
Publish/Subscribe Functionality in IR Environments
using Structured Overlay Networks ∗

Christos Tryfonopoulos Stratos Idreos Manolis Koubarakis

Dept. of Electronic and Computer Engineering
Technical University of Crete, GR73100 Chania, Crete, Greece

{trifon,sidraios,manolis}@intelligence.tuc.gr

ABSTRACT
We study the problem of offering publish/subscribe func-
tionality on top of structured overlay networks using data
models and languages from IR. We show how to achieve this
by extending the distributed hash table Chord and present
a detailed experimental evaluation of our proposals.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering ; C.2.4 [Computer-
Communication Networks]: Distributed Systems—dis-
tributed applications

General Terms
Algorithms, Performance

Keywords
publish/subscribe protocols,distributed hash tables,P2P over-
lay networks

1. INTRODUCTION
We are interested in the problem of distributed resource

sharing in wide-area networks such as the Internet and the
Web. In the architecture that we envision resources are an-
notated using attribute-value pairs, where value is of type
text, and queried using constructs from Information Re-
trieval models. There are two kinds of basic functionality
that we expect this architecture to offer: information re-
trieval (IR) and publish/subscribe (pub/sub). In an IR sce-
nario a user poses a query (e.g., “I am interested in papers
on bio-informatics”) and the system returns a list of pointers

∗This work was supported in part by project Evergrow.
Christos Tryfonopoulos is partially supported by a Ph.D.
fellowship from the program Heraclitus of the Greek Min-
istry of Education.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’05,August 15–19, 2005, Salvador, Brazil.
Copyright 2005 ACM 1-59593-034-5/05/0008 ...$5.00.

to matching resources. In a pub/sub scenario, also known
as information filtering (IF), a user posts a subscription (or
profile or continuous query) to the system to receive notifi-
cations whenever certain events of interest take place (e.g.,
when a paper on bio-informatics becomes available).

In this paper we concentrate on the latter kind of function-
ality (pub/sub) and show how to provide it by extending the
distributed hash table Chord [10]. Distributed Hash Tables
(DHTs) are the second generation structured P2P overlay
networks devised as a remedy for the known limitations of
earlier P2P networks such as Napster and Gnutella.

We assume that publications and subscriptions will be ex-
pressed using a well-understood attribute-value model called
AWPS in [6]. AWPS is based on named attributes with
value free text interpreted under the Boolean and vector
space models (VSM). The query language of AWPS allows
Boolean combinations of comparisons A op v, where A is an
attribute, v is a text value and op is one of the operators
“equals”, “contains” or “similar” (“equals” and “contains”
are Boolean operators and “similar” is interpreted using the
VSM or LSI model).

The contributions of this paper are the following. We
present a set of protocols, collectively called DHTrie, that
extend the Chord protocols with pub/sub functionality as-
suming that publications and subscriptions are expressed in
the model AWPS.

We evaluate DHTrie experimentally in a distributed dig-
ital library scenario with hundreds of thousands of nodes
and millions of user profiles. Our experiments show that
the DHTrie protocols are scalable: the number of messages
it takes to publish a document and notify interested sub-
scribers remains almost constant as the network grows. More-
over, the increase in message traffic shows little sensitivity
to increase in document size. We demonstrate that simple
data structures with only local information can make a big
difference in a DHT environment: the routing table FCache
manages to reduce network traffic by a factor of 4 in all the
alternative methods we have studied.

Since probability distributions associated with publication
and query elements are expected to be skewed in typical
pub/sub scenarios, achieving a balanced load is an impor-
tant problem. We briefly study an important case of load
balancing for DHTrie and present a new algorithm which is
also applicable to the standard DHT look-up problem.

The organization of the paper is as follows. Section 2 po-
sitions our paper with respect to related work. Section 3
introduces the model AWPS while Section 4 presents the

DHTrie protocols. Section 5 presents the experimental eval-
uation of DHTrie. Section 6 studies the problem of load
balancing. Finally, Section 7 concludes the paper.

2. RELATED WORK
The problems of IR and IF in P2P networks have recently

received considerable attention. Here we only discuss the
papers that are more relevant to our work. In [7] the au-
thors study the problem of content-based retrieval in dis-
tributed digital libraries focusing on resource selection and
document retrieval. They propose to use a 2-level hierarchi-
cal P2P network where digital libraries (called leaf nodes)
cluster around directory nodes that form an unstructured
P2P network in the second level of the hierarchy. In a more
recent paper [8] the authors define the concept of neighbor-
hood in hierarchical P2P networks and use this concept to
devise a method for hub selection and ranking. The PlanetP
[3] system uses an unstructured P2P network where nodes
propagate Bloom filter summaries of their indices to the net-
work using a gossiping algorithm. Each peer uses a variation
of tf/idf to decide what nodes to contact to answer a query.
In pSearch [12] the authors propose to use the CAN DHT
and document semantic vectors (computed using LSI) to ef-
ficiently distribute document indices in a P2P network. In
PIRS [16] the authors use an unstructured P2P network and
careful propagation of metadata information to be able to
answer queries in highly dynamic environments.

Early work on IF includes SIFT [14, 15] which uses the
Boolean and vector space models, and InRoute [2] which is
based on inference networks. Both of these systems are cen-
tralised although some issues related to distribution have
been studied in SIFT [15]. Recently, a new generation of
IF systems has tried to address the limitations imposed by
centralized approaches by relying on ideas from P2P net-
works. The system P2P-DIET [4] (that builds on the ear-
lier proposal DIAS [6]) is a retrieval and filtering system
that uses the model AWPS and is implemented as an un-
structured P2P network with routing techniques based on
shortest paths and minimum-weight spanning trees. pFil-
ter [11] is the closest system to the ideas presented in this
paper. It uses a hierarchical extension of CAN [9] to fil-
ter unstructured documents and relies on multi-cast trees
to notify subscribers. VSM and LSI can be used to match
documents to user queries. By comparing pFilter with the
proposals of this paper, we can see that we have a more ex-
pressive data model and query language, and do not need
to maintain multi-cast trees to notify subscribers. However,
the multi-cast trees of pFilter take into account network dis-
tance something that we do not consider at all in this paper.
We also consider load balancing issues that are not studied
in pFilter. Finally, regarding routing, it would be interest-
ing to compare experimentally a hierarchical extension of
our work with the hierarchical routing protocols of pFilter.

3. THE DATA MODEL AWPS
We will use a well-understood attribute-value model, called

AWPS in [6]. A (resource) publication is a set of attribute-
value pairs (A, s), where A is a named attribute, s is a text
value and all attributes are distinct. The following is an
example of a publication:

{ (AUTHOR, “John Smith”),
(TITLE, “Information dissemination in P2P ...”),
(ABSTRACT, “In this paper we show that ...”) }

The query language of AWPS offers equality, contain-
ment and similarity operators on attribute values. The con-
tainment operator is interpreted under the Boolean model
and enables the expression of Boolean and word-proximity
queries. The similarity operator is defined as the cosine of
the angle of two vectors corresponding to text values from a
publication and a query. Vector representations of text val-
ues can be computed as usual using the VSM or LSI models
(but only the VSM model has been used in our implemen-
tation and experiments).

Formally, a query is a conjunction of atomic queries of the
form A = s, A w wp or A ∼k s, where A is an attribute,
s is a text value, wp is a conjunction of words and prox-
imity formulas with only words as subformulas, and k is a
similarity threshold i.e., a real number in the interval [0, 1].
Thus, queries can have two parts: a part interpreted under
the Boolean model and a part interpreted under the VSM
or LSI model. The following is an example of a query:

(AUTHOR = “John Smith”) ∧
(TITLE w P2P ∧ (information ≺[0,0] alert)) ∧

(ABSTRACT ∼0.7 “P2P architectures have been...”)

This query requests resources that have John Smith as
their author, and their title contains the word P2P and a
word pattern where the word information is immediately fol-
lowed by the word alert. Additionally, the resources should
have an abstract similar to the text value “P2P architectures
have been ...” with similarity greater than 0.7.

4. THE DHTRIE PROTOCOLS
We implement pub/sub functionality by a set of proto-

cols called the DHTrie protocols (from the words DHT and
trie). The DHTrie protocols use two levels of indexing to
store queries submitted by clients. The first level corre-
sponds to the partitioning of the global query index to dif-
ferent nodes using DHTs as the underlying infrastructure.
Each node is responsible for a fraction of the submitted user
queries through a mapping of attribute values to node identi-
fiers. The DHT infrastructure is used to define the mapping
scheme and also manages the routing of messages between
different nodes. The set of protocols that regulate node in-
teractions are described in the next sections.

The second level of our indexing mechanism is managed
locally by each node and is used for indexing the user queries
the node is responsible for. In this level, each node uses a
hash table to index all the atomic queries contained in a
complex query by using their attribute name as the key.
For each atomic Boolean query the hash table points to a
trie-like structure that exploits common words and a hash
table that indexes text values in equalities as in [13]. Ad-
ditionally for atomic VSM queries an inverted index for the
most “significant” query words is used as in [15].

VSM relies on term frequencies (tf) and inverse document
frequencies (idf) to compute the vector representation of a
text value. The computation of idf in an IR or pub/sub
scenario needs global statistical information. [3] has shown
that in IR scenarios it is enough to have an approximation of
the exact idf values. In [12] each peer uses a set of randomly
chosen peers to collect such statistics and merge the results
to create an approximation of the global idf values. These
statistics are updated periodically using sampling. It is an
open problem how to achieve this in a pub/sub scenario,
although the ideas of [3, 12] are relevant in this context as
well. We are currently working on this problem and expect
to report our results in a future paper.

Finger Table

N8+1 N14
N8+2 N14
N8+4 N14
N8+8 N21
N8+16 N32
N8+32 N42

N1

N8

N14

N21

N32

N38

N42

N48

N51

N59

Finger Table

N42+1 N48
N42+2 N48
N42+4 N48
N42+8 N51
N42+16 N59
N42+32 N14

lookup(54)

Figure 1: An example of a lookup operation over a
Chord ring with m=6

In this paper we will focus on the first level of indexing
and the protocols that regulate node interactions. The local
indexing algorithms we use and their experimental evalua-
tion are thoroughly discussed in [13, 15].

4.1 Mapping keys to nodes
We use an extension of the Chord DHT [10] to implement

our network. Chord uses a variation of consistent hashing to
map keys to nodes. In the consistent hashing scheme each
node and data item is assigned a m-bit identifier where m
should be large enough to diminish the possibility of different
items hashing to the same identifier (a cryptographic hash
function such as SHA-1 is used). The identifier of a node
can be computed by hashing its IP address. For data items,
we first decide a key and then hash it to obtain an identifier.
For example, in a file-sharing application the name of the
file can be the key (this is an application-specific decision).
Identifiers are ordered in an identifier circle (ring) modulo
2m i.e., from 0 to 2m − 1. Figure 1 shows an example of an
identifier circle with 64 identifiers (m = 6) and 10 nodes.

Keys are mapped to nodes in the identifier circle as fol-
lows. Let H be the consistent hash function used. Key
k is assigned to the first node which is equal or follows
H(k) clockwise in the identifier space. This node is called
the successor node of identifier H(k) and is denoted by
successor(H(k)). We will often say that this node is re-
sponsible for key k. For example in the network shown in
Figure 1, a key with identifier 30 would be stored at node
N32. In fact node N32 would be responsible for all keys
with identifiers in the interval (21, 32].

If each node knows its successor, a query for locating the
node responsible for a key k can always be answered in O(N)
steps where N is the number of nodes in the network. To
improve this bound, Chord maintains at each node a routing
table, called the finger table, with at most m entries. Each
entry i in the finger table of node n, points to the first
node s on the identifier circle that succeeds identifier H(n)+
2i−1. These nodes (i.e., successor(H(n) + 2i−1) for 1 ≤ i ≤
m) are called the fingers of node n. Since fingers point at
repeatedly doubling distances away from n, they can speed-
up search for locating the node responsible for a key k. If the
finger tables have size O(log N), then finding a successor of a
node n can be done in O(log N) steps with high probability
[10]. In [10] the details of the Chord protocols for node joins
and leaves, stabilisation and fault-tolerance are provided. In
the rest of this section we show how to extend Chord to
implement our pub/sub functionality.

4.2 The subscription protocol
Let us assume that a node P wants to submit a query q

containing both Boolean and VSM parts of the form:

A1 = s1 ∧ ... ∧ Am = sm ∧
Am+1 w wpm+1 ∧ ... ∧An w wpn ∧
An+1 ∼an+1 sn+1 ∧ ... ∧ Ak ∼ak sk

To do so, P randomly selects a single word w contained in
any of the text values s1, . . . , sm or word patterns wpm+1, . . . , wpn

and computes H(w) to obtain the identifier of the node
that will be responsible for query q. Then P creates mes-
sage FwdQuery(id(P), IP (P), qid(q), q), where qid(q) is a
unique query identifier assigned to q by P and IP (P) is the
IP address of P . This message is then forwarded in O(logN)
steps to the node with identifier H(w) using the routing in-
frastructure of the DHT. This forwarding is done using the
DHT lookup function to locate successor(H(w)), which is
then directly contacted by P . Notice also that both id(P)
and IP (P) need to be sent to the node that will store the
query to facilitate notification delivery.

When P wants to submit a query q (i.e., with a VSM
part only) of the form An+1 ∼a1 s1 ∧ ... ∧ An ∼an sn,
it sends q to all nodes in the list L = {H(wj) : wj ∈ D1 ∪
· · ·∪Dn}, where D1, . . . , Dn are the sets of distinct words in
text values s1, . . . , sn. In contrast to queries with a Boolean
part, queries with a VSM part only need to be stored in all
the nodes computed as above in order to ensure correctness
in the filtering process. Sending the same message to more
than one recipients is discussed in detail in the next section,
where publication forwarding poses the same problem.

When a node P ′ receives a message FwdQuery contain-
ing q, it stores q using the second level of our indexing
mechanism. P ′ uses a hash table to index all the atomic
queries of q, using as key the attributes A1, . . . , Ak. To index
each atomic query, three different data structures are also
used: (i) a hash table for text values s1, . . . , sm, (ii) a trie-
like structure that exploits common words in word patterns
wpm+1, . . . , wpn, and (iii) an inverted index for the most
“significant” words in text values sn+1, . . . , sk. P ′ utilises
these data structures at filtering time to find quickly all
queries q that match an incoming publication p. This is
done using an algorithm that combines algorithms BestFit-
Trie [13] and SQI [15].

4.3 The publication protocol
When a node P wants to publish a resource, it first con-

structs a publication p = {(A1, s1), (A2, s2), . . . , (An, sn)}
(the resource description). Let D1, . . . , Dn be the sets of
distinct words in s1, . . . , sn. Then publication p is propa-
gated to all nodes with identifiers in the list

L = {H(wj) : wj ∈ D1 ∪ · · · ∪Dn}.
The subscription protocol guarantees that L is a superset of
the set of identifiers responsible for queries that match p.

The propagation of publication p in the DHT proceeds as
follows. P removes duplicates from L and sorts it in ascend-
ing order clockwise starting from id(P). This way we obtain
at most as many identifiers as the distinct words in D1∪· · ·∪
Dn, since a node may be responsible for more than one of
the words contained in the document. Having obtained L, P
creates a message FwdResource(id(P), pid(p), p, L), where
pid(p) is a unique metadata identifier assigned to p by P ,
and sends it to node with identifier equal to head(L) (the
first element of L). This forwarding is done by the following

recursive method: message FwdResource is sent to a node
P ′, where id(P ′) is the greatest identifier contained in the
finger table of P , for which id(P ′) ≤ head(L) holds.

Upon reception of a message FwdResource by a node
P , head(L) is checked. If id(P) < head(L) then P just for-
wards the message as described in the previous paragraph.
If id(P) ≥ head(L) then P makes a copy of the message,
since this means that P is one of the intended recipients
contained in list L (in other words P is responsible for key
head(L)). Subsequently the publication part of this mes-
sage is matched with the node’s local query database using
the algorithm mentioned in Section 4.2 and the appropri-
ate subscribers are notified. Additionally list L is modi-
fied to L′ in the following way. P deletes all elements of L
that are smaller than id(P) starting from head(L), since all
these elements have P as their intended recipient. In the
new list L′ that results from these deletions we have that
id(P) < head(L′). This happens because in the general
case L may contain more than one node identifiers that are
managed by P (these identifiers are all located in ascend-
ing order at the beginning of L). Finally, P forwards the
message to node with identifier head(L′).

The publication protocol essentially involves sending the
same message to a group of other nodes, namely those that
are responsible for the distinct words contained in the text
values of the different attributes of p. The obvious way
to handle this over Chord is to create h different lookup
messages, where h is the number of different nodes to be
contacted, and then locate the recipients of the message in
an iterative fashion using O(h log N) messages. We have
also implemented this algorithm for comparison purposes.

Once all matching queries have been retrieved from the
database of a node P , notifications are sent to the appropri-
ate nodes using their IP address associated with the query
they submitted. If a node is not online at that time the
notification message is sent to its successor. To utilise the
network in a more efficient way, notifications can also be
batched and sent to the subscribers when traffic is expected
to be low.

4.4 Frequency Cache
In this section we introduce an additional routing table

that is maintained in each node. This table, called frequency
cache (FCache), is used to reduce the cost of publishing a
resource. Using the protocols described earlier, each node is
responsible for handling queries that contain a specific word.
When a resource r with h distinct words is published at node
P , P needs to contact at most h other nodes to match the
incoming resource against their local query databases. This
procedure costs O(h log N) messages for each resource pub-
lished at P . Since some of the words will be used more often
at published resources, it is useful to store the IP addresses
of the nodes that are responsible for queries containing these
words. This allows P to reach in a single hop the nodes that
are contacted more often.

FCache is a hash table used to associate each word that
appears in a published document with a node IP address.
FCache uses a word w as a key, and each FCache entry is
a data structure that holds an IP address. Thus, whenever
P needs to contact another node P ′ that is responsible for
queries containing w, it searches its FCache. If FCache con-
tains an entry for w, P can directly contact P ′ using the
IP stored in its FCache. If w is not contained in FCache,

P uses the standard DHT lookup protocol to locate P ′ and
stores contact information in FCache for further reference.
Using FCache the cost of processing a published resource p
is reduced to O(v +(h− v) log N), where v is the number of
words of p contained in FCache.

FCache entries are populated as follows. Each time a re-
source p is published at a node P , P contacts the nodes
responsible for storing queries with words contained in p, as
we described in Section 4.3. After this process is over, P
knows the contact information (namely the IP address) of
those nodes, and stores it to FCache along with the word
each node is responsible for. After that, for each publication
taking place at P , P maintains this routing information for
the most frequent words contained in resources published to
it. Notice that the construction and maintenance of FCache
comes at no extra message cost and node routing informa-
tion is discovered only when needed. In the experiments
presented in the next section we discuss good choices for
FCache size (Section 5.2).

The extra cost involved with FCache is possible cache
misses because of network dynamicity. In an FCache miss
the node needs to utilise the routing infrastructure at the
cost of O(logN) messages to locate a node. However the
new contact information is used to update the FCache en-
try for future reference. Misses are most likely to occur for
infrequent words, since nodes responsible for storing queries
with frequent words will be contacted repeatedly.

5. EXPERIMENTAL EVALUATION
For our experiments we use 10426 documents downloaded

from CiteSeer and used in [13]. The documents are research
papers in the area of Neural Networks and we will refer to
them as the NN corpus. Because no database of queries was
available to us, our queries are synthetically generated by
exploiting 2000 documents of the corpus. The remaining
8426 documents are used to generate publications.

Each query q has two parts: (i) a Boolean part which con-
sists of at most 4 conjuncts that are atomic Boolean queries
of the form A w wp, where wp is a conjunction of at most 4
words or proximity formulas, and (ii) a VSM part which con-
sists of at most 3 conjuncts of the form A ∼k s, where s is a
text value. Each atomic Boolean query of the form A w wp
is generated using the methodology of [13]. We set A to be
title, authors, abstract or body with some probabil-
ity. Then we set wp to a conjunction of words or proximity
formulas obtained from technical terms mined from the doc-
ument corpus. Each atomic VSM query of the form A ∼k s
is generated as follows. We set A to be title, abstract of
body with some probability. Then we choose randomly a
corpus document and set s equal to the title, abstract or
some part of the body field depending of our earlier choice
of A. Finally, we set k to a value between [0.3, 0.7] using the
uniform distribution.

We have implemented and experimented with four vari-
ations of the DHTrie protocols. The first one, named It,
utilises the iterative method in the publication protocol and
does not use FCache. This algorithm was implemented
mainly for comparison reasons. The second algorithm, named
ItC, utilises again the iterative method and also an FCache,
and is intended to show the effect of FCache when using
the iterative method in the publication protocol. The third
algorithm, named Re, utilises the recursive method in the
publication protocol but does not use the FCache. Finally,

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 20 30 40 50 60 70 80 90 100

of nodes (x1000)

of

 m
es

sa
ge

s/
do

cu
m

en
t

It ItC Re ReC

Figure 2: Performance for various network sizes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50 100 50 100 50 100 50 100

It ItC Re ReC

of nodes (x1000) and algorithm

of

 m
es

sa
ge

s/
do

cu
m

en
t

DHT Messages FCache Messages

Figure 3: Total document processing cost

ReC uses the recursive method and FCache and shows a sig-
nificant improvement in performance compared to the rest
of the algorithms.

To carry out each experiment described in this section,
we execute the following steps. Initially the network is set
up by assigning keys to nodes. These keys are calculated
using the SHA-1 cryptographic hash function and randomly
created IP addresses and ports. After the network is set
up, we create 5M user queries and distribute them among
the nodes using the protocol described in Section 4.2. Once
the queries are stored, we publish the corpus documents at
different nodes and record the network activity.

5.1 Varying the Size of the Network
The first experiment that we conducted to evaluate our

protocols targeted the performance of the algorithms under
different network sizes. In this experiment we randomly
selected 100 documents (with 5415 words average size) from
the NN corpus and used them as incoming publications by
randomly assigning each one to a publisher node. In each
one of the 10 different runs, each document was assigned
to a different node. Having published the documents, we
recorded the total number of DHTrie messages generated
by the network in order to match these documents against
the posted user queries.

In Figure 2 the performance of the different algorithms in
terms of DHTrie messages per document is shown. The main
observation is that the number of messages generated by all
the different algorithms to match the incoming documents
against the user queries, remains relatively unaffected by
the network size, mainly due to the routing infrastructure
used. Thus, a document needs in the worst case 10% more
messages for a 10 times larger network (see for example It
for 10K and 100K nodes).

A second observation emerging from the graphs in Fig-
ure 2 is the effectiveness of the FCache independently of the
message routing algorithm used. The use of FCache (with
30K entries) results in the reduction of messages sent using
the routing infrastructure by more than 4 times in all cases
(by using either the iterative or the recursive method). No-
tice also that using algorithm ReC reduces the DHTrie mes-
sage cost of publishing a document of about 5500 words to
only 500 messages for a network consisting of 100K nodes
managing to process both Boolean and VSM queries.

Finally in Figure 3 we present the total cost for processing
a single document in terms of message traffic for networks of
50K and 100K nodes. By total cost we mean the messages
sent using information from FCache plus the messages sent
using the DHTrie infrastructure. For algorithm ItC and a
network of 50K nodes the DHTrie messages were about 50%
of the total messages sent, whereas for a network of 100K
nodes they were about 60%. On the other hand, for algo-
rithm ReC the DHTrie messages were around 35% for both
network sizes. The above observations show the importance
of the recursive method and FCache in the reduction of the
total document matching cost and in the relief in terms of
messages of the DHTrie routing infrastructure.

5.2 Varying the FCache Size
The second experiment targeted the performance of the

algorithms under different FCache sizes and studied the ef-
fect of FCache in the DHTrie utilisation. We used the doc-
ument corpus as the training set for populating the FCache
of the different nodes. We randomly selected a node p and
published 10K documents to it. These publications resulted
in the population of its FCache with the IP addresses of the
nodes that are responsible for the most frequent words con-
tained in the published documents, and served as a training
set for the FCache. We then published 100 documents to p
and limited the size of FCache to different values. Subse-
quently, we recorded the total number of messages generated
by the network in order to match these documents against
the stored user queries. Figure 4 shows the utilisation of
the overlay network in messages per document as the size of
FCache grows. The values shown are averaged over 10 runs
with different nodes.

As it is shown in Figure 4 (left y-axis), the number of mes-
sages sent using the DHTrie routing infrastructure reduces
quickly as the size of FCache increases to reach a state where
the effect of an FCache increase causes no significant change
in the number of messages (aroung 30K entries, the right-
most point in x-axis). Notice that the cost for each node to
maintain an FCache consists only in storing this information
in its local data store, namely about 24 bytes per entry (for
storing the hash value of the word and the IP address of the
node responsible for this word). Additionally the routing
information of the FCache of node p depends only on the
documents that get published to p, causing no additional

0

1000

2000

3000

4000

5000

6000

7000

1 5 10 15 20 25 30

FCache size (x1000)

of

 D
H

T
 m

es
sa

ge
s/

do
cu

m
en

t

300

400

500

600

700

800

900

of

 F
C

ac
he

 m
es

sa
ge

s/
do

cu
m

en
tt

ItC (50K nodes) ItC (100K nodes)
ReC (50K nodes) ReC (100K nodes)
ItC (50K nodes) ReC (50K nodes)

Figure 4: Performance for different FCache size

maintenance messages. The only extra cost involved with
FCache is its update cost as nodes come and go from the
network. This causes FCache entries to be outdated, costing
more extra messages through the routing infrastructure to
publish a resource. These extra messages though are sent
only once, since the FCache field is updated when the new
node responsible for the word with an outdated entry is lo-
cated. From some initial measurements we found out that
when 10% of the FCache entries are outdated, the message
cost increase was no more than 4% showing that FCache is
able to cope up with misses. Notice also that in the recur-
sive method (algorithm ReC) the performance of FCache in
different network sizes remains constant, whereas in the case
of the iterative method (algorithm ItC) the performance de-
teriorates (50% more DHTrie messages per document for an
100% increase).

The right y-axis of Figure 4 shows the utilisation of FCache
per document, showing again that after a threshold value (in
our example around 30K entries, the rightmost point in x-
axis) its effect is significantly reduced. This is also the reason
that we chose 30K FCache entries as a baseline value for the
rest of our experiments. We also observe that the number
of messages sent using the FCache is about the same for
both ItC and ReC, showing that FCache is equally utilised
despite the algorithms used. For readability reasons we did
not put the results for the 100K nodes network in the second
y-axis, but they are similar to those presented.

5.3 Effect of FCache Training
In this experiment we measure the effect of FCache train-

ing to the message cost imposed to the network by the pub-
lication of a single document. We randomly selected a node
P and trained P ’s FCache with a varying number of doc-
uments. Through this process the node was able to collect
statistics about the most frequent words used in documents
(published to it), and as a result it was able to populate
its FCache with the appropriate pointers to frequently con-
tacted nodes. Thus, for an FCache with 30K entries (the
baseline value used in the experiments), the node would
know the IP addresses for the nodes responsible for the
30K top most frequent words. We then published 100 doc-
uments (with 5415 words average document size) at P and
recorded the message cost to match these documents against
the stored user queries. The results shown in Figure 5 are

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10 12 14 16 18 20 40 60 80 100

of documents (x100) published per node

of

 D
H

T
 m

es
sa

ge
s/

do
cu

m
en

t

800

820

840

860

880

900

of

 F
C

ac
he

 h
its

/d
oc

um
en

t

ItC (50K nodes) ReC (50K nodes)
ItC (100K nodes) ReC (100K nodes)
ItC (50K nodes) ReC (50K nodes)

Figure 5: Different levels of FCache training

averaged over 100 runs for different nodes to eliminate net-
work topology effects.

Figure 5 shows that the performance of the different al-
gorithms improves as more documents get published. Al-
gorithm ReC seems less sensitive in this parameter, as the
difference in the number of messages observed is about 100
messages for 50 times more documents (the leftmost and
rightmost point in the x-axis), whereas ItC presents a dif-
ference of more than 300 messages. Additionally, ReC shows
less sensitivity with respect to the network size, contrary to
ItC that needs about 50% more messages. Finally, both
ItC and ReC show a similar behaviour for the two network
sizes we tested.

The right y-axis of Figure 5 shows the number of hits of
FCache for different levels of FCache training. Notice that
both algorithms have roughly the same number of hits for a
network of 50K nodes, showing that FCache hits are not af-
fected by the algorithm used. For readability reasons we did
not put the results for the 100K nodes network in the second
y-axis, but they are similar to those presented. Looking at
the scale in the right y-axis, we can also see that the number
of FCache hits shows only a slight improvement of around
4% for a 5000% increase in the number of documents used
for training. This is attributed to the skewed nature of the
data (documents) used to train the FCache. It is however
important to note that even a small increase in FCache hits
can significantly reduce message load (as it is already shown
in the graphs of Figure 5), since every FCache hit, saves us
from O(log N) DHTrie messages.

5.4 Varying the Document Size
Document (i.e., publication) size is an important param-

eter in the performance of our algorithms. This experi-
ment targeted the performance of the different algorithms
for varying document sizes. Each one of the bars in Figure
6 is an averaging of 100 documents, published at 1000 differ-
ent nodes (in a network of 50K nodes in total) to normalise
network topology effects. Figure 6 shows the message cost
for publishing documents of varying size by using each one
of the four different algorithms. Notice that the graph is
truncated to a maximum of 5000 messages to show clearly
the best performing algorithms.

Figure 6 shows that for small documents the use of the
recursive method (contrary to FCache) does not improve

0

1000

2000

3000

4000

5000

1412 5415 20755

Average document size (words)

of

 D
H

T
 m

es
sa

ge
s/

do
cu

m
en

t
It ItC Re
ReC ReC increase rate ItC increase rate
Re increase rate

Figure 6: Performance for different document size

performance significantly, since algorithms ItC and ReC
perform similarly. This is because for a large proportion
of the words contained in small documents an FCache en-
try exists, thus needing a single message to reach the node
responsible for queries that contain these words. The re-
maining words that are not listed in node’s FCache use the
DHTrie infrastructure, but their number is so small that we
cannot observe significant differences in message cost. For
large documents though, the use of the recursive method
and FCache are shown to be significantly better than their
counterparts, managing to process documents of average size
of around 21K words by using around 1800 messages.

Finally another interesting observation emerging from Fig-
ure 6 is the increase rate for the different algorithms. The
increase in message cost is linear to the document size with
algorithm ReC presenting the smaller increase rate, thus
showing a smaller sensitivity to document size.

6. LOAD BALANCING
In typical IR scenarios the probability distributions asso-

ciated with documents and queries can be arbitrary and are
typically skewed. For example, the frequency of occurrence
of words in a document collection follows the Zipf distri-
bution, subscriptions to an electronic journal might refer
mostly to current hot topics while publications appearing
in the same journal might reflect its established tradition
etc. Thus, a key issue that arises when trying to parti-
tion the query space among the different nodes of a DHT
in a pub/sub scenario is to achieve load balancing. In any
pub/sub setting we can distinguish three types of node load:
query, routing and filtering.

The query load of a node P is the number of queries stored
at node P . The routing load of a node P is the number of
messages that P has to forward due to the DHTrie proto-
cols. Finally, the filtering load of a node P is the number
of filtering requests (i.e., publications) that need to be pro-
cessed at node P . Filtering is arguably the heaviest of the
above tasks, since for each filtering request, a node has to
search its local data store, retrieve the matching queries and
notify interested subscribers. For this reason we choose to
concentrate on balancing filtering load in this section. The
filtering load of a node P depends on the number of words
that hash to the interval of the identifier space owned by P

and the frequency distribution of these words in published
documents.

In the DHT literature, work on load balancing has re-
cently concentrated on two particular problems: address-
space load balancing and item load balancing. The former
problem is how to partition the address-space of a DHT
“evenly” among keys; it is typically solved by relying on
consistent hashing and constructions such as virtual servers
[10] or potential nodes [5]. In the latter problem, we have
to balance load in the presence of data items with arbitrary
load distributions [5, 1] as in our case.

We have implemented and evaluated a simple algorithm
for distributing the filtering load evenly throughout the dif-
ferent nodes of the network. The algorithm is based on the
well-known concept of load-shedding, where an overloaded
node attempts to off-load work (i.e., filtering requests) to
less loaded nodes. The algorithm is in fact applicable to the
standard DHT look-up problem but here we utilize it in a
pub/sub scenario. We will present a detailed analysis of the
more general algorithm in a forthcoming paper.

The load balancing algorithm is as follows. Once a node
P understands that it has become overloaded, it chooses the
most frequent word w it is responsible for and a small integer
k1. Then P contacts the nodes responsible for words wj for
all j, 1 ≤ j ≤ k (wj is the concatenation of strings w and j)
and asks them to be its replicas. Then P notifies the rest of
the network about this change in responsibilities2. We Each
node M that receives this message notes down the word w.
Later on, if M has a new publication containing w, it breaks
the filtering responsibility for w among P and k other nodes
by concatenating a random number from 1 to k to the end
of the w and using DHTrie to find the node responsible for
this word. In this way the filtering responsibility of w for
P is reduced by k + 1 times (k new nodes plus P). We call
k + 1 the split factor (SF) in subsequent experiments.

In the experiments carried out in this section, a node P
considers itself overloaded if it exceeds the threshold (T) of
10 filtering requests for the same word w in a time window of
100 document publications (in other words, if at least 10%
of the published documents contain w). In a real network
a node would not know how to define such a time window.
In this case it could use sampling to estimate the average
document publication rate, and thus be able to discover if
it is doing more filtering work than other nodes.

The results of our experiments for the load balancing al-
gorithm are shown in Figures 7 and 8. Figure 7 shows the
average number of filtering requests received by each node
in a time window for a period of 100 time windows. SF was
set to 10 nodes and T was set to 10 requests/time window
respectively. For readability purposes only the first 10K
nodes (out of a total of 50K) are shown and the y-axis is
truncated to 60 filtering requests (the highest point in the
unbalanced case is 159 filtering requests). Notice that prior
to the load balancing algorithm the first 3K nodes get a very
large proportion of the filtering requests, whereas the rest
of the network receives very few or no requests at all. On
the contrary, after the load balancing algorithm is run, only
a small amount of nodes receive more that 20 filtering re-
quests, with the rest of the filtering load being distributed

1Currently we select the replica nodes randomly, but peer
load or locality criteria could be used.
2For example, by piggy-backing the necessary information
in DHTrie maintenance messages.

0

10

20

30

40

50

60

1 1000 1999 2998 3997 4996 5995 6994 7993 8992 9991

Ranked peers

of

 f
ilt

er
in

g
re

qu
es

ts

No load balancing With load balancing

Figure 7: Average number for filtering requests

0

5

10

15

20

25

30

35

40

1 1000 1999 2998 3997 4996 5995 6994 7993 8992 9991

Ranked peers

of

 D
H

T
 m

es
sa

ge
s

/ p
ee

r

No load balancing With load balancing

Figure 8: Routing load for the first 10K nodes

in a more uniform way among the nodes. We also experi-
mented with different values for SF (20 and 30 nodes) and
the T (20 and 30 requests/time window) but we did not
observe significant differences in the load distribution.

Figure 8 shows the price we pay to achieve filtering load
balancing in terms of message routing. In this graph we
show the number of routing requests received by the first
10K nodes of our network. Notice that the number of mes-
sages needed per document increases significantly after the
load balancing algorithm is run (we observed increases of
as much as 80%). This increase is due to FCache misses
occurring from the splitting of queries and filtering respon-
sibilities. The increase in FCache misses causes a significant
increase in DHTrie messages as it was expected (see Section
5.3), which is reduced when the FCache entries are updated.
The important point however in Figure 8 is that the new load
imposed on the network is uniformly distributed among the
nodes and does not cause overloading in any group of nodes.
The new load distribution follows closely the old one. This
observation leads us to the conclusion that the load balanc-
ing algorithm shown here manages to efficiently distribute
the filtering load among the nodes, while imposing a rela-
tively small additional cost for routing purposes which in
our scenario is considered an easier task to perform.

7. SUMMARY AND OUTLOOK
The evaluation of the DHTrie protocols revealed strengths

and weaknesses of the different algorithms developed. In our

experiments we showed that the DHTrie protocols are scal-
able: the number of messages it takes to publish a document
remains almost constant as the network grows. Additionally
we showed that the use of data structures that exploit lo-
cal knowledge can significantly reduce network traffic (up
to a factor of 4), with little overhead in training. Network
traffic also presents little sensitivity to document size when
FCache is utilised. Finally Section 6 presents a load balanc-
ing algorithm that trades message traffic for balance in the
peer load. Distributed IR as studied in this paper can ben-
efit from techniques of traditional IR, distributed systems
and networking (especially P2P networks), databases and
distributed AI. With this perspective in mind our current
work concentrates on two open problems: algorithms for
computing idf in distributed IR and pub/sub environments
(Section 4), and implementing the load balancing algorithm
of Section 6 for the standard DHT look-up problem and
comparing it with related work.

8. REFERENCES
[1] K. Aberer, A. Datta, and M. Hauswirth. Multifaceted

Simultaneous Load Balancing in DHT-based P2P systems:
A new game with old balls and bins. Technical Report
IC/2004/23, EPFL, 2004.

[2] J.P. Callan. Document Filtering With Inference Networks.
In Proc. of ACM SIGIR, 1996.

[3] F.M. Cuenca-Acuna and T.D. Nguyen. Text-Based Content
Search and Retrieval in Ad-hoc P2P Communities. In
Networking 2002 Workshops, 2002.

[4] S. Idreos, M. Koubarakis, and C. Tryfonopoulos.
P2P-DIET: An Extensible P2P Service that Unifies Ad-hoc
and Continuous Querying in Super-Peer Networks. In Proc.
of SIGMOD, 2004. Demo paper.

[5] D. R. Karger and M. Ruhl. Simple efficient load balancing
algorithms for peer-to-peer systems. In Proc. of SPAA,
2004.

[6] M. Koubarakis, T. Koutris, P. Raftopoulou, and
C. Tryfonopoulos. Information Alert in Distributed Digital
Libraries: The Models, Languages and Architecture of
DIAS. In Proc. of ECDL, 2002.

[7] J. Lu and J. Callan. Content-based retrieval in hybrid
peer-to-peer networks. In Proc. of CIKM, 2003.

[8] J. Lu and J. Callan. Federated search of text-based digital
libraries in hierarchical peer-to-peer networks. In Proc. of
ECIR, 2005. (to appear).

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, 2001.

[10] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. of ACM
SIGCOMM, 2001.

[11] C. Tang and Z. Xu. pFilter: Global Information Filtering
and Dissemination Using Structured Overlays. In Proc. of
FTDCS, 2003.

[12] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information
Retrieval in Structured Overlays. In Proc. of HotNets-I ’02.

[13] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas.
Filtering Algorithms for Information Retrieval Models with
Named Attributes and Proximity Operators. In Proc. of
ACM SIGIR, 2004.

[14] T.W. Yan and H. Garcia-Molina. Index structures for
selective dissemination of information under the boolean
model. ACM TODS, 19(2):332–364, 1994.

[15] T.W. Yan and H. Garcia-Molina. The SIFT information
dissemination system. ACM TODS, 24(4):529–565, 1999.

[16] W.G. Yee and O. Frieder. The Design of PIRS, a
Peer-to-Peer Information Retrieval System. In Proc. of
DBISP2P, 2004.

