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Abstract

The information dissemination problem in large scale network environments like
wireless sensor and ad hoc networks is studied here considering geometric random
graphs and random walk-based approaches. The traditional random walk case is
studied and an analytical expression with respect to coverage (i.e., the proportion
of the network nodes visited by a random walk agent) as a function of the number of
the agent movements is derived. It is observed that the cover time of the RW agent
is large in random geometric graphs of low degree (as it is commonly the case is
wireless environments). As this inefficiency is attributed (as discussed in the paper)
to the inability of the RW agent to move away from already likely covered areas,
a mechanism for directional movement (i.e. jumping) of the agent is proposed and
studied, that allows the agent to jump to different network areas, most likely not
covered yet. The proposed mechanism is studied analytically and via simulations
and the parameters (of the network topology and the mechanism) under which the
proposed scheme outperforms the RW are determined.
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1 Introduction

One of the main challenges associated with large-scale, unstructured and dy-
namic networking environments is that of efficiently reaching out to all or
a portion of the network nodes (i.e., disseminating information) in order to
provide, e.g., software updates or announcements of new services or queries.
The high dynamicity and the sheer size of such networking topologies ask for
the adoption of decentralized approaches to information dissemination [10],
[11], [12], [13]. In this paper the problem of efficiently disseminating infor-
mation (or queries) across a large-scale, resource-limited, ad-hoc-structured
wireless network, such as wireless sensor network is considered. One of the
simplest approaches employed for disseminating information in such environ-
ments, is the traditional flooding approach. Under flooding ([1], [2], [3], [5]),
each time a node receives a message for the first time from some node, it for-
wards it to all its neighbors except from that node. Despite its simplicity and
speed (typically achieving the shortest cover time possible, upper bounded
by the network diameter), the associated large message overhead is a major
drawback.

As flooding is considered not to be an option for large scale, wireless net-
working environments due to strict energy limitations of individual sensor
nodes, approaches based on random walks are viewed as reasonable choices
[14] [4], [15], [16]. Random walks possess several good characteristics such
as simplicity, robustness against dynamic failures or changes to the network
topology, and lack of need for knowledge of the network physical and topo-
logical characteristics. The Random Walk agent (RW agent) employed within
a network of wireless sensors moves from neighbor node to neighbor node in
a random manner, frequently revisiting previously covered nodes in a circular
manner, even without backtracking (returning to the node it just came from
is not allowed); these revisits constitute overhead and impact negatively on
the cov er time [8]. Such a poor behavior of the RW agent is attributed to the
pure random manner of its movement, combined with some problematic topo-
logical characteristics of large scale wireless ad hoc networks, such as cliques
and bottlenecks.

Large-scale geometric random graphs have been studied in the past in rela-
tionship with percolation theory, statistical physics and hypothesis testing [19].
Recently, the G(N, rc) random geometric graph has received significant atten-
tion due to its applicability in modelling wireless ad hoc and sensor networks,
where N is the number of network nodes and rc is the connectivity radius. The
network connectivity of random geometric graphs depends on (a) the connec-
tivity radius rc; and (b) the geometric position of nodes. In particular, any
nodes having geometric (euclidean) distance below the connectivity radius rc

are considered to be bi-directionally connected. Naturally, connectivity radius
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rc should be large enough, such that the network is connected, i.e. there are
no isolated nodes within the network. Such a network connectivity model is
substantially different from the classic Erdos-Renyi network model for Inter-
net topologies [18], where any two nodes have a fixed non-zero probability of
being connected (power-law graphs). Existence of long-haul links (links con-
necting nodes residing far apart in physical distance), although perfectly valid
in Erdos-Renyi graphs, do not appear in random geometric graphs, due to
physical limitations associated with the connectivity radius rc.

In this paper the Jumping Random Walk (J-RW) mechanism is proposed as an
efficient alternative against the RW for information dissemination/ retrieval in
large scale environments, like wireless sensor networks. The proposed scheme
exploits the benefits of the RW mechanism (simple, decentralized, robust to
topology changes) while providing a ‘boost’ in performance, i.e. accelerating
the coverage process within the network. The latter is achieved by introducing
a second state of operation to the RW agent in which the random movement
paradigm is replaced by a non-random “directional” movement paradigm. It
turns out that this improves significantly the cover time by “creating” long
links in topologies that lack them. It should be noted that the RW agent
corresponds to a special case (parameter setting) of the proposed J-RW agent.

2 The RW Agent in various topologies

A credible alternative to flooding for disseminating information in an unstruc-
tured environment, is the RW agent. In RW-based approaches, the initiator
node employs an agent that will move randomly in the network, one hop/ node
per time slot, informing (or querying) all the nodes in its path. In particu-
lar, large-scale, highly decentralized networking topologies like peer to peer
(P2P) or wireless sensor networks have employed RW-based information dis-
semination/ data quering approaches. Authors in [6] proposed a number of
algorithms for RW-based searching in unstructured P2P networks, whereas
probability-based information dissemination has been investigated for use in
sensor networks [12], with data routing as the main consideration. Random
walk in large-scale P2P nets has been shown to possess a number of good prop-
erties for searching and/or distributing of information within the network [7].

The overhead of RW-based solutions is considered to be much smaller than
that of the flooding approaches, at the expense of a significant increase of cover
time. Cover time is the expected time taken by a random walk to visit all nodes
of a network. The generally relatively large (compared to flooding) cover time
achieved under RW-based approaches depends on the network topology. For
instance, it is O(N ln(N)) for the fully connected graph (best-case scenario)
and O(N3) for clique topologies (worst case scenario) [8], [9]. Random walks
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on random geometric graphs G(N, rc) have been shown to have optimal cover
time Θ(N ln(N)) and optimal partial cover time Θ(N) with high propability
given that the connectivity radius of each node rc fullfills a certain threshold
property, i.e. given that r2

c ≥ c8 ln(N)
N

[17]. Generally, it has been shown that
cover time is lower for high connectivity network topologies, such as complete
graphs, and it is higher in network topologies presenting bottlenecks. In the
latter case, the number of revisits of already covered nodes (which affect the
induced overhead and cover time) becomes particularly high.

According to the typical RW-based information dissemination paradigm, each
node receiving the RW agent or packet, chooses a forwarding neighbor arbi-
trarily based on the uniform distribution. For a network modelled as a graph
G(V, E) (where V and E denote its vertices and edges, respectively) a node
v ∈ V with connectivity degree δ(v) chooses each one of its next hop neighbors
u ∈ V with probability pu = 1/δ(v) if (v, u) ∈ E and pu = 0 for all other
u ∈ V . An important (for this paper) variant of RW-based propagation of in-
formation is the RW without backtracking. Under this scheme the RW visiting
a node v ∈ V will choose the next hop node u ∈ V arbitrarily among the
neighbors of node v with probability pu = 1/(δ(v) − 1) if (v, u) ∈ E, where
u is any neighbor of v except the one from last hop, and pu = 0 for all other
u ∈ V .

For the rest of this paper it is assumed that G(V, E) is a connected network.
Let N be the number of network nodes (equivalently, the size of set V ). In
such a network, a RW agent moving according to the previously described
mechanism, will eventually visit or cover all network nodes after some time
(cover time). Let Cr(t) be the fraction of network nodes covered (or visited)
after t time units or movements of the RW agent (i.e., the RW agent start
moving at t = 0), for a particular realization (sample path) of the walk and
for a given intitiator node. Cr(t) will be referred to hereafter as the coverage at
time t. Clearly, Cr(t) depends on the network size, the network topology, the
initiator node and other factors. If Tr denotes the cover time then Cr(Tr) = 1;
clearly Cr(0) = 0. As time increases, the RW agent is expected either to move
to a node that hasn’t been covered previously (thus, Cr(t) increases) or to
move to an already covered node (thus, Cr(t) remains the same). Therefore,
Cr(t) is a non-decreasing function (Cr(t1) ≤ Cr(t2), for t1 < t2).

The number of movements of RW-based solutions is much smaller than that
under flooding approaches (where one movement of an agent corresponds to
one message transmission), at the expense of a significant increase in cover
time. For example, for the case of a fully connected network, a number of
movements of the order of N ln(N), [9], is required under the RW mechanism,
while under flooding approaches the corresponding number of movements (or
messages) is of the order of N2. On the other hand, cover time under the
RW mechanism is of the order of N ln(N), while under flooding it is upper
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bounded by the network diameter plus 1 (e.g., for the case of a complete graph
cover time under flooding is 2).

3 The J-RW Agent

3.1 Motivation

Figure 1.a illustrates a RW agent movement path initiated from the initiator
node depicted inside the dotted ellipsis. The random walker spends some time
revisiting nodes in the depicted “upper-left” network part, while nodes in other
network parts are left unvisited. Suppose now that after a few time units –
long enough to “cover” a certain network part – the RW agent moves to a
“new” (most likely uncovered) network part (“bottom right” network part in
Figure 1.b). It is more likely than before to cover nodes that have not been
visited previously by the agent, and therefore, accelerate the overall network
cover process.

a. b.

Fig. 1. An agent (starting from the initiator node depicted in dotted ellipsis) under:
(a) the RW mechanism and (b) the J-RW mechanism.

One possible way for the agent to move away from a certain network region
would be to carry out a number of consecutive directional movements, imple-
menting a jump. This directional movement mechanism or jumping, initially
proposed in [20], can be realized by switching occasionally away from the RW
operation and engaging an operation implementing a directional movement.
That is, such a RW agent (to be referred to as the Jumping Random Walk
(J-RW)) operates under two states: State 0 under which it implements the
typical RW mechanism without backtracking, and State 1 during which the
directional move is implemented; the time spent in state 1 (freezing state) will
be referred to as the freezing (the direction) period.
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The J-RW mechanism moves the agent – at the end of the freezing period – to
networks that are expected (due to the directional freeze) to be geographically
more distant than those reached by the RW agent after the same number
of movements. That is, the introduction of the freezing state implements in
essence jumps, defined as the physical distance between the nodes hosting the
RW agent at the beginning and the end of the freezing period.

The improvement in the cover time may be viewed as a consequence of “sam-
pling” the network more uniformly, by moving the “sampling” agent into re-
mote and likely new (not yet sampled) areas, as opposed to keeping the agent
wandering around a certain locality according to the RW mechanism and
(over)sampling predominately a certain locality. When a network graph has
long links (that can take an agent into a remote network region in a topo-
logical sense), it has been shown in [7] that a RW agent produces a uniform
sampling of the network nodes.

In wireless environments like sensor networks, the physical and the network
topologies are typically correlated: a long path between two nodes in the net-
work topology corresponds to a large physical distance between these nodes
in the physical topology. In essence, the proposed J-RW mechanism applied
over a network with no long (physical) links (like a wireless sensor network)
creates virtual long links in this network and results in an environment that
is equivalent to that of applying the RW agent over a network with some long
links. Thus, the proposed J-RW mechanism is expected to result in a more
uniform sampling of the network nodes, which – as argued earlier – leads to a
better cover time.

Besides the improved cover time, the increased uniformity of the (node) sam-
pling under the J-RW mechanism may be on its own another important prop-
erty of the proposed information dissemination scheme when considered in
conjunction with certain specific and fairly common applications such as those
related to sensing the environment. In such applications and due to the typ-
ically high spatial correlation of nearby nodes, a dissemination of a query on
the state of the field may target only a portion of the network nodes to con-
serve energy, [8]. Since the J-RW mechanism possesses the uniform sampling
capability as argued earlier, it is expected that the query dissemination and
collected responses would better represent the state of the sensor field and
contain less redundant information. For such environments it is reasonable to
base the evaluation of information dissemination schemes on the partial cover
time as opposed to the 100% cover time.
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3.2 Description

The proposed J-RW mechanism is based on two underlying states. When in
State 0, the J-RW agent operates as the already described RW agent. When in
State 1, it implements a directional walk, by selecting as the next node to visit
to be the neighbor of the current node that is the closest to the line connecting
the current node and the node visited by the agent in the previous discrete
time, in the direction away from the previously visited node. The directional
walk may be easily implemented through a simple look up table involving the
geographic locations of the neighbours of a node; this table determines the
next node to forward the agent to under the directional walk, given that the
agent came to this node from a given neighbour. The geographic information
can be easily retrieved either at the time of deployment in the case of a static
sensor field (with provisions for second, third, etc. choices when lower order
choices are not available due to battery depletion), or after the deployment of
the field with the help of a localization protocol run occasionally.

����� � ����� �

�

�

�	� �	�

Fig. 2. Markov chain mechanism for controlling J-RW agent movements.

State transitions of the J-RW agent are assumed to occur at the discrete times
according to a simple 2-state Markov chain, as shown in Figure 2; let α (β)
denote the transition probabilities from State 0 to State 1 (State 1 to State 0)
and let T0 = 1/α (T1 = 1/β) denote the mean time (in discrete times of our
reference time, or number of visits to nodes) that the agent spends in State
0 (State 1). Clearly, β (or, T1) determines the length of time over which the
directional walk is continuously in effect and, thus, the mean length of the
induced jump. Similarly, α (or, T0) determines the length of time over which
the RW mechanism is continuously in effect. It should be noted that α and β
should be carefully selected so that the mix of the two distinct operations is
effectively balanced. β should be such that the implemented jump is sufficiently
large to move the agent away from the current locality that is likely to be
covered by the operation at State 0, and on the other hand, it should not
be too large in which case it would leave uncovered large areas or require
the random walk operation to operate long enough (at the increased cost of
revisits) to cover the large areas between the start and the end of the jump.
Similarly, α should be such that the time spent at State 0 be balanced so as
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to not over-cover or under-cover the current locality.

As previously for the RW mechanism, coverage and cover time under the J-
RW mechanism may be defined in a similar manner, denoted by Cj(t) and Tj

respectively. Cj(t) is a non-decreasing function of t taking values between 0
(for t = 0) and 1 (for t ≥ Tj).

4 Coverage Analysis

This section analyzes coverage under the RW mechanism in order to extract
useful information regarding the performance of the RW agent and conse-
quently to use these results for further understanding of the particulars of the
J-RW mechanism. The analysis followed in this section is different than any
other previous analysis in the best of the authors’ knowledge.

4.1 Coverage under the RW mechanism

The main aim here is to derive an analytical expression for Cr(t), which will
serve as a tool for further understanding of random walk based information
dissemination. Lets assume that the network topology is fully connected (i.e.,
all nodes are connected to all other nodes). This is actually the case for large
values of rc in geometric random graphs. For example, for nodes scattered in
the [0, 1]× [0, 1] 2-dimensional plane, any value of rc ≥

√
2 ensures that there

is a link among any pair of nodes.

In such a network, each time the RW agent decides to move to a new neighbor
node at time t (thus, arriving at time t + 1), coverage Cr(t): (a) may increase
(Cr(t + 1) = Cr(t) + 1/N), provided that the new node has not been covered
previously; or (b) remain the same (Cr(t + 1) = Cr(t)), provided that the
new node has already been covered. Note that at time t, in a fully connected
network the RW agent may select one out of N − 2 network nodes (i.e., all
network nodes excluding the one the agent came from and the one that is
currently located at). Since 1/N corresponds to the coverage contribution of
the node the agent came from and 1/N to the coverage contribution of the node
that is currently located at, then Cr(t)−2/N is the coverage corresponding to
the remaining N−2 nodes and eventually, (N−2)×(Cr(t)−2/N) corresponds
to the number of nodes that have already been visited by the agent (excluding
the one the agent came from and the one that is currently located at). For
large values of N (which is typically the case considered in this paper), (N −
2)× (Cr(t)− 2/N) ≈ NCr(t). Consequently, the probability to choose a node
that has not been visited previosuly (and consequently increase coverage) is
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equal to the probability of selecting one out of the N − NCr(t) nodes that
have not been visited previsouly, or N(1 − Cr(t))/N = 1 − Cr(t). It is easily
derived now that (on average) the increment of the coverage after a RW agent
moves at time t, is given by the probability 1−Cr(t) that it moves to a node
not visited before multiplied by 1/N which is the contribution to coverage by
each node that is visited for the first time. That is,

Cr(t + 1)− Cr(t) =
1

N

(
1− Cr(t)

)
. (1)

Equation (1) can be expressed in a more convenient form by switching from
discrete to continuous time. Let t be continuous and let C̃r(t) denote the
corresponding continuous and increasing function of Cr(t). The difference

Cr(t + 1) − Cr(t) can be approximated by C̃r(t1)−C̃r(t0)
t1−t0

= dC̃r(t)
dt

, for t0 < t1.
Based on Equation (1),

dC̃r(t)

dt
=

1

N

(
1− C̃r(t)

)
. (2)

The derivative dC̃r(t)
dt

corresponds to the rate at which C̃r(t) increases. Obvi-
ously, for t = 0 (i.e., the RW agent is about to start moving in the network),
dC̃r(t)

dt
= 1, since during its first step the RW agent will move to a node def-

initely not covered previously. dC̃r(t)
dt

will eventually become zero, when all

nodes are covered or, C̃r(t) = 1.

Equation (2) is a first class differential equation, and the solution satisfying
the previous properties of C̃r(t) (e.g., increasing, 0 ≤ C̃r(t) ≤ 1), is given by,

C̃r(t) = 1− e−
t
N . (3)

For convenience of the presentation, very frequently in the sequel, the normal-
ized version C̃r(t/N) = 1− e−t will be used instead of C̃r(t).

In the literature, a well known analytical result for the complete graph case,
is that cover time Tr is of the order of N ln(N), [9]. Using Equation (3) it is

now easy to derive that C̃r(N ln(N)) = 1− e−
N ln(N)

N = 1− 1
N

. For large values

of N it is clear that C̃r(N ln(N)) → 1. Another interesting result is that for

t = N , C̃r(N)) = 1− e−
N
N = 1− e−1 = 0.632, which basically means that for

movements equal to the number of the network nodes, on average 63.2% of
the network nodes are visited by the RW agent. These analytical findings are
confirmed later by simulation results presented in Section 5.

Equation (3) was derived assuming a fully connected network. By reducing
rc in geometric random graphs, the number of neighbor nodes decreases and
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therefore a RW agent has fewer choices to move than before. Therefore, the
fraction of nodes that have (not) been visited previously, is expected to devi-
ate from Cr(t) (or 1− Cr(t)). As rc decreases even further, it is getting more
and more difficult for the agent to move to a node not previously visited (due
to the fewer choices of movement), thus increasing the number of revisits and
eventually, decreasing the actual rate under which Cr(t) increases. For exam-
ple, bottlenecks tend to appear in the network topology, [19], likely “forcing”
a RW agent to keep (re)visiting a comparably small number of nodes for a
long time.

In order to account for the aforementioned decrease in the increase rate of
C̃r(t), it is assumed in the sequel that derivative dC̃r(t)

dt
is given by Equation

(4),

dC̃r(t)

dt
=

k

N

(
1− C̃r(t)

)
, (4)

where k ≤ 1 is a positive constant related to the topology characteristics (i.e.,
connectivity radius rc and number of nodes N). The solution of Equation (4)
is given by,

C̃r(t) = 1− e−
k
N

t. (5)

The case of k = 1 corresponds to the fully connected network topology (i.e.,
large values of rc) as it is concluded from Equation (3). Therefore, smaller
values of rc (however large enough for the network to be connected) should
result in smaller values of k. This will be further explored and evaluated using
simulation results presented later in Section 5.

Figure 3.a depicts C̃r(t/N) as it is given by Equation (5) as a function of t/N
for various values of k. It is interesting to note that as k decreases, cover time
increases. For example, for t = N

k
ln(N), C̃r(

N
k

ln(N)) = 1− 1
N

which tends to

zero for large values of N . Let T̃r = N
k

ln(N) be referred to hereafter as the

asymptotic cover time for the RW agent (i.e., limN→+∞ C̃r(T̃r) = 1). Given
that k < 1, it is evident that as rc decreases (the network has fewer links), k
decreases and therefore, the asymptotic cover time T̃r increases by a factor 1

k
.

This observation is graphically presented in Figure 3. It is evident that the first
derivative of coverage is high at the beginning and then it becomes significantly
small, particularly for values of k close to 1. Along with C̃r(t/N) in Figure
3.a, a (dotted) line corresponding to C̃r(t/N) = t/N is also depicted. This line
corresponds to the best (even though frequently not realistic) dissemination
information scenario (i.e., the – artificial – case in which a node not previously
visited is reached after each step). It is interesting to note that the particular
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Fig. 3. C̃r(t/N) and dC̃r(t/N)
dt/N as a function of t/N for various values of k.

case of k = 1 is the one most close to this best scenario. This is basically

the case since for some time at the beginning (small values of t/N) dC̃r(t/N)
dt/N

remains close to 1 for k = 1, as it is also depicted in Figure 3.b. Afterwards,
dC̃r(t/N)

dt/N
decreases (more rapidly than for cases of smaller k) due to frequent

revisits of the RW agent. Simulation results are presented later in Section 5
demonstrating the accuracy of the previous analysis.

4.2 Coverage under the J-RW mechanism

There are basically two issues that need to be explored with respect to the
J-RW mechanism presented in Section 3: (a) for how long should the J-RW
agent stay in State 0 (governed by α); and (b) for how long should the J-RW
agent stay at State 1 (governed by β).

Let’s assume that α is close to 0. This is a trivial case in which the J-RW
mechanism resembles the RW mechanism. This choice is expected to be a
suitable one in topologies of highly connected nodes (large number of neigh-
bors) such that the agent is allowed to move to nodes residing away from the
already covered network parts. This may happen due to its own probabilis-
tic movement within the network. An obvious example is the fully connected
topology, but as it will be shown later using simulation results, this is also
applied for topologies of smaller cennectivity (i.e., smaller values of rc) than
the fully connected topology.

On the other hand, values of α close to 1, mean that the agent will not stay
long in State 0. This eventually means that the agent will not be allowed a
large time period to cover a certain network part. In this case, the agent will
be mostly “jumping” (depending on the value of β) to different network parts
thus failing to exhaustively cover network areas. This reassembles a RW agent
moving over an overlay topology of longer links.

The connectivity of the topology (which for the case of the geometric random
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graphs is related to rc) plays an important role for the investigation of the
appropriate values of β with respect to coverage under the J-RW mechanism.
Highly connected topologies (i.e., comparably high values of rc but not nec-
essarily close to the particular value that the topology is fully connected) are
characterized by significantly small diameters, [19]. In such networks, a RW
agent is not expected to be limited within certain network parts and there-
fore, jumping would not improve coverage. In such cases, β should be close
to 1. On less connected topologies (i.e., topologies of small values of rc but
large enough for the network to be connected) it is expected the RW agent to
frequently revisit nodes due to the topology’s structure (e.g., bottlenecks). In
such a case, β should be small enough to allow the agent to move to different
network parts. On the other hand, too small values of β (e.g., β close to 0)
will eventually result to an agent mostly operating in State 1 (i.e., jumping)
at the expense of exploring more thoroughly the visiting part of the network.

As it can be concluded from the previous discussion, coverage under the J-
RW mechanism is related to rc, α and β. However, an analytical expression for
the coverage considering rc, α and β is difficult to be derived and its further
investigation will be based on simulations presented in the following section.
Let Cj(t) (C̃j(t)) denote the coverage under the J-RW mechanism in a similar
way as Cr(t) (C̃r(t)) denotes coverage under the RW mechanism. After a long
time, it is reasonable to assume that the J-RW agent will have moved to all
different network parts and have covered (on average) the same proportion
of network nodes within each visited network part. Therefore, at time t it is
expected that (on average) the fraction of non-visited neighbor nodes of the
node that the agent is located at, will be N × Cj(t). Following an analysis
similar to the one presented for the case of the RW mechanism, the following
analytical expression for coverage under the J-RW can be written

C̃j(t) = 1− e−
k′
N

t, (6)

where k′ is a positive constant depending on the particulars of the topology
(i.e., rc) and the J-RW mechanism (i.e., α and β), as it will be also shown in
the following section using simulation results.

5 Simulation Results and Evaluation

A simulation program exploiting the capabilities of the Omnet++ simulation
platform, [21], was created for the simulation purposes. The aim of the sim-
ulation results presented is this section is twofold: to confirm the analytical
findings of the previous section and to shed more light on the behavior of the
J-RW mechanism (mostly in comparison to the RW mechanism) for cases not
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covered by the analysis.

There are multiple simulation runs executed under specific sets of parameters
for the network and the investigated schemes. During each simulation run there
is a large-scale node set up, with node population varying from 100 to 3000
nodes depending on the case. The nodes are placed at random locations on a
square plain [0, 1]× [0, 1]. The random positions (xu, yu) of each node u ∈ V
are chosen within the set [0, 1] using the uniform probability distribution. Each
node u is aware about its own position: (xu, yu). Each node is connected to
some other node if the euclidean distance among them is less or equal to rc.
Clearly, for rc ≥

√
2, the resulting network is fully connected. Depending on

N (the size of the network), the lower bound of rc for which the topology
remains connected varies (typically decreases as N increases). Four different
values of rc (0.05, 0.1 0.5 and 1.0) are considered in the sequel for those
topologies of N = 1000. Note that all four values are less than

√
2 ≈ 1.4, since

a fully connected network is not representative of the wireless environment
(e.g., wireless sensor networks) that is considered here.

Coverage is the main focus in the result to be presented. These results cor-
respond to one experimentation instance (apart from some cases which are
explicitly mentioned) and not averaged values. Averaging would have given a
macroscopic view but it would also hide important details.

5.1 The RW Mechanism

An important contribution in the analytical part of this paper, is the derivation
of the coverage in a fully connected network (i.e., rc ≥

√
2), shown in equation

3. Figure 4.a presents coverage as a function of t (i.e., the number of movements
of the random walker) in fully connected network topologies of 100, 500, 1000
and 3000 nodes. For each network topology, the analytically derived value
C̃r(t) is also depicted. It is important to note that the analytical findings are
almost identical to the simulation results. Figure 4.b presents (normalized)
coverage as a function of t/N . As before, it is demonstrated that C̃r(t/N) is
almost identical to Cr(t/N) as it is concluded by observing simulation results
for the case of a fully connected topology.

The fact that all curves follow the same pattern as it is illustrated in Figure
4.b allows for certain observations. First, it is obvious that for about 0.1N
movements (see dotted line at t/N = 0.1 depicted in Figure 4.b), the random
walker has a very good performance (the number of revisits remains small)
in the sense that a new movement most likely results in visiting a node that
has not been visited before. At time t = N , it is interesting to see that for
almost all cases, 63.2% of the total number of network nodes has been covered
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Fig. 4. Coverage and normalized coverage under the RW mechanism for fully con-
nected topologies of various network sizes.

as it was expected from the analysis presented in the previous section. For
N = 100, t = N ln(N) corresponds to t/N = ln(100) ≈ 4.6 in Figure 4.b.
As expected from the analysis (and also depicted in Figure 4.b), coverage is
about 1 − 1/N = 99%, which is very close to that depicted using simulation
results.
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Fig. 5. Coverage for topologies of 1000 nodes and various values of rc (0.05, 0.1, 0.5
and 1.0). C̃r(t) is also depicted for corresponding values of k (0.3, 0.7, 0.9 and 1.0).

Figure 5 presents simulation results for various topologies derived for rc = 0.05,
0.1, 0.5 and 1.0. The first observation is that for the appropriate value of k
(i.e. k = 0.3 for rc = 0.05, k = 0.7 for rc = 0.1, k = 0.9 for rc = 0.5
and k = 1.0 for rc = 1.0), the analytical expression for coverage, given by
Equation (5) (i.e., C̃r(t) = 1− e−kt) approximates well the simulation results.
Another interesting observation is that for rc > 0.1, the appropriate value of
k is very close to 1.0, This is basically due to the fact that the number of
neighbors (on average) increases much faster than rc (it is πr2

cN on average)
and, thus, a small increase in rc results in a large increase of the node degree
(number of neighbors). For N = 1000 and rc = 0.1, there are (on average)
about 31 neighbor nodes for each node which implies that the topology is
highly connected. As rc increases further, it is interesting to observe that the
coverage approaches closely 1− e−t, even for cases for which rc is significantly
smaller that

√
2 ≈ 1.4.
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5.2 The J-RW Mechanism

Figure 6 presents simulation results under the J-RW mechanism for a network
of 1000 nodes and various values of rc and α. β has been kept constant and
equal to 0.4, which means that as soon as State 1 is assumed (i.e., directional
movement) the agent moves (on average) for 2-3 nodes towards a certain
direction (more details are provided in the description of the J-RW mechanism
in Section 3) before State 0 is assumed. In Figure 6.a, coverage under the RW
mechanism is clearly depicted and it is less than the coverage under J-RW for
any value of α (e.g., 0.2, 0.4, 0.6 and 0.8). Note that the case depicted in Figure
6.a corresponds to a topology that is not highly connected (rc = 0.05), thus
even a relatively small value of β = 0.4 results in the J-RW doing significantly
long jumps to get a perfomance improvement.
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Fig. 6. Coverage for various values of α (β = 0.4) as a function of t/N .

As the topology becomes more connected (rc increases), the advantage of the
J-RW mechanism is less obvious. For example, for the case depicted in Figure
6.b (rc = 0.1), coverage under the RW mechanism is still smaller than that
under the J-RW mechanism (for any value of α), even though not that smaller
as before, while for the case depicted in Figure 6.c (rc = 0.5), coverage under
the RW mechanism is now larger than that under the J-RW mechanism (for
any value of α). As rc increases further, coverage under the RW mechanism is
clearly higher than that under the J-RW mechanism for the specific combina-
tion of values of α and β. This is clearly depicted in Figure 6.d for the case of
rc = 1.0 and can be attributed to the fact that the RW mechanism can now
fully exploit the increased connectivity of the graph. In particular, subsequent
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movements of the RW agent in highly connected graphs are similar to J-RW
agent movements in low connectivity graphs (in terms of how far in physical
distance the agent moves). Thus, there is no coverage benefit when introduc-
ing J-RW agent in highly connected graphs (as compared with RW agent), on
the contrary the J-RW mechanism of ‘locking’ in state 1 tends to push the
agents away towards the physical boundaries of the examined network and
thus result in an actual decrease in network coverage.

Another interesting aspect is the shape of the curve corresponding to the J-
RW mechanism. As it can be observed in 6, it clearly follows the pattern of

the analytical expression 1− e−
k′
N

t, for suitably selected values of k′, as it was
already mentioned in Section 4. This is more clearly seen in the simulation
results depicted in Figure 7 along with plots for C̃r(t/N) and C̃j(t/N). It is ob-
vious that simulation results follow the same pattern for the J-RW mechanism
as it is also the case (also shown before) for the RW mechanism.
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Fig. 7. Simulation and analytical results for a topologies of 1000 nodes under the
RW and the J-RW mechanism.

The particular value of β that was used for the simulation results depicted in
Figure 6 was fixed (β = 0.4). Figure 8 presents simulation results (coverage)
as a function of both α and β (their values in the range [0.2, 0.8]) at time
t = N and Figure 9 at time t = N ln(N).

The results depicted in Figure 8.a correspond to rc = 0.05. About 25% of the
network is covered under the RW mechanism while coverage for this case under
the J-RW mechanism varies from 30% to 55% depending on the particular
values of α and β. For rc = 0.1, as depicted in Figure 8.b, coverage under
the RW mechanism is again smaller than that under the J-RW mechanism
for any selection of α and β. In Figure 8.c (rc = 0.5), it is interesting to
see that coverage under the RW mechanism is greater than that under the
J-RW mechanism, apart from those cases that β is high (e.g., 0.8) and α is
small (e.g., 0.2). In such cases the high value of β results in relatively small
jumps within the network, which are small enough to be effective in such a
highly connected network. Any smaller value of beta would result in larger
jumps within the highly connected graph, ‘pushing’ again the J-RW agents
towards the boundaries of the network and reducing performance. Thus the
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J-RW agent is able to move now between different ‘neighbor areas’ and explore
them efficiently.
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Fig. 8. Coverage for various values of α and β at t = N .

As rc increases further, as it is the case in Figure 8.c for rc = 1.0, it is obvious
that there is no combination of α and β in the given range of values such that
coverage under the J-RW mechanism be greater than coverage under the RW
mechanism. At this point it is important to note that the J-RW mechanism
becomes equivalent to the RW mechanism for α = 0 and β = 1 (which means
that the mechanism always stays at State 0).

Simulation results for t = N ln(N) are depicted in Figure 9. The observations
are identical to those regarding Figure 8 apart from the fact that coverage
is close to 1 (which is expected given the analytical results). Similarly to the
case of t = N , for t = N ln(N) coverage under the J-RW mechanism is larger
than that under the RW for topologies of small values of rc. It is interesting to
observe in Figure 9.a that for large values of both α and β (e.g., 0.8) coverage
under the J-RW can be close to 98%, which is a significant improvement
when compared to coverage under the RW mechanism that is close to 86%.
In all other cases and particularly those for which coverage under the RW
mechanism is close to 100%, coverage under the J-RW mechanism is close to
100% for values of β not that small (long jumps should be avoided in such
highly connected topologies). Note that values for α and β around 0.5, appear
to be an appropriate selection, as it is observed from the simulation results
depicted in both Figure 8 and Figure 9, since: (a) for topologies of small rc,
coverage under the RW mechanism is greater than coverage under the J-RW
mechanism; and (b) for all other cases, coverage is almost the same under
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Fig. 9. Coverage for various values of α and β at t = N ln(N).

either mechanism.

6 Conclusions

Random walk based information dissemination or search is a non trivial prob-
lem in large scale, wireless network environments like wireless sensor and ad
hoc networks. The simple random walk (RW) methodology, already proposed
for use in such environments, is associated with high inefficiencies due to fre-
quent already covered nodes revisits. An acceleration mechanism for covering
the network with a RW agent, the Jumping Random Walk, has been proposed
to accelerate coverage of the disseminating agent within the network. Since
the traditional random walk mechanism requires a significant amount of time
before covering the entire network in sparse network topologies, as it is com-
monly the case is wireless environments, the jumping random walk can provide
a significant ’boost’ in the cover process. Both analytical and experimental re-
sults provide for the correctness of our approach and exhibit the significant
advantages in terms of coverage percentages provided by the jumping random
walk agent.
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