.36%

We can see that TerraQ outperforms the previous state of the
art in most question categories without utilizing templates. All
in all, there is 4% uplift in performance over the entire dataset,
which is translated to a 10% improvement relative to GeoQA2.
The categories with performance regressions are caused by
TerraQ’s more dynamic nature. TerraQ does not use predefined
query templates and employs heuristics for a number of
processes as previously described, these heuristics are not
performing as well for those particular question categories.

V. CONCLUSION AND FUTURE WORK

The success of modern digital assistants has clearly shown
that natural language interfaces for computer systems and
knowledge repositories can be a great boon for productivity
and accessibility. Users nowadays expect to be able to interact
with their computers through natural language, reducing the
barrier of technical knowledge required for utilizing modern
computing capabilities.

This paper presents TerraQ, a spatiotemporal QA system
for satellite image archives. Our engine targets a high-quality,
purpose-built knowledge graph that contains Sentinel-1 and
Sentinel-2 image metadata, as well as geospatial information
for administrative divisions and natural features. Requests
made in natural language are translated to SPARQL queries,
which are subsequently executed by an RDF store. This
enables users to request, in natural language, satellite images
satisfying a number of complex spatial, temporal and thematic
criteria.

Our engine is easily deployable and responsive on com-
modity hardware, since it does not rely on exceedingly large
LLMs. Instead, it utilizes a combination of small-scale LLMs,
heuristics and expert knowledge. This development is another
step towards our vision of making Earth Observation archives
more accessible by both novice and expert users, no matter
the available computing capacity.

In the future, we are planning on expanding the capabilities
of our system by integrating Visual Question-Answering sys-
tems into our Knowledge Graph creation pipeline. This will
enable users to express even more complex criteria for image
selection, while also maintaining performance.
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