
RUL: A Declarative Update Language for RDF

M. Magiridou1?, S. Sahtouris2, V. Christophides2, and M. Koubarakis1?

1 Dept. of Electronic and Computer Engineering, Technical University of Crete
GR73100 Chania, Greece

{magiridou,manolis}@intelligence.tuc.gr
2 Institute of Computer Science FORTH, Vassilika Vouton P.O. 1385 Heraclion,

Greece
{saxtouri,christop}@ics.forth.gr

Abstract. We propose a declarative update language for RDF graphs
which is based on the paradigms of query and view languages RQL and
RVL. Our language, called RUL, ensures that the execution of the update
primitives on nodes and arcs neither violates the semantics of the RDF
model nor the semantics of the given RDFS schema. In addition, RUL
supports fine-grained updates at the class and property instance level,
set-oriented updates with a deterministic semantics and takes benefit of
the full expressive power of RQL for restricting the range of variables to
nodes and arcs of RDF graphs.

1 Introduction

Semantic Web applications are striving nowdays for managing changes of per-
sistent resource descriptions created according to RDFS schemata [1, 2]. The
majority of ontology-based authoring and annotation tools [3] requires first to
manually edit the resource descriptions and thereafter reloading them into an
RDF Store from scratch. This approach offers rather limited functionality espe-
cially in the case of deletions and modifications. To overcome these limitations,
some RDF Stores [4] have implemented suitable update APIs [5–8]. However,
forcing developers to code in advance all possible updates of resource descrip-
tions (using these APIs) is not a viable solution for dynamic Semantic Web
applications employing non trivial RDFS schemata. In this context, designing a
declarative update language offering complete (i.e., all valid RDF changes should
be specifiable by one or by a sequence of update primitives from a minimal set)
and sound (i.e., every primitive is guaranteed to maintain consistency of resource
descriptions w.r.t. the employed RDFS schemata) primitives is a challenging is-
sue.

In this paper, we propose a declarative update language for RDF graphs
which is based on the paradigms of query and view languages RQL [9] and RVL
[10]. Our language, called RUL, ensures that the execution of the update prim-
itives on nodes and arcs neither violates the semantics of the RDF model (e.g.,
insert a property as an instance of a class) nor the semantics of a specific RDFS
schema (e.g., modify the subject of a property with a resource not classified
under its domain class). This main design choice has been made in order to take
into account the fact that updates are fairly destructive operations and change
? Supported in part by European project OntoGrid - http://www.ontogrid.net.

the state of an RDF graph. Thus, type safety for updates is even more impor-
tant than type safety for queries. The more errors we can catch at compile time
the less costly runtime checks (and possibly expensive rollbacks) we need. The
rest of RULs design choices concern (a) the granularity of the supported update
primitives; (b) the deterministic or not behavior of the executed sequences of
update statements; and (c) the smooth integration with an underlying RDF/S
query language. To the best of our knowledge, RUL is the first declarative lan-
guage supporting fine-grained updates at the class and property instance level,
has a deterministic semantics for set-oriented updates and takes benefit of the
full expressive power of RQL for restricting the range of variables to nodes and
arcs of RDF data graphs. However, our design can be also immediately trans-
ferred to other RDF query languages (e.g., RDQL [11], or SPARQL [12]) offering
less expressive pattern matching capabilities [13].

None of the RDF update languages proposed so far [14, 15] supports the
aforementioned functionality. The most interesting proposal is MEL that has
been developed in the framework of QEL and it is based on Datalog [14]. MEL
primitive commands consist of a statement specification and an optional query
constraint, declared as a QEL query. The granularity of the operations follows
a subgraph-centered approach but consistency of updates w.r.t the employed
RDFS schemata is not respected. Furthermore, no formal semantics or detailed
behavior description have been given for MEL. The rdfDB Query Language [15]
supports SQL-like updates (insert and delete) by following a statement-centered
approach and does not integrate smoothly with the query language. In fact, the
update operations can affect only specific statements without variables and thus
their execution semantics is trivial.

From knowledge representation languages in the semantic data modelling tra-
dition, Telos [16] is probably the closest to RDF. Telos has inspired the RDF data
model behind the query language RQL and the hybrid framework of [17]. Work
on update languages for Telos is reported in [16, 18, 19] However, the statements
UNTELL and RETELL discussed in these papers concentrate on the tempo-
ral features of Telos and pay no attention to the many issues regarding update
side-effects as discussed in this paper.

The rest of the paper is organized as follows. Section 2 introduces the syntax
of RUL in an incremental, informal way by giving examples and intuitive ex-
planations while Section 3 clarifies RULs formal semantics and in particular its
deterministic behavior for set-oriented updates. Our conclusions as well as some
challenges for future work are given in Section 4.

2 The Syntax of RUL

RUL can be used to express updates to RDF graphs i.e., insertions, deletions
and modifications of nodes and arcs. We consider an RDF graph to follow the
formal model for RDF proposed in [20]. The main constraints this model imposes
to RDF Semantics [21] can be summarized as follows: the domain and range of
properties should always be defined, both of these declarations have to be unique
and class and property definitions have to be complete.

Paper

xsd:dateTime

xsd:stringxsd:string xsd:string

publishedOn

abstract

keyw
ord

tit
le

Rejected
Paper

Accepted
Paper

xsd:float

ra
nk

ing

xsd:stringxsd:string

Person

firs
tName

Reviewer
lastNam

e

Organization
worksIn

Editor

 Committee

reviews

Author

editedBy

ha
sC

ha
ir

PCMember

Chair

SPCMember OCMember

Organizing
Committee

 Program
Committee

 SeniorProgram
Committee

Event

xsd:string

Workshop

xsd:string

topiclocation

colocated
With

Conference

Proceedings

isP
ublishedIn

xsd:dateTime

xsd:string

publicationDate

bookTitle

writes

rejectedByacceptedBy

isOrganizedBy

hasSPC

hasPC

sponsors

submittedTo

ns: www.ex.org//conf-schema.rdf#
xsd: http://www.w3.org/2001/XMLSchema

subClassOf /
subPropertyOf

property

hasProceedings
hasCommittee

ha
sM

em
be

r

isResponsibleFor

Fig. 1. RDF Schema in graphical form for the conference organization example

In this section, we present the syntax of RUL in an incremental, informal
way by giving examples and intuitive explanations based on the RDF schema
of Figure 1 dealing with the organization of scientific conferences, and Figure 2
where the effects and side-effects of each operation are analyzed in detail. Section
3 presents the formal semantics of RUL.

We assume that the vocabularies used in the RDF graphs have been defined
using RDF Schema. RUL does not deal with schema updates. We also do not
deal with blank nodes, containers, collections or reification in this paper.
2.1 Updating Class Instances
Instances of classes can be updated using the INSERT, DELETE or MODIFY state-
ments. The syntax of the INSERT statement is as follows:

INSERT QualClassName(ResourceExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The INSERT operation introduces new nodes in an RDF graph and classi-
fies them, or inserts new classification links for existing nodes. The expression
ResourceExp denotes a node and can be a constant URI or a variable. In the
former case, ResourceExp determines a unique graph node, while in the latter,
the clause FROM determines the bindings of this variable (i.e., a set of nodes)
as in RQL. The expression QualClassName denotes the class to which the new
nodes will become instances or to which the new classification links from existing
nodes will be created.

The clause WHERE gives as usual the filtering conditions for the variables
bindings introduced in the clause FROM. The clause USING NAMESPACE gives a
list of namespaces that disambiguate the use of names in the other clauses.
The clauses FROM, WHERE and USING NAMESPACE are optional. In the rest of this
paper, we show the USING NAMESPACE clause when we are presenting the syntax
of RUL but avoid any namespace information in the examples for reasons of
brevity (i.e., all the names employed in the examples are unique and they are
defined in the schema namespace ns of Figure 1).

As in RQL, RUL distinguish between direct and indirect instances of a class
C or property P (equivalently, between direct and indirect instantiation links).
A resource node r is a direct instance of class C if it has been introduced in
the graph by an appropriate update statement. A resource node r is an indirect
instance of class C if r is a direct instance of a subclass of C. The definition
is similar for properties. An RDF graph has no redundancies with respect to
instantiation if there is no instance of a class or a property that is both a direct
and an indirect instance. All the update operations defined below result in RDF
graphs with no redundancies with respect to instantiation.

The effects and side-effects of an INSERT operation with the above syntax are
presented graphically in Figure 2(I). If node ResourceExp exists in the graph and
it is classified under a superclass of QualClassName (Case (I.1) in Figure 2), the
effect of INSERT is that a new classification link is inserted between ResourceExp
and QualClassName. In this case, the operation has the side-effect that the prior
classification link is deleted (since it is implied by the new classification link).
On the other hand, if ResourceExp exists in the graph and it is classified under
a subclass of QualClassName (Case (I.3) where D is a subclass of C), the INSERT
operation has no effects. Obviously, if the node exists as a direct instance of
QualClassName, the operation has no effects too. Finally, if node ResourceExp
exists in the graph and it is classified under a class which is not related through
a subclass relation to QualClassName (Case (I.2)), the result is a multi-classified
node (&d1 is classified both under B and D classes) without any side-effects.
Example 1. Make the resource with URI http://www.ex.org/paper1.pdf an
instance of the class AcceptedPaper:

INSERT AcceptedPaper(&http://www.ex.org/paper1.pdf)

As we explained above, this update operation will be effective only if the resource
node paper1.pdf is not already an instance of class AcceptedPaper or one of its
subclasses (if it had any). In other words, the execution of an INSERT operation
leaves us with an RDF graph with no redundancies with respect to instantiation.
Example 2. Classify as reviewers all members of the OC of ISWC05:

INSERT Reviewer(X)

FROM {Y}isOrganizedBy.hasMember{X;OCMember}

WHERE Y = &http://www.iswc05.org

The above example demonstrates the use of variables in the INSERT clause and
the use of RQL path expressions for navigating RDF graphs in the FROM clause.
More precisely, variable X will be range restricted to instances of class OCMember

C
 l

a
s

s
 I

 n
 s

 t
a

n
c

e
s

C
 l

a
s

s
 I

 n
 s

 t
a

n
c

e
s

P
r

o
p

e
r

t y

I
n

s
t a

 n
 c

 e
 s

I n s e r t D e l e t e M o d i f y

class &rsubclass of / subproperty of instance of resource property

A C

&a1 &b1 &d1

I.1 INSERT B(&a1)
I.2 INSERT B(&d1)
I.3 INSERT C(&d1)

(1)
(1)

(2)

D

A

D

B

C

P1

P2

&c1 &d1

P1

E

D

C

B

A

P1

P3P2

&c1 &e2
P1 P2 P3

(5)

(5)(4)

(6)

A

D

B

C

P1

P2

&c1

&d1

P2

V.11 DELETE P2(X, &d1)

&a1 P1

A

C

E

D

B

P1

P4

P3

P2

&c1
P1 P3

P4 P4(8)
(8)

(8)

A B

&a1

MODIFY A(X <- Y)
FROM A{X}, B{Y}

&b2

A B

&a1

&a3

&b1

&b2

P1

VI.12 MODIFY P1(X, Y <- &b3)

(12)

(12)(12)

(12)

P1
P1

P1

&b1
(4)

&c2
(7)

&e2

P1 P2
(9)

IV.9 INSERT P2(X, &d1)
IV.10 INSERT P1(&c1, &d1)

II.4 DELETE B(&b1)
II.5 DELETE rdf:Resource(&c2)
II.6 DELETE A(&c1)

P1

X
B

&d1X
X (5)

&c2X

X

X

(4)X

&a1

P2&b1

(7)
X

&c1

III.7 MODIFY C(&c1 <- &c2)
III.8 MODIFY E(&e1 <- &e2)

X
X

&e1

(8)X &b1X

&b1

&b3
&b2

X X

X

X
&b3
P1

&a2

(11) &d2(11)
P1P2

&a1

Fig. 2. RUL operations effects and side-effects

involved in the OrganizingCommittee of the ISWC05 Event. This update op-
eration will multiply classify OCMember instances under the class Reviewer.

The syntax of the DELETE operation is as follows:

DELETE QualClassName(ResourceExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The DELETE operation deletes classification links and possibly nodes from
an RDF graph (Figure 2 (II)). The expression ResourceExp, which denotes the
node from which the classification link to be deleted originates, can be a URI or
a variable. The effect of the DELETE operation is to remove the direct or indirect
classification link of ResourceExp to class QualClassName and replace it by the
link of ResourceExp to all the immediate super-classes of QualClassName if
any (e.g., in Figure 2(II.4), &b1 is now classified under class A). If ResourceExp
is multi-classified (e.g., &c1 in Figure 2(II.6)), then the classification link of
ResourceExp to QualClassName is deleted without being replaced by another.
Finally, if QualClassName is the top of the class hierarchy rdf:Resource, the
effect is the deletion of ResourceExp node along with all its classification links
(Figure 2(II.5)).

It should be stressed that, all classification links that are added by a DELETE
operation must take the semantics of INSERT into account, so that the resulting
RDF graph remains without redundancies.

The side effects of DELETE in any of the above cases are caused by the changes
in the classification of a node. To be more specific, all property arcs emanating
from the note denoted by ResourceExp that have as domain (or range) a class, to

which ResourceExp is no longer an instance, are also deleted. These side-effects
are necessary to keep the graph consistent, since ResourceExp does no longer
belong to the declared classification. To illustrate these, consider the properties
P1 and P3 in Figure 2(II), which are deleted when the respective classification
links are removed (statements (II.4) and (II.6)).

Example 3. Delete all papers submitted by the PC chair(s) of ISWC05:

DELETE Paper(X)

FROM {Y}writes{X}, {Z;Conference}hasPC.hasChair{Y}

WHERE Z=&http://www.iswc05.org

The above DELETE operation will be effective only if the node bindings of
variable X are classified under the class ns:Paper or one of its subclasses (e.g.,
AcceptedPaper). It is worth noticing that these nodes will still be present in the
output RDF graph of the previous update operation, but only as instances of
the top class rdf:Resource (since ns:Paper has no other superclasses).

Finally, the syntax of the MODIFY operation is:

MODIFY QualClassName(OldResourceExp <- NewResourceExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The expressions OldResourceExp and NewResourceExp can be constants
or variables as in other statements. The arrow <- has the meaning of an as-
signment operation. The MODIFY operation is not a sequence of DELETE and
INSERT. The effect of the MODIFY operation (Figure 2(III)) is to completely
remove the node(s) denoted by OldResourceExp and then insert the node(s)
denoted by NewResourceExp as an instance of QualClassName. The insertion
of NewResourceExp has the same semantics as the INSERT operation presented
earlier (see cases III.7 and III.8). The first side effect of MODIFY is that all prop-
erties emanating from (or ending at) the resource denoted by OldResourceExp
are completely removed. The other side effect is that the previously removed
properties became now properties emanating from (or ending at) the resource
denoted by NewResourceExp (e.g., in Case III.8, property arc P4 which ends at
&e1, is removed, while another property arc P4 which ends at &e2, is inserted).

Example 4. The information that paper1.pdf is an accepted paper is incorrect.
The correct information is that paper101.pdf has been accepted.

MODIFY AcceptedPaper(&http://www.ex.org/paper1.pdf <- &http://www.ex.org/paper101.pdf)

If paper1.pdf had title “The language SQL”, we could equivalently write:

MODIFY AcceptedPaper(X <- &http://www.ex.org/paper101.pdf)

FROM {X}title{Y}

WHERE Y="The language SQL"

2.2 Updating Property Instances

The INSERT, DELETE and MODIFY statements can also be used to update the
properties of resources i.e., arcs in an RDF graph. The syntax of the INSERT
statement in this case is as follows:

INSERT QualPropertyName(SubjectExp, ObjectExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The above INSERT operation adds to resource node SubjectExp a new prop-
erty arc that is an instance of property QualPropertyName and has value ObjectExp.
SubjectExp and ObjectExp can be constants or variables with bindings deter-
mined in the FROM clause. In both cases RQL typing rules for triples must be
respected: SubjectExp must evaluate to a URI, instance of the domain of prop-
erty QualPropertyName, and ObjectExp must evaluate to a URI or literal value
instance of the range of property QualPropertyName.

We now detail the semantics of this operation by referring to Figure 2(IV).
The variable X, that has not been given a range, should be assumed to range
over all nodes shown in the figure. As in the case of resources, if a property
arc from SubjectExp to ObjectExp exists and it is an instance of a super-
property of QualPropertyName (Figure 2(IV.9)), then the operation’s effect is
the deletion of the instantiation link of the arc and the introduction of a new
link to QualPropertyName (e.g., the arc from &c1 to &d1 becomes an instance of
property P2). However, when SubjectExp and ObjectExp are not instances of
the domain and range of QualPropertyName this operation has no effect (e.g.,
P1 between &a1 and &d1 is not affected by the insertion IV.9). If the property arc
exists as an instance of a subproperty of QualPropertyName (Figure 2 (IV.10)),
then the operation has also no effect. It is obvious that there are no side-effects
in this operation.
Example 5. Make “IR” a keyword of paper http://www.ex.org/paper1.pdf.

INSERT keyword(&http://www.ex.org/paper1.pdf, "IR")

Example 6. Make Oracle a sponsor of every database conference.

INSERT sponsors(&http://www.oracle.com, X)

FROM {X;Conference}topic{Y}

WHERE Y like "*database*"

Example 7. Make editors of the proceedings of ISWC05 the chair(s) of the PC
and the chair(s) of the OC.

INSERT editedBy(X,Y)

FROM {Q}hasProceedings{X}, {Q}@P.hasChair{Y},

WHERE Q = &http://www.iswc05.org and (@P=isOrganizedBy or @P=hasPC)

This example demonstrates the use of schema querying in the FROM clause of
RUL. Variables prefixed by @ are RQL property variables implicitly restricted
to range over the set of all data properties.

The syntax of the DELETE operation is as follows:

DELETE QualPropertyName(SubjectExp, ObjectExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

As in the case of resources, the DELETE operation (Figure 2(V)) removes
essentially the instantiation link between QualPropertyName and the property
arc from SubjectExp to ObjectExp (e.g., the arc from &c1 to &d1 is not anymore

an instance of P2) and inserts a link from the arc to the super-property of
QualPropertyName (e.g., the arc from &c1 to &c2 becomes an instance of P1),
as we discussed in the property INSERT operation. If the arc is not an instance of
QualPropertyName (e.g. the arc from &a1 to &d1 not classified under P2), then
the operation has no effect. This update operation has also no side-effects.
Example 8. Delete keyword “IR” from paper http://www.ex.org/paper2.pdf:

DELETE keyword(&http://www.ex.org/paper2.pdf, "IR")

Example 9. Remove assigned papers on web services from reviewer Smith:

DELETE reviews(&http://www.uni-ex.edu/~smith, X)

FROM {X}paperKeyword{Y}

WHERE Y like "*web services*"

Example 10. Delete all sponsors of ISWC05:

DELETE sponsors(X, &http://www.iswc05.org)

FROM Organization{X}

The syntax of the MODIFY operation is:

MODIFY QualPropertyName([OldSubjectExp <-] NewSubjectExp,

[OldObjectExp <-] NewObjectExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

As we can see in Figure 2(VI), the effect of the operation is to delete the arc
between the resources denoted by the OldSubjectExp and OldObjectExp and
insert a new arc from NewSubjectExp to NewObjectExp (e.g., the arc between
&a1 and &b1 is removed and a new arc between &a1 and &b3 is inserted). If
OldSubjectExp (resp. OldObjectExp) or NewSubjectExp (resp. NewObjectExp)
is not an instance of a class in the domain (resp. range) of QualPropertyName,
the operation has no effect. If the arc from NewSubjectExp to NewLObjectExp
already exists and it is an instance of QualPropertyName, it is not inserted (e.g.,
the arc between &a2 and &b3), so that redundancies are avoided, as we discussed
in the property INSERT operation. No other arcs are affected as a side-effect of
the above operation.
Example 11. Change the keyword “IR” to “Information Retrieval” in the papers
where this keyword appears:

MODIFY keyword(X, "IR" <- "Information Retrieval")

FROM Paper{X}

Example 12. Make the publication date of every accepted paper to be the same
as the publication date of the proceedings where it is published:

MODIFY publishedOn(Y, Z <- X)

FROM {Y;AcceptedPaper}isPublishedIn.publicationDate{X}, {Y}publishedOn{Z}

The above examples demonstrate the modification of a property’s object. The
following example illustrates a case where the subject of a property is updated.
Example 13. Pass all the reviews to be done by Prof. Smith to his Ph.D. student
Jones:

MODIFY reviews(&http://www.ex.org/~smith <- &http://www.ex.org/~jones, Y)

FROM Paper{Y}

Example 14. The information “Oracle sponsors WWW 2005” in our graph is
incorrect. The correct information is “Google sponsors ISWC 2005”.

MODIFY sponsors(&http://www.oracle.com <- &http://www.google.com,

&http://www.www05.org <- &http://www.iswc05.org)

This example demonstrates the change of both subject and object of a property.
We close this section by pointing out that it is a design choice of RUL to have

one syntax for updates of instantiation links (unary predicates) and a different
syntax for updates of property arcs (binary predicates) to remind the user of the
different semantics of these operations (i.e., we do not believe that a uniform
syntax based on triples and rdf:type would be appropriate for RUL).

2.3 More Expressive Updates

The syntax of RUL presented above allows us to express two kinds of updates:
primitive ones where a node or arc of an RDF graph is inserted or deleted (with
appropriate side-effects), and set-oriented ones where an atomic update of the
same kind (e.g., an insertion) is performed repeatedly for all resource tuples
calculated by evaluating the FROM and WHERE clauses of an INSERT, DELETE or
MODIFY statement. Of course, by writing multiple RUL statements, we can also
express sequences of such updates. In this section, we extend the above syntax to
be able to express sequences of primitive updates inside a single RUL statement,
and show with examples why such an extension is a useful feature of RUL. A
discussion of the problems involved and how they can be addressed effectively is
postponed until Section 3.3.

The first extension that we propose is to allow multiple atomic formulas, in
an INSERT, DELETE or MODIFY clause. In this way, we can express sequences of
primitive updates of the same kind.

Example 15. Make resource &http://www.ex.org/paper3.pdf authored by Smith
an instance of class Paper.

INSERT Paper(&http://www.ex.org/paper3.pdf),

writes(&http://www.uni-ex.edu/~smith, &http://www.ex.org/paper3.pdf)

Note that even in sequences of primitive insertions as in the above example, the
order of execution of each individual update does matter (we cannot insert a
property writes for resource paper3.pdf before we make it an instance of the
range of writes). This is in direct contrast with updates in relational languages
[22, 23] where order does not matter in sequences of updates of the same kind.
Thus, the order of execution for update statements with multiple predicates is
from left to right and the comma operator signifies sequence.

Example 16. Reject all papers with ranking less than 4, and add the SPC mem-
ber responsible for the paper as the person who made the final recommendation.

INSERT RejectedPaper(X), rejectedBy(X,Y)

FROM {X;Paper}ranking{Z},

{X}submittedTo.hasSPC.hasMember{Y;SPCMember}, {Y}isResponsibleFor{X}

WHERE Z < 4

This example shows clearly why the proposed enhancement of the RUL syntax
is useful. In this case additions to the graph come “in pairs”; thus, the example
is impossible to express without variables and sequencing.

Apart from sequences of updates of the same kind, RUL can also express se-
quences of updates of different kinds. This is done by allowing multiple INSERT,
DELETE or MODIFY clauses before the FROM clause of an update statement.

Example 17. Form the Program Committee of ISWC06 by taking the set of
all PC members of ISWC05 except those that reviewed less than 5 papers for
ISWC05, and adding to this set the members of the OC of ISWC05.

INSERT hasPCMember(&http://www.iswc06.org#pc, X)

DELETE hasPCMember(&http://www.iswc06.org#pc, Y)

INSERT hasPCMember(&http://www.iswc06.org#pc, Z)

FROM {W}hasPCMember{X}, {W}hasPCMember{Y},

{W}hasOCMember{Z}

WHERE W = &http://www.iswc05.org#pc

and count(SELECT Q FROM {Y}reviews{Q}, {Q}submittedTo{W}) <5

This last extension to the syntax of RUL also allow us to express updates with
effects that depend on the order of execution of the primitive updates captured
by the clauses INSERT, DELETE or MODIFY (e.g., in Example 17, all the Program
Committee members of ISWC05 have to be made Program Committee members
for ISWC06 before those of them that reviewed less than 5 papers for ISWC05
are deleted). The order of execution for multiple update clauses in an RUL
update statement is from top to bottom. Thus, update clauses with multiple
predicates can be trivially translated into sequences of update statements with
a single predicate. We will discuss these issues in detail in Section 3.3 where the
semantics of set-oriented updates are discussed in every detail.

2.4 Safety

The presence of variables in RUL statements forces us to impose an easily veri-
fiable syntactic notion of safety as in relational updates [22]. An RUL statement
is safe if all the variables appearing in INSERT, DELETE or MODIFY clauses also
appear in the FROM clause of the statement. Thus, if an RUL statement is safe,
no new values can be inserted in the graph except the ones present in the update
statement itself.

Example 18. Let us revisit Example 11. If the user writes the unsafe statement

MODIFY keyword(X, "IR" <- "Information Retrieval")

an RUL compiler can easily translate this into the safe statement of Example 11
since domain(keyword)=Paper. This is one of the benefits of adopting the RQL
typing framework [9].

3 The Semantics of RUL

In this section we give a formal semantics to RUL. We start by defining the
concepts of RDF that we need using the formal model introduced in [9]. The
important contribution of [9] is the introduction of a rich type system for RDF
and RDFS that has been proved valuable in the implementation of RQL. Because
RUL updates are destructive operations that change the state of an RDF graph,
type safety for RUL updates is even more important than type safety for RQL
queries. The more errors we can catch at compile time, the less costly runtime
checks (and possibly expensive rollbacks) we will need.

We start by defining the concepts of RDF graph and RDFS graph. We slightly
modify the definitions of [9] to cover only the concepts of RDF used in this paper
(we do not deal with blank nodes, containers, collections or reification).

Let LT be the set of XML Schema data types that can be used in RDF. Let
T be the set of types in the RDF/S type system defined in [9]. Let V alues(T)
be the set that includes all typed literals with types from T and all URIs.

Definition 1. An RDFS graph is a 6-tuple S = (V S, ES, C, P,≺, Θ, Λ) where
V S is a set of nodes, ES ⊆ V ×V is a set of edges, C is a set of class names, P is
a set of property names, ≺ is a partial order on C∪P , Θ : V S∪ES → C∪P is a
function mapping nodes to classes and edges to properties, and Λ : V S∪ES → T
is a typing function that returns the type of each node or edge.

Definition 2. An RDF graph over the RDFS graph (V S, ES,C, P,≺, Θ, Λ) is a
quadruple G = (V, E, ν, λ) where V is a set of nodes, E ⊆ V ×V is a set of edges,
ν : V → V alues(T) is a value function that assigns a value from V alues(T) to
each node in V and λ : V ∪E → 2C∪P ∪LT is a typing function which satisfies
the following: (i) For each node a in V , λ returns a set of class or data type
names c ∈ C ∪ LT such that ν(a) belongs to the interpretation of each c. (ii)
For each edge (a, b) ∈ E, λ returns a property name p ∈ P such that (ν(a), ν(b))
belongs to the interpretation of p.

Note that λ contains all classes (resp. properties) that a node (resp. property
arc) is an instance of directly or indirectly.

Let Query be the set of queries that can be expressed in RQL and Tuple
the set of tuples of arbitrary arity formed by elements of V alues(T). We assume
that the function E : Query×Graph → Tuple gives the semantics of RQL query
evaluation as defined in [9]. If q is an RQL query and G is an input RDF graph
then the answer to query q is the set of tuples E(q, G).

Let Graph be the set of all possible RDF graphs and Update be the set of
all possible updates that can be expressed in RUL. The semantics of RUL state-
ments are captured by the semantic function A : Update × Graph → Graph.
When an update u is applied to a graph G ∈ Graph and appropriate precon-
ditions are satisfied, u affects a set of nodes and arcs of G and produces a new
graph given by A(u,G).

An RUL update is called primitive if it is of the form INSERT c(i), DELETE c(i),
INSERT p(i, i), DELETE p(i, j) where c is a class, p is a property and i, j are URIs.
If τ and τ ′ are two updates then their composition is a complex update denoted

by τ ; τ ′. The semantics of composition are given by the equation A(τ ; τ ′, G) =
A(τ ′,A(τ, G)). Composition is an associative operation thus A(τ1; · · · ; τn, G) =
A(τn,A(. . . ,A(τ1, G))).

3.1 The Semantics of INSERT

Let G = (V, E, ν, λ) be an RDF graph over the RDFS graph (V S, ES, C, P,≺
, Θ, Λ). The effect of update INSERT c(i) in G is captured by A(INSERT c(i), G) =
(V ′, E, ν′, λ′) where V ′, ν′, λ′ are defined as follows. If there is no node a ∈ V
with ν(a) = i then V ′ = V ∪ {a0} where a0 is a brand new node symbol.
Additionally, ν′ extends ν such that ν′(a0) = i and λ′ extends λ such that
λ′(a0) = {c}. On the other hand, if there is a node a ∈ V with ν(a) = i then
V ′ = V and ν′ is the same as ν. In this case, if c ∈ λ(a) then λ′ = λ. If c 6∈ λ(a)
but there exist classes c1, . . . , ck ∈ λ(a) such that c ≺ c1, . . . , c ≺ ck then λ′ is the
same as λ with the exception that λ′(a) = (λ(a) \ {c1, . . . , ck})∪{c}. Otherwise,
λ′ is the same as λ with the exception that λ′(a) = λ(a) ∪ {c}.

The preconditions for the execution of the primitive update INSERT p(i1, i2) in
G is that i1 is a URI and instance of domain(p), and i2 is a URI or literal and in-
stance of range(p). The effect of this update is captured byA(INSERT p(i1, i2), G) =
(V ′, E′, ν′, λ′) where V ′, E′, ν′ and λ′ are defined as follows. If i2 is a literal of
type t and there is no a ∈ V such that ν(a) = i2 then V ′ = V ∪ {a0} where
a0 is a brand new node symbol such that ν′(a0) = i2 and λ′(a0) = t (function
ν′ is identical to ν for all other values in its domain). Otherwise, V ′ = V and
ν′ = ν. Now let a1, a2 ∈ V ′ be nodes such that ν(a1) = i1 and ν(a2) = i2. If
p ∈ λ((a1, a2)) then E′ = E and λ′ = λ. If p 6∈ λ((a1, a2)) but there are properties
p1, . . . , pk ∈ λ((a1, a2)) such that p ≺ p1, . . . , p ≺ pk then E′ = E and λ′ is the
same as λ with the exception that λ′((a1, a2)) = (λ((a1, a2))\{p1, . . . , pk})∪{p}.
Otherwise, E′ = E ∪ {(a1, a2)} and λ′ is the same as λ with the exception that
λ′((a1, a2)) = λ((a1, a2)) ∪ {p}.

The semantics of INSERT statements with multiple predicates in the INSERT
clause can now be defined using composition as follows:

A(INSERT c1(i1), . . . , cn(in), p1(j1, j1′), . . . , pm(jm, jm
′), D) =

A(INSERT c1(i1); · · · ; INSERT c1(ik); INSERTp1(j1, j1′); · · · ; INSERTpm(jm, jm
′), D).

3.2 The semantics of DELETE

Let G = (V, E, ν, λ) be an RDF graph over the RDFS graph (V S, ES, C, P,≺
, Θ, Λ). The precondition for the execution of the primitive update DELETE c(i)
in G is that i is an instance of class c. The effect of this update is captured by
A(DELETE c(i), G) = (V ′, E′, ν, λ′) where V ′, E′, λ′ are defined as follows. Let
a ∈ V be the node with ν(a) = i. If c = rdf:Resource then V ′ = V \ {a}
otherwise V ′ = V .

If c ∈ λ(a) then let C1 be the set {c1 : c1 ¹ c∧c1 ∈ λ(a)}. Then λ′ is the same
as λ with the exception that λ′(a) = λ(a) \ C1. In addition, E′ = E \ ({(a, b) :
λ((a, b)) = p ∧ (∃c1 ∈ C1)domain(p) = c1} ∪ {(b, a) : λ((b, a)) = p ∧ (∃c1 ∈
C1)range(p) = c1}).

If c 6∈ λ(a) but there is a class c′ such that c′ ≺ c and c′ ∈ λ(a) then λ′ is the
same as λ with the exception that λ′(a) = (λ(a) \ C1) ∪ C2 where C1 = {c1 ∈
λ(a) : c′ ¹ c1 ¹ c} and C2 = {c2 ∈ λ(a) : c ≺ c2 ∧ ¬(∃c3)(c ≺ c3 ≺ c2)}. In
addition, E′ = E \ ({(a, b) : λ((a, b)) = p∧ (∃c1 ∈ C1)domain(p) = c1}∪{(b, a) :
λ((b, a)) = p ∧ (∃c1 ∈ C1)range(p) = c1}).

In a similar way, one can define the semantics of DELETE for the case of
properties. The semantics of DELETE statements with multiple predicates can
then be easily defined as in the case of INSERT using composition. Finally, the
semantics of MODIFY can also be defined similarly and are omitted.

3.3 Set-Oriented Updates

The syntax of RUL allows us to express set-oriented updates using variables in
the INSERT, DELETE or MODIFY clause as we showed with examples in Section 2.

The semantics of update statements with a single INSERT, DELETE or MODIFY
clause with variables can easily be defined using the operation of composition
and function E that formalizes the evaluation of RQL queries. For example,

A(INSERT c(x) FROM b(x) WHERE f(x), D) = A(INSERT c(i1); · · · ; INSERT c(ik), D)

where i1, . . . , ik are URIs such that E(SELECT x FROM b(x) WHERE f(x), D) =
{(i1), . . . , (ik)}. The semantics can be given similarly if we have a predicate
p(x, y) in the INSERT clause. The same holds for statements with a single DELETE
clause with variables. The case of MODIFY is slightly more involved: the order of
execution of the actions involved is as it was explained in Section 2.

The situation becomes more complex when we consider multiple predicates
in an INSERT, DELETE or MODIFY clause, or multiple INSERT, DELETE or MODIFY
clauses in a single update statement. Obviously, clause order matters in this
case as we have already demonstrated in Example 15 where we consider multiple
updates of the same kind without variables. The following examples illustrate
the issues involved when multiple updates of different kinds are allowed.

Example 19. Let us assume an RDFS schema with two classes A and B and an
RDF graph with a single node with URI i1 that is an instance of class A (so
class B has no instances). Let us now consider the following statements:

(1) DELETE B(X) INSERT B(X) (2) INSERT B(X) DELETE B(X)

FROM A{X} FROM A{X}

The effect of Statement (2) is to leave class B in the same state (i.e., with no
instances) while Statement (1) forces i1 to become an instance of B as well.

There is also a deeper issue regarding the order of execution for the different
tuples of values of the variables that satisfy the FROM and WHERE clauses.

Example 20. Let us revisit the above example and introduce a new class C in
the schema, and a second resource node with URI i2 that is an instance of class
C. Let us now consider the following statement:

DELETE B(X) INSERT B(Y)

FROM A{X}, C{Y}

WHERE X != Y

The set of tuples satisfying the FROM and WHERE clause are (i1,i2),(i2,i1).
The following orders of execution are possible for the DELETE-INSERT block:

DELETE B(i1); DELETE B(i2); INSERT B(i2); INSERT B(i1)

DELETE B(i1); INSERT B(i2); DELETE B(i2); INSERT B(i1)

DELETE B(i2); INSERT B(i1); DELETE B(i1); INSERT B(i2)

These different orders result in different states of the graph. In the first case
class B ends up with instances i1, i2, in the second case it has instance i1, and
in the third case it has instance i2.

It is possible to give non-deterministic semantics to RUL that allow all of
the above executions. In this case A must be allowed to be a relation i.e., a
subset of Update × Graph × Graph. Non-deterministic update languages have
been considered in the past for other data models e.g., by Abiteboul and Vianu
for the relational model [22, 23]. For practical reasons we have chosen to avoid
non-determinism in RUL.

We solve the dilemma of examples such as the above by adopting a semantics
similar to the one proposed in [24] where a procedural language with a for each
iterator for deductive database updates is proposed. Let U1, . . . , Un be INSERT
or DELETE. The semantics of updates with multiple INSERT or DELETE clauses
with variables is captured by the following:

A(U1 c1(x1) · · ·Un cn(xn) FROM b(x1, . . . , xn) WHERE f(x1, . . . , xn), D) =
A(U1 c1(i11); · · · ; U1 c1(ik1); · · · ; Un cn(i1n); · · · ;Un cn(ikn), D)

where i11, . . . , i
1
n, . . . , ik1 , . . . , ikn are URIs such that

E(SELECT x1, . . . , xn FROM b(x1, . . . , xn) WHERE f(x1, . . . , xn), D) =
{(i11, . . . , i1n), . . . , (ik1 , . . . , ikn)}.

In other words, the FROM and WHERE clauses are evaluated first to compute a
set of valid bindings. Then, each one of the INSERT or DELETE statements is
executed in turn for all elements of the set of bindings. The semantics can be
given similarly if multiple class or property predicates are allowed in the INSERT
or DELETE clauses. Since update clauses with multiple predicates are trivially
translated into sequences of update statements with a single predicate then our
semantics cover this case as well.

4 Conclusions
We have presented an expressive declarative language for updating RDF graphs
while ensuring that insertion/deletion/modification of nodes and arcs violates
the semantics neither of the RDF model nor of the specific RDFS schema. More
precisely, we have carefully designed the effects and side-effects of each RUL
operation to always result in a consistent state of the updated graph. There is
an ongoing implementation of RUL using the existing ICS-FORTH RQL code
base. In future work, we plan to precisely characterize the expressive power of
the language we have developed (in the spirit of [22, 23]) and consider schema
updates and schema evolution. Our work on RUL should be considered as a first
necessary step towards this direction.

References

1. Das, A., Wu, W., McGuinness, D.: Industrial Strength Ontology Management. In:
The Emerging Semantic Web. (IOS Press)

2. May, W., J. Alferes, F.B.: Towards Generic Query, Update, and Event Languages
for the Semantic Web. In: Proc. 2nd PPSWR. (2004)

3. Perez, A.G.: A Survey on Ontology Tools. Deliverable 1.3 IST Project OntoWeb
(2002)

4. Magkanaraki, A., Karvounarakis, G., Christophides, V., Plexousakis, D., Anh, T.:
Ontology Storage and Querying. ICS-FORTH Technical Report No 308 (2002)

5. Seaborne, A.: An RDF NetAPI. In: Proc. 1st ISWC. (2002) 399–403
6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In: Proc. 1st ISWC. (2002)
7. Oberle, D., Volz, R., Motik, B., Staab, S.: KAON Server Prototype. Deliverable

6, IST Project WonderWeb (2002)
8. Sarkar, S., Ellis, H.: Five Update Operations for RDF. Rensselaer at Hartford

Technical Report, RH-DOES-TR 03-04 (2003)
9. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:

RQL: A declarative query language for RDF. In: Proc. 11th WWW. (2002)
10. Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the

Semantic Web Through RVL Lenses. In: Proc. 2nd ISWC. (2003)
11. Seaborn, A.: RDQL - A Query Language for RDF.

(http://www.w3.org/Submission/RDQL)
12. Clark, K.: SPARQL Protocol for RDF. http://monkeyfist.com/kendall/sparql-

protocol/ (2004)
13. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query

Languages. In: Proc. 3rd ISWC. (2004) 502–517
14. Nejdl, W., Siberski, W., Simon, B., Tane, J.: Towards a Modification Exchange

Language for Distributed RDF Repositories. In: Proc. 1st ISWC. (2002) 236–249
15. Guha, R.V.: Rdfdb ql. (http://www.guha.com/rdfdb/query.html)
16. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing

Knowledge about Information Systems. ACM Transactions on Information Sys-
tems 8 (1990) 325–362

17. Nejdl, W., Dhraief, H., Wolpers, M.: O-Telos-RDF: a Resource Description Format
with Enhanced Meta-Modeling Functionalities Based on O-telos. (In: Workshop
on Knowledge Markup and Semantic Annotation at the 1st K-CAP)

18. Koubarakis, M., Mylopoulos, J., Stanley, M., Jarke, M.: Telos: Features and For-
malization. Technical Report KRR-TR-89-4, Dept. of Computer Science, Univer-
sity of Toronto (1989)

19. Plexousakis, D.: Semantical and Ontological Considerations in Telos: a Language
for Knowledge Representation. Computational Intelligence 9 (1993) 41–72

20. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In: Proc.
2nd SemWeb. (2001)

21. Hayes, P.: RDF Semantics. http://www.w3.org/TR/rdf-mt/ (2004)
22. Abiteboul, S., Vianu, V.: A Transcation Language Complete for Database Update

and Specification. In: Proc. 6th PODS. (1987) 260–268
23. Abiteboul, S., Vianu, V.: Procedural and Declarative Database Update Languages.

In: Proc. 7th PODS. (1988) 240–250
24. Wallace, M.: Compiling Integrity Checking Into Update Procedures. In: Proc. 12th

IJCAI. (1991) 903–908

