PRACTICAL BYZANTINE FAULT

TOLERANCE
(THE BYZANTINE GENERALS PROBLEM)

The Byzantine Generals Problem
_ (Lamport, Shostak, Pease, 1982)

71 The setting: There are n generals, one of them is the
commanding general. Generals can send (and receive
messages from other generails)

01 The problem: Develop a protocol for the commanding general to
send an order to his n-1 lieutenant generals such that
-IC1. All loyal lieutenants obey the same order.
-IC2. If the commanding general is loyal, then every loyal
lieutenant obeys the order he sends.

11 The adversary: Any of the generals could be traitors, i.e., could
send inconsistent messages regarding the order to the other
generals

0 Note nuanced difference from consensus problem

The Byzantine Generals Problem

] Attack!
No, wait!
. Surrender!

Impossibility with 3 generals,
1 traitor

Attack! For n=3, m=1 there is no

solution
COMMANDER

Attack?
Retreat? "he said 'retreat’ W
— W)

Fig.1. Lieutenant 2 a traitor.

Impossibility Results

For n = 3 generals and 1 traitor, there is no solution
(protocol). This is because a loyal lieutenant cannot
distinguish who is the traitor when he gets conflicting
information from the commander and the other lieutenant.
Let's call this the 3-Generals Problem.

BGP for n < 3m+1 generals and m traitors can be reduced
to the 3 - generals problem, with each of the Byzantine
generals simulating at most m lieutenants and taking the
same decision as the loyal lieutenants they simulate. Thus
BGP for n < 3m+1 and m traitors is not solvable.

Reaching approximation is as hard as reaching agreement.

A Solution with oral messages for n>3m

A solution for BGP with n>3m nodes and up to m traitors, is
given

Oral message system properties:

A1l. Every message that is sent is delivered correctly. -> No message
loss.

A2. The receiver of a message knows who sent it. -> Completely
connected network with reliable links(due to A1).

A3. The absence of a message can be detected. -> Synchronous
system only.

Every general can send a message to every other general.

A Solution with oral messages for n>3m

Solution in brief:

uses a function “majority” which takes in a set of values and returns the
value that is the majority among them (a possible implementation -
median of the values).

uses 'rounds' in each of which a general broadcasts the value he has
received in the earlier round to all the other generals through whom
the value has not passed before he received it.

when returning from the round, for each j, any two loyal lieutenants
receive the same vector of values {v1, ... v(n-1)}. As the majority of the
loyal lieutenants' values in these is ensured, applying the majority
function on {v1, ... v(n-1)} to obtain vn preserves the above fact (that
any two loyal lieutenants receive the same vector of values {v1, ... vn}).
This ensures that BGP is solved.

Note: If the commander is not a traitor, we can be done in 2 rounds. If
the commander is a traitor, you may need up to m+1 rounds.

BGP Solution with Oral Messages

o
Algorithm OM(0).

(1) The commander sends his value to every lieutenant.
(2) Each lieutenant uses the value he receives from the commander, or uses the value
RETREAT if he receives no value,

Algorithm OM(m), m >0,

(1) The commander sends his value to every lieutenant.

(9) For each i, let v; be the value Lieutenant i receives from the commander, or else be
RETREAT if he re:eives no value, Lieutenant i acts as the commander in Algorithm
OM(m ~ 1) to send the value v; to each of the n — 2 other lieutenants.

(3) For each i, and each j # i, let v; be the value Lieutenant i received from Lieutenant J
in step (2) (using Algorithm OM(m - 1)), or else RETREAT if he received no such
value. Lieutenant : uses the value majority(vy, ..., Un-1).

A solution with (unforgable) signed
messages

The difficulty of BGP is in the ability of a traitor lieutenant to
lie about the commander's order.

If we can restrict this ability, BGP is solvable with any number of
traitors as long as their maximum number is known.

Signed messages:

Extra A4 assumption needed in addition to the 3 assumptions made
in the solution with oral messages

A loyal general's signature cannot be forged, any alteration can
be detected. This means a traitor can drop a message, but can't
change it

Any one can verify the authenticity of a signature. This means that

no one can fool a general

Again, assume a fully connected message graph among the
generals.

A solution with (unforgable) signed messages
with m traitors and any n generals

Solution in brief:

Uses a majority-like function called choice.
The commander sends a signed order to lieutenants

If a lieutenant receives an order from someone (either from
commander directly, or from other lieutenants), he verifies it
and then puts it in a set V if it's not already there. Relay the
order if there are less than m distinct signatures on the
order.

Everyone halts at round m+1, and uses choice(V) as the
desired action

A solution with (unforgable) signed messages
with m traitors and any n generals

The algorithm is to make all loyal lieutenants keep the same set of V,
thus choice(V) is the same.

If the commander is loyal, all loyal lieutenants have the correct order by
round 1 and by unforgablity no more orders can be produced.

If the commander is not loyal, by running the algorithm to round m+1,
at least one loyal lieutenant will get the order before round m (because
there are only m traitors). And that loyal lieutenant will send it to all
others. In short, if one loyal lieutenant gets an order, all loyal lieutenants
will get it in the next round.

A solution with (unforgable) signed messages
with m traitors and any n generals

S s
Algonithm SM(m).
Initially V; = @,
(1) The commander signs and sends his value to every lieutenant,
(2) For each 1;

(A) If Lieutenant i receives a message of the form v:0 from the commander and he
has not yet received any order, then

(i) he lets V; equal (v};
fii) he sends the message v:0:1 to every other lieutenant,

(B) If Lieutenant i receives a message of the form v:0:jy: +++ 1 ji and vis not in the set
V‘. then

(i) he adds v to V;; L |
(if) if k < m, then he sends the message 0:0:7y: e+ ficd to every lieutenant other
thnnjlo”"jk-

(9) Por each i; When Lieutenant i wil receive no more messages, he obeys the order
chowe(V‘).

BGP Theorems

Theorem 1. For any m, Algorithm OM(m) satisfies
conditions IC1 and IC2 if there are more than 3m
generals and at most m traitors

Theorem 2. For any m, Algorithm SM(m) solves the
Byzantine Generals Problem if there are at most m
traitors

Both require message paths of length up to m+1
(very expensive)

Both require that absence of messages must be
detected (A3) via time-out (vulnerable to DoY)

Relaxing the assumption on full-
connectivity

Previous 2 solutions can be extended to relax the assumption
that the message graph among the generals is fully connected.

Oral messages: Solution with oral messages is extended to

solve BGP with up to m traitors in a p-regular graph with m>0
and p>3m-1.

Unforgable messages: Can solve BGP with up to m traitors in
(m+d-1) rounds, where d is the diameter of the subgraph of
loyal generals.

Assumption: subgraph of loyal generals is connected (this can be
relaxed by relaxing the problem statement of BGP)

Practical use of BGP in real world
systems

The best way to provide fault-tolerant decision-making in
redundant systems is by majority voting.

A faulty input device may generate meaningless inputs, but majority
voting would ensure that the same meaningless values are used.

For majority voting to yield a reliable system, the following 2
conditions must be satisfied

All non-faulty processors must use the same input value

If input unit is non-faulty, then all non-faulty processes use the value it
provides

But these are just the requirements of the BGP!

So we can apply the above solutions to the BGP in real-life

Practicality of assumptions made?

A1l. Every message that is sent is delivered correctly. This
means no message loss.

In real life, link failures occur. However, link failures are
indistinguishable from failures of processors, therefore we
can count the link failures as one of the m.

Signed message is insensitive to link failures because no
message can be forged even if links fail.

A2. The receiver of a message knows who sent it. This means

we have a completely connected network with reliable links
(due to Al).

What is actually required is that no traitor can forge a non-
faulty process' message.

Practicality of assumptions made?

A3. The absence of a message can be detected. This means
we have a synchronous system only.

In an asynchronous system, this condition cannot be satisfied.
It is usually implemented via time-outs.

A4. A loyal general's signature cannot be forged, any
alteration can be detected.
If processor is non-faulty, then no faulty processor can generate

S(M). This can never be completely guaranteed, but its probability
can be reduced

Given M and X, any one can verify if X == §(M). This is doable in
real world.

Questions

Graph connectivity. Are p-regular topologies that
frequent ¢ Can we extend the BGP solutions to any
network topology ¢ Has it been extended to any
other topologies ¢

Value of m: How would one obtain a reasonable
value for maximum m in a practical system (note
that this maximum number is required even in the
solution with signed messages).

Synchronous/asynchronous systems: How many
synchronous system do we really use (SMP
machines, and?) How about asynchronous systems ¢

Questions

Further work after this paper:

What other solutions to BGP have been proposed after
this paper ¢

Has any attempt been made to extend the BGP
solutions to asynchronous systems to ensure 'some
degree/probability’ of reliability 2

References on next slide

Bounds on best possible BGP solution (in terms of
messages) ¢

Related follow-on work

Impossibility /necessity results

Fischer, M. J., Lynch, N. A., and Paterson, M. S. ““Impossibility of
Distributed Consensus with One Faulty Process,”" J. ACM 32, 2 (April
1985), 374--382.

Doley, D., Dwork, C., and Stockmeyer, L. **On the Minimal
Synchronism Needed for Distributed Consensus,” J. ACM 34, 1
(January 1987), 77--97.

Approximate agreement

Bracha, G. "*An O(log n) Expected Rounds Randomized Byzantine
Generals Protocol,”" J. ACM 34, 4 (October 1987), 910--920.

Bracha, G. and Toueg, S. “*Asynchronous Consensus and Broadcast
Protocols," J. ACM 32, 4 (October 1985), 824--840.

Ben-Or, M. “*Another Advantage of Free Choice: Completely
Asynchronous Agreement Protocols,” ACM Symposium on Principles of
Distributed Computing, 1983, 27--30.

Related follow-on work

Approximate agreement (cont’d)

Doley, D., Lynch, N. A,, Pinter, S. S., Stark, E. W., and Weihl, W. E.
“*Reaching Approximate Agreement in the Presence of Faults,” J.

ACM 33, 3 (July 1986), 499--516.

Doley, D., Ruediger, R., and Strong, H. R. “*Early Stopping in
Byzantine Agreement," J. ACM 37, 4 (October 1990), 720--741.

Hadzilacos, V. and Halpern, J. Y. **Message-Optimal Protocols for
Byzantine Agreement," ACM Symposium on Principles of Distributed

Computing, 1991, 309--323.

Halpern, J. Y., Moses, Y., and Waarts, O. **A Characterization of
Eventual Byzantine Agreement," ACM Symposium on Principles of

Distributed Computing, 1990, 333--346.

Related follow-on work

Failure detectors

Chandra, T. D., Hadzilacos, V., and Toueg, S. *"'The Weakest Failure
Detector for Solving Consensus,” ACM Symposium on Principles of
Distributed Computing, 1992, 147--158.

Chandra, T. D. and Toueg, S. ““Unreliable Failure Detectors for
Asynchronous Systems," ACM Symposium on Principles of Distributed
Computing, 1991, 325--340.

Practical Byzantine Fault Tolerance

Malicious attacks and software errors that can cause
arbitrary behaviors of faulty nodes are increasingly
common

Previous solutions assumed synchronous system and /or
were too slow to be practical
- e.g. Rampart, OM, SM

This paper describes a new replication algorithm that
tolerates Byzantine faults and is practical

asynchronous environment, better performance

PBFT System Model

Asynchronous distributed system where nodes are
connected by a network

Byzantine failure model

- faulty nodes behave arbitrarily
- independent node failures

Cryptographic techniques to prevent spoofing and
replays and to detect corrupted messages

Very strong adversary

Service Properties

Any deterministic replicated service with a state and
some operations

Assuming less than one-third of replicas are faulty

- safety (linearizability)
- liveness (assuming delay(t) >> t)

Access control to guard against faulty client

The resiliency (3f+1) of this algorithm is proven to be
optimal for an asynchronous system

The Algorithm

Basic setup:

- Rl =3f+1

- A view is a configuration of replicas (a primary
and backups): p = v mod |R

- Each replica is deterministic and starts with the
same initial state

- The state of each replica includes the state of the
service, a message log of accepted messages, and
a view number

The Algorithm

request fpre—preparei prepare commit : reply

[et (=] (@)

Figure 1: Normal Case Operation

1. A client sends a request to invoke a service
operation to the primary

(REQUEST, 0, 2, C) ..
0= requested operation
t= timestamp
c= client
6= signature

The Algorithm
—

request fpre—preparei prepare commit |; reply

Figure 1: Normal Case Operation

11 2. The primary multicasts the request to the backups
(three-phase protocol)

The Algorithm

request fpre—preparei prepare commit | reply
) \ | | :m— -
1 : ; '
2
3 o

Figure 1: Normal Case Operation

3. Replicas execute the request and send a reply to
the client

(REPLY, v, i,6,1, T)a,-
0= requested operation V= view
t= timestamp I= replica
c= client r=result

6= signature

The Algorithm

request gpre—preparei prepare ! commit {| reply
) \ | | :ﬁ- -
1 1 .
2
3 »£

Figure 1: Normal Case Operation

4. The client waits for f+1 replies from different
replicas with the same result; this is the result of the
operation

Three-phase Protocol

1.pre-prepare (pp)
- primary assigns n to the request; multicasts pp
- request message m is piggy-backed (request itself is not
included in pp)
- accepted by backup if: ((PREFREPARE, v,1,d)g, ,m)
- the messages are properly signed;
- it is in the same view v;
- the backup has not accepted a pp for the same v and n
with different d
-h<=n<=H
- if accepted, then replica i enters prepare phase

Three-phase Protocol

2.prepare (p)
- if backup accepts pp, multicasts p
- accepted by backup if: (PREPARE, 1, n, d, i}y,

- message signature is correct;

- in the same view;

- h<= n<=H
- prepared(m,v,n,i) is true if i has logged:

- request message m

-pp forminyv

- 2f matching prepares with the same (v,n,d)
- if prepared becomes true, multicasts commit message and
enters commit phase

Three-phase Protocol

Pre-prepare — prepare phases ensure the following

invariant:

- if prepared(m,v,n,i) is true then prepared(m’,v,n,|) is false for any
non-faulty replica | (inc. i=]) and any m’ such that D(m’) 1= D(m)
i.e. ensures requests in the same view are totally
ordered (over all non-faulty replicas)

Three-phase Protocol

3.commit
- accepted by backup if:

- message signature is correct;

- in the same view;

- h<=n<=H
- committed(m,v,n) is true iff prepared(m,v,n,i) is true for all i in
some set of f+1 non-faulty replicas
- committed-local(m,v,n,i) is true iff prepared(m,v,n,i) is true and
i has accepted 2f+1 matching commits
- replica i executes the operation requested by m after
committed-local(m,v,n,i) is true and i’s state reflects the
sequential execution of all requests with lower n

(comMIT, v, n, D(m), 1),

Three-phase Protocol

Commit phase ensures the following invariant:

- if committed-local(m,v,n,i) is true for some non-faulty i, then
committed(m,v,n) is true

i.e. any locally committed request will eventually
commit at f+1 or more non-faulty replicas

The invariant and view change protocol ensure that
non-faulty replicas agree on the sequence numbers of
requests that commit locally even if they commit in
different views at each replica

Prepare — commit phases ensure requests that commit
are totally ordered across views

The Algorithm

Garbage Collection

must ensure safety still holds after discarding messages from
log
generates checkpoint (a snapshot of the state) periodically

checkpoint: multicast checkpoint message with seq number and digest
of state

if a replica receives 2f+1 matching checkpoint messages, the
checkpoint becomes stable and any messages associated with seq
numbers less than that of the checkpoint are discarded

View Changes
provides liveness

triggered by timeout to prevent backups from waiting
forever

with commit phase invariant, view change guarantees total
ordering of requests across views (by exchanging
checkpoint information across views)

The Algorithm

The algorithm provides safety if all non-faulty
replicas agree on the sequence numbers of requests
that commit locally

To provide liveness, replicas must change view if they
are unable to execute a request
avoid view change that is too soon or too late

faulty replicas can’t force frequent view changes; liveness
guaranteed unless message delays grow faster than the
timeout period indefinitely

Optimizations

Reducing Communication

avoids sending most of large replies
- only designated replica sends result

reduces number of message delays for an operation
invocation from 5 to 4

execute a request tentatively if prepared

client waits for matching 2f+1 tentative replies
improves performance of read-only operation

client multicasts a read-only request to all

replicas execute it immediately in tentative state

send back replies after requests reflected in the tentative state
commit

client waits for 2f+1 replies with the same result
treating small and big requests differently

Optimizations

Cryptography
- digital signatures used only for view-change and new-view

messages (but view change is not implemented!)

- authenticate all other messages using message authentication
codes (MACs)

Implementation

The Replication Library

- basis for any replication service
- client: invoke

- Server: execute, make_checkpoint, delete_checkpoint, get_digest,
get_checkpoint, set_checkpoint

- point-to-point communication using UDP

- view change and retransmission can be used to recover from
lost messages

- did not implement view-change or retransmission, but claims
this does not compromise the accuracy of the results

Implementation
—

o1 A Byzantine-Fault-tolerant File System

replica 0

safsd

replication
hibrary

chent

relay
Andrew —
benchmark replication

kernel NFS chent

kernel VM

replica 1'|‘

snfsd

replication
W library

Lkernel VM

Figure 2: Replicated File System Architecture.

Implementation

Maintaining Checkpoints

- snfsd uses direct file system operations on memory mapped
file system to preserve locality

- checkpoint record (n, list of modified blocks, d) that keeps
update information for the corresponding checkpoint

- snfsd keeps a copy-on-write bit for every 512-byte block
- copy-on-write technique to reduce space and time overhead
in maintaining checkpoints

Computing Checkpoint Digests
- AdHash: sum of digest of each block (index+value)
- efficient for a small number of modified blocks

Performance Evaluation

Micro-benchmark: invoke null-op; provides service
independent evaluation of the performance of the
replication library

Andrew-benchmark: emulates a software
development workload; compares BFS with NFS V2
and BFS without replication

Measured normal-case behaviors (i.e. no view
changes) in an isolated network with 4 replicas

the first correct replicated service in asynchronous
environment like internet

can tolerate Byzantine faults (liveness) with comparable
normal-behavior performance (when there are no faults)

Performance Evaluation
N

arg./res. replicated without
(KB) read-write read-only | replication
00 | 335(309%) | 1.62(08%) | 082
4/0 14.19 (207%) | 6.98 (51%) 462
04 | 801(72%) | 504(27%) | 466

Table 1: Micro-benchmark results (1n milliseconds); the
percentage overhead 1s relative to the unreplicated case.

BES
phase strict r/olookup | BFS-nr

1 055(57%) | 0.47(34%) 0.35
2 024 (82%) | 7.91(56%) 5.08
3 7.24 (18%) 6.45 (6%) 6.11
B 8.77 (18%) 7.87 (6%) 741
5 38.68 (20%) | 38.38 (19%) | 32.12

total | 64.48 (26%) | 61.07 (20%) | 51.07

Table 2: Andrew benchmark: BFS vs BFS-nr. The times

are 1n seconds.

BFS
phase strict r/o lookup | NFS-std
1 0.55 (-69%) | 0.47 (-73%) 1.75
2 024 (-2%) | 7.91(-16%) 046
3 7.24 (35%) | 6.45 (20%) 536
- 8.77 (32%) | 7.87 (19%) 6.60
5 38.68 (-2%) | 38.38 (-2%) | 3935
total | 6448 (3%) | 61.07 (-2%) | 6232

Table 3: Andrew benchmark: BFS vs NFS-std. The

times are 1n seconds.

Some criticisms

No mention is made on how the group is actually formed. Is it static
or dynamic?

Pushing checkpointing to the application level makes the application
harder. Checkpoints and copy on write seem a must.

That’s probably why the authors took the memory-mapped file direction for
NFS implementation, instead of the much simpler layer over an existing OS
file system. This makes it hard to port existing applications to such a
platform.

Storing all application replies to be able to retransmit them to the
clients might not be efficient enough.

Database appls might have large result-sets and that would put certain
space /time requirements on each replica peer.

The comparison with NFS in not apples-to-apples.

Conclusion

PBFT is the first replicated system that works correctly
in asynchronous system and it improves performance
of previous algorithms by more than an order of
magnitude

Prior SMR algorithms were too slow to be used in
practice (proportional to the number of faulty nodes
vs. number of phases)

