
PRACTICAL BYZANTINE FAULT

TOLERANCE
(THE BYZANTINE GENERALS PROBLEM)

The Byzantine Generals Problem

(Lamport, Shostak, Pease, 1982)

 The setting: There are n generals, one of them is the

commanding general. Generals can send (and receive

messages from other generals)

 The problem: Develop a protocol for the commanding general to

send an order to his n-1 lieutenant generals such that

-IC1. All loyal lieutenants obey the same order.

-IC2. If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.

 The adversary: Any of the generals could be traitors, i.e., could

send inconsistent messages regarding the order to the other

generals

 Note nuanced difference from consensus problem

The Byzantine Generals Problem

Attack!

Wait…

Attack!

Attack!
No, wait!

Surrender!

Wait…

Impossibility with 3 generals,

1traitor

Attack!

Attack?

Retreat?

• For n=3, m=1 there is no

solution

Impossibility Results

 For n = 3 generals and 1 traitor, there is no solution

(protocol). This is because a loyal lieutenant cannot

distinguish who is the traitor when he gets conflicting

information from the commander and the other lieutenant.

Let's call this the 3-Generals Problem.

 BGP for n < 3m+1 generals and m traitors can be reduced

to the 3 - generals problem, with each of the Byzantine

generals simulating at most m lieutenants and taking the

same decision as the loyal lieutenants they simulate. Thus

BGP for n < 3m+1 and m traitors is not solvable.

 Reaching approximation is as hard as reaching agreement.

A Solution with oral messages for n>3m

 A solution for BGP with n>3m nodes and up to m traitors, is

given

 Oral message system properties:

 A1. Every message that is sent is delivered correctly. -> No message

loss.

 A2. The receiver of a message knows who sent it. -> Completely

connected network with reliable links(due to A1).

 A3. The absence of a message can be detected. -> Synchronous

system only.

 Every general can send a message to every other general.

A Solution with oral messages for n>3m

 Solution in brief:

 uses a function “majority” which takes in a set of values and returns the

value that is the majority among them (a possible implementation -

median of the values).

 uses 'rounds' in each of which a general broadcasts the value he has

received in the earlier round to all the other generals through whom

the value has not passed before he received it.

 when returning from the round, for each j, any two loyal lieutenants

receive the same vector of values {v1, ... v(n-1)}. As the majority of the

loyal lieutenants' values in these is ensured, applying the majority

function on {v1, ... v(n-1)} to obtain vn preserves the above fact (that

any two loyal lieutenants receive the same vector of values {v1, ... vn}).

This ensures that BGP is solved.

 Note: If the commander is not a traitor, we can be done in 2 rounds. If

the commander is a traitor, you may need up to m+1 rounds.

BGP Solution with Oral Messages

A solution with (unforgable) signed

messages

 The difficulty of BGP is in the ability of a traitor lieutenant to

lie about the commander's order.

 If we can restrict this ability, BGP is solvable with any number of

traitors as long as their maximum number is known.

 Signed messages:

 Extra A4 assumption needed in addition to the 3 assumptions made

in the solution with oral messages

 A loyal general's signature cannot be forged, any alteration can

be detected. This means a traitor can drop a message, but can't

change it

 Any one can verify the authenticity of a signature. This means that

no one can fool a general

 Again, assume a fully connected message graph among the

generals.

A solution with (unforgable) signed messages

with m traitors and any n generals

 Solution in brief:

 Uses a majority-like function called choice.

 Τhe commander sends a signed order to lieutenants

 Ιf a lieutenant receives an order from someone (either from

commander directly, or from other lieutenants), he verifies it

and then puts it in a set V if it's not already there. Relay the

order if there are less than m distinct signatures on the

order.

 Everyone halts at round m+1, and uses choice(V) as the

desired action

 The algorithm is to make all loyal lieutenants keep the same set of V,

thus choice(V) is the same.

 If the commander is loyal, all loyal lieutenants have the correct order by

round 1 and by unforgablity no more orders can be produced.

 If the commander is not loyal, by running the algorithm to round m+1,

at least one loyal lieutenant will get the order before round m (because

there are only m traitors). And that loyal lieutenant will send it to all

others. In short, if one loyal lieutenant gets an order, all loyal lieutenants

will get it in the next round.

A solution with (unforgable) signed messages

with m traitors and any n generals

A solution with (unforgable) signed messages

with m traitors and any n generals

BGP Theorems

 Theorem 1. For any m, Algorithm OM(m) satisfies
conditions IC1 and IC2 if there are more than 3m
generals and at most m traitors

 Theorem 2. For any m, Algorithm SM(m) solves the
Byzantine Generals Problem if there are at most m
traitors

 Both require message paths of length up to m+1
(very expensive)

 Both require that absence of messages must be
detected (A3) via time-out (vulnerable to DoS)

Relaxing the assumption on full-

connectivity

 Previous 2 solutions can be extended to relax the assumption

that the message graph among the generals is fully connected.

 Oral messages: Solution with oral messages is extended to

solve BGP with up to m traitors in a p-regular graph with m>0

and p>3m-1.

 Unforgable messages: Can solve BGP with up to m traitors in

(m+d-1) rounds, where d is the diameter of the subgraph of

loyal generals.

 Assumption: subgraph of loyal generals is connected (this can be

relaxed by relaxing the problem statement of BGP)

Practical use of BGP in real world

systems

 The best way to provide fault-tolerant decision-making in

redundant systems is by majority voting.

 A faulty input device may generate meaningless inputs, but majority

voting would ensure that the same meaningless values are used.

 For majority voting to yield a reliable system, the following 2

conditions must be satisfied

 All non-faulty processors must use the same input value

 If input unit is non-faulty, then all non-faulty processes use the value it

provides

 But these are just the requirements of the BGP!

 So we can apply the above solutions to the BGP in real-life

Practicality of assumptions made?

 A1. Every message that is sent is delivered correctly. This

means no message loss.

 In real life, link failures occur. However, link failures are

indistinguishable from failures of processors, therefore we

can count the link failures as one of the m.

 Signed message is insensitive to link failures because no

message can be forged even if links fail.

 A2. The receiver of a message knows who sent it. This means

we have a completely connected network with reliable links

(due to A1).

 What is actually required is that no traitor can forge a non-

faulty process' message.

Practicality of assumptions made?

 A3. The absence of a message can be detected. This means

we have a synchronous system only.

 In an asynchronous system, this condition cannot be satisfied.

It is usually implemented via time-outs.

 A4. A loyal general's signature cannot be forged, any

alteration can be detected.

 If processor is non-faulty, then no faulty processor can generate

S(M). This can never be completely guaranteed, but its probability

can be reduced

 Given M and X, any one can verify if X == S(M). This is doable in

real world.

Questions

 Graph connectivity. Are p-regular topologies that

frequent ? Can we extend the BGP solutions to any

network topology ? Has it been extended to any

other topologies ?

 Value of m: How would one obtain a reasonable

value for maximum m in a practical system (note

that this maximum number is required even in the

solution with signed messages).

 Synchronous/asynchronous systems: How many

synchronous system do we really use (SMP

machines, and?) How about asynchronous systems ?

Questions

 Further work after this paper:

 What other solutions to BGP have been proposed after

this paper ?

 Has any attempt been made to extend the BGP

solutions to asynchronous systems to ensure 'some

degree/probability' of reliability ?

 References on next slide

 Bounds on best possible BGP solution (in terms of

messages) ?

Related follow-on work

 Impossibility/necessity results

 Fischer, M. J., Lynch, N. A., and Paterson, M. S. ``Impossibility of

Distributed Consensus with One Faulty Process,'' J. ACM 32, 2 (April

1985), 374--382.

 Dolev, D., Dwork, C., and Stockmeyer, L. ``On the Minimal

Synchronism Needed for Distributed Consensus,'' J. ACM 34, 1

(January 1987), 77--97.

 Approximate agreement

 Bracha, G. ``An O(log n) Expected Rounds Randomized Byzantine

Generals Protocol,'' J. ACM 34, 4 (October 1987), 910--920.

 Bracha, G. and Toueg, S. ``Asynchronous Consensus and Broadcast

Protocols,'' J. ACM 32, 4 (October 1985), 824--840.

 Ben-Or, M. ``Another Advantage of Free Choice: Completely

Asynchronous Agreement Protocols,'' ACM Symposium on Principles of

Distributed Computing, 1983, 27--30.

Related follow-on work

 Approximate agreement (cont’d)

 Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., and Weihl, W. E.

``Reaching Approximate Agreement in the Presence of Faults,'' J.

ACM 33, 3 (July 1986), 499--516.

 Dolev, D., Ruediger, R., and Strong, H. R. ``Early Stopping in

Byzantine Agreement,'' J. ACM 37, 4 (October 1990), 720--741.

 Hadzilacos, V. and Halpern, J. Y. ``Message-Optimal Protocols for

Byzantine Agreement,'' ACM Symposium on Principles of Distributed

Computing, 1991, 309--323.

 Halpern, J. Y., Moses, Y., and Waarts, O. ``A Characterization of

Eventual Byzantine Agreement,'' ACM Symposium on Principles of

Distributed Computing, 1990, 333--346.

Related follow-on work

 Failure detectors

 Chandra, T. D., Hadzilacos, V., and Toueg, S. ``The Weakest Failure

Detector for Solving Consensus,'' ACM Symposium on Principles of

Distributed Computing, 1992, 147--158.

 Chandra, T. D. and Toueg, S. ``Unreliable Failure Detectors for

Asynchronous Systems,'' ACM Symposium on Principles of Distributed

Computing, 1991, 325--340.

Break

Practical Byzantine Fault Tolerance

 Malicious attacks and software errors that can cause
arbitrary behaviors of faulty nodes are increasingly
common

 Previous solutions assumed synchronous system and/or
were too slow to be practical
- e.g. Rampart, OM, SM

 This paper describes a new replication algorithm that
tolerates Byzantine faults and is practical

 asynchronous environment, better performance

PBFT System Model

 Asynchronous distributed system where nodes are
connected by a network

 Byzantine failure model
- faulty nodes behave arbitrarily

- independent node failures

 Cryptographic techniques to prevent spoofing and
replays and to detect corrupted messages

 Very strong adversary

Service Properties

 Any deterministic replicated service with a state and

some operations

 Assuming less than one-third of replicas are faulty

- safety (linearizability)

- liveness (assuming delay(t) >> t)

 Access control to guard against faulty client

 The resiliency (3f+1) of this algorithm is proven to be

optimal for an asynchronous system

The Algorithm

 Basic setup:

-

- A view is a configuration of replicas (a primary

and backups):

- Each replica is deterministic and starts with the

same initial state

- The state of each replica includes the state of the

service, a message log of accepted messages, and

a view number

The Algorithm

 1. A client sends a request to invoke a service

operation to the primary

o= requested operation

t= timestamp

c= client

ϭ= signature

The Algorithm

 2. The primary multicasts the request to the backups

(three-phase protocol)

The Algorithm

 3. Replicas execute the request and send a reply to

the client

v= view

i= replica

r= result

o= requested operation

t= timestamp

c= client

ϭ= signature

The Algorithm

 4. The client waits for f+1 replies from different

replicas with the same result; this is the result of the

operation

Three-phase Protocol

 1.pre-prepare (pp)
- primary assigns n to the request; multicasts pp
- request message m is piggy-backed (request itself is not
included in pp)
- accepted by backup if:

- the messages are properly signed;
- it is in the same view v;
- the backup has not accepted a pp for the same v and n
with different d

- h <= n <= H
- if accepted, then replica i enters prepare phase

Three-phase Protocol

 2.prepare (p)
- if backup accepts pp, multicasts p
- accepted by backup if:

- message signature is correct;
- in the same view;
- h<= n<= H

- prepared(m,v,n,i) is true if i has logged:
- request message m
- pp for m in v
- 2f matching prepares with the same (v,n,d)

- if prepared becomes true, multicasts commit message and
enters commit phase

Three-phase Protocol

 Pre-prepare – prepare phases ensure the following

invariant:
- if prepared(m,v,n,i) is true then prepared(m’,v,n,j) is false for any

non-faulty replica j (inc. i=j) and any m’ such that D(m’) != D(m)

 i.e. ensures requests in the same view are totally

ordered (over all non-faulty replicas)

Three-phase Protocol

 3.commit
- accepted by backup if:

- message signature is correct;

- in the same view;
- h<= n<= H

- committed(m,v,n) is true iff prepared(m,v,n,i) is true for all i in
some set of f+1 non-faulty replicas
- committed-local(m,v,n,i) is true iff prepared(m,v,n,i) is true and
i has accepted 2f+1 matching commits
- replica i executes the operation requested by m after
committed-local(m,v,n,i) is true and i’s state reflects the
sequential execution of all requests with lower n

Three-phase Protocol

 Commit phase ensures the following invariant:
- if committed-local(m,v,n,i) is true for some non-faulty i, then

committed(m,v,n) is true

 i.e. any locally committed request will eventually
commit at f+1 or more non-faulty replicas

 The invariant and view change protocol ensure that
non-faulty replicas agree on the sequence numbers of
requests that commit locally even if they commit in
different views at each replica

 Prepare – commit phases ensure requests that commit
are totally ordered across views

The Algorithm

 Garbage Collection
 must ensure safety still holds after discarding messages from

log

 generates checkpoint (a snapshot of the state) periodically
 checkpoint: multicast checkpoint message with seq number and digest

of state

 if a replica receives 2f+1 matching checkpoint messages, the
checkpoint becomes stable and any messages associated with seq
numbers less than that of the checkpoint are discarded

 View Changes
 provides liveness

 triggered by timeout to prevent backups from waiting
forever

 with commit phase invariant, view change guarantees total
ordering of requests across views (by exchanging
checkpoint information across views)

The Algorithm

 The algorithm provides safety if all non-faulty

replicas agree on the sequence numbers of requests

that commit locally

 To provide liveness, replicas must change view if they

are unable to execute a request

 avoid view change that is too soon or too late

 faulty replicas can’t force frequent view changes; liveness

guaranteed unless message delays grow faster than the

timeout period indefinitely

Optimizations

 Reducing Communication
 avoids sending most of large replies

- only designated replica sends result

 reduces number of message delays for an operation
invocation from 5 to 4
 execute a request tentatively if prepared

 client waits for matching 2f+1 tentative replies

 improves performance of read-only operation
 client multicasts a read-only request to all

 replicas execute it immediately in tentative state

 send back replies after requests reflected in the tentative state
commit

 client waits for 2f+1 replies with the same result

 treating small and big requests differently

Optimizations

 Cryptography

- digital signatures used only for view-change and new-view

messages (but view change is not implemented!)

- authenticate all other messages using message authentication

codes (MACs)

Implementation

 The Replication Library
- basis for any replication service

- client: invoke

- server: execute, make_checkpoint, delete_checkpoint, get_digest,

get_checkpoint, set_checkpoint

- point-to-point communication using UDP

- view change and retransmission can be used to recover from
lost messages
- did not implement view-change or retransmission, but claims
this does not compromise the accuracy of the results

Implementation

 A Byzantine-Fault-tolerant File System

Implementation

 Maintaining Checkpoints
- snfsd uses direct file system operations on memory mapped
file system to preserve locality
- checkpoint record (n, list of modified blocks, d) that keeps
update information for the corresponding checkpoint

- snfsd keeps a copy-on-write bit for every 512-byte block
- copy-on-write technique to reduce space and time overhead
in maintaining checkpoints

 Computing Checkpoint Digests
- AdHash: sum of digest of each block (index+value)
- efficient for a small number of modified blocks

Performance Evaluation

 Micro-benchmark: invoke null-op; provides service
independent evaluation of the performance of the
replication library

 Andrew-benchmark: emulates a software
development workload; compares BFS with NFS V2
and BFS without replication

 Measured normal-case behaviors (i.e. no view
changes) in an isolated network with 4 replicas
 the first correct replicated service in asynchronous

environment like internet

 can tolerate Byzantine faults (liveness) with comparable
normal-behavior performance (when there are no faults)

Performance Evaluation

Some criticisms

 No mention is made on how the group is actually formed. Is it static

or dynamic?

 Pushing checkpointing to the application level makes the application

harder. Checkpoints and copy on write seem a must.

 That’s probably why the authors took the memory-mapped file direction for

NFS implementation, instead of the much simpler layer over an existing OS

file system. This makes it hard to port existing applications to such a

platform.

 Storing all application replies to be able to retransmit them to the

clients might not be efficient enough.

 Database appls might have large result-sets and that would put certain

space/time requirements on each replica peer.

 The comparison with NFS in not apples-to-apples.

Conclusion

 PBFT is the first replicated system that works correctly

in asynchronous system and it improves performance

of previous algorithms by more than an order of

magnitude

 Prior SMR algorithms were too slow to be used in

practice (proportional to the number of faulty nodes

vs. number of phases)

