
















6 Implementation

This section describes our implementation. First we

discuss the replication library, which can be used as

a basis for any replicated service. In Section 6.2 we

describe how we implemented a replicated NFS on top

of the replication library. Then we describe how we

maintain checkpoints and compute checkpoint digests

efficiently.

6.1 The Replication Library

The client interface to the replication library consists of

a single procedure, invoke, with one argument, an input

buffer containing a request to invoke a state machine

operation. The invoke procedure uses our protocol to

execute the requested operation at the replicas and select

the correct reply from among the replies of the individual

replicas. It returns a pointer to a buffer containing the

operation result.

On the server side, the replication code makes a

number of upcalls to procedures that the server part of

the application must implement. There are procedures

to execute requests (execute), to maintain checkpoints of

the service state (make checkpoint, delete checkpoint), to

obtain the digest of a specified checkpoint (get digest),

and to obtain missing information (get checkpoint,

set checkpoint). The execute procedure receives as input

a buffer containing the requested operation, executes the

operation, and places the result in an output buffer. The

other procedures are discussed further in Sections 6.3

and 6.4.

Point-to-point communication between nodes is imple-

mented using UDP, and multicast to the group of replicas

is implemented using UDP over IP multicast [7]. There

is a single IP multicast group for each service, which con-

tains all the replicas. These communication protocols are

unreliable; they may duplicate or lose messages or deliver

them out of order.

The algorithm tolerates out-of-order delivery and

rejects duplicates. View changes can be used to recover

from lost messages, but this is expensive and therefore it

is important to perform retransmissions. During normal

operation recovery from lost messages is driven by

the receiver: backups send negative acknowledgments

to the primary when they are out of date and the

primary retransmits pre-prepare messages after a long

timeout. A reply to a negative acknowledgment may

include both a portion of a stable checkpoint and missing

messages. During view changes, replicas retransmit

view-change messages until they receive a matching new-

view message or they move on to a later view.

The replication library does not implement view

changes or retransmissions at present. This does

not compromise the accuracy of the results given

in Section 7 because the rest of the algorithm is

completely implemented (including the manipulation of

the timers that trigger view changes) and because we

have formalized the complete algorithm and proved its

correctness [4].

6.2 BFS: A Byzantine-Fault-tolerant File System

We implemented BFS, a Byzantine-fault-tolerant NFS

service, using the replication library. Figure 2 shows the

architecture of BFS. We opted not to modify the kernel

NFS client and server because we did not have the sources

for the Digital Unix kernel.

A file system exported by the fault-tolerant NFS service

is mounted on the client machine like any regular NFS

file system. Application processes run unmodified and

interact with the mounted file system through the NFS

client in the kernel. We rely on user level relay processes

to mediate communication between the standard NFS

client and the replicas. A relay receives NFS protocol

requests, calls the invoke procedure of our replication

library, and sends the result back to the NFS client.

Andrew

benchmark

kernel NFS client

replication
library

relay

client

replica 0

replication
library

snfsd

kernel VM

replica n

replication
library

snfsd

kernel VM

Figure 2: Replicated File System Architecture.

Each replica runs a user-level process with the

replication library and our NFS V2 daemon, which we

will refer to as snfsd (for simple nfsd). The replication

library receives requests from the relay, interacts with

snfsd by making upcalls, and packages NFS replies into

replication protocol replies that it sends to the relay.

We implemented snfsd using a fixed-size memory-

mapped file. All the file system data structures, e.g.,

inodes, blocks and their free lists, are in the mapped file.

We rely on the operating system to manage the cache of

memory-mapped file pages and to write modified pages

to disk asynchronously. The current implementation

uses 8KB blocks and inodes contain the NFS status

information plus 256 bytes of data, which is used to store

directory entries in directories, pointers to blocks in files,

and text in symbolic links. Directories and files may also

use indirect blocks in a way similar to Unix.

Our implementation ensures that all state machine

9





that determines the performance of the system. All

experiments ran with one client running two relay

processes, and four replicas. Four replicas can tolerate

one Byzantine fault; we expect this reliability level to

suffice for most applications. The replicas and the

client ran on identical DEC 3000/400 Alpha workstations.

These workstations have a 133 MHz Alpha 21064

processor, 128 MB of memory, and run Digital Unix

version 4.0. The file system was stored by each replica

on a DEC RZ26 disk. All the workstations were

connected by a 10Mbit/s switched Ethernet and had DEC

LANCE Ethernet interfaces. The switch was a DEC

EtherWORKS 8T/TX. The experiments were run on an

isolated network.

The interval between checkpoints was 128 requests,

which causes garbage collection to occur several times in

any of the experiments. The maximum sequence number

accepted by replicas in pre-prepare messages was 256

plus the sequence number of the last stable checkpoint.

7.2 Micro-Benchmark

The micro-benchmark measures the latency to invoke

a null operation. It evaluates the performance of two

implementations of a simple service with no state that

implements null operations with arguments and results

of different sizes. The first implementation is replicated

using our library and the second is unreplicated and

uses UDP directly. Table 1 reports the response times

measured at the client for both read-only and read-

write operations. They were obtained by timing 10,000

operation invocations in three separate runs and we report

the median value of the three runs. The maximum

deviation from the median was always below 0.3% of

the reported value. We denote each operation by a/b,

where a and b are the sizes of the operation argument and

result in KBytes.

arg./res. replicated without

(KB) read-write read-only replication

0/0 3.35 (309%) 1.62 (98%) 0.82

4/0 14.19 (207%) 6.98 (51%) 4.62

0/4 8.01 (72%) 5.94 (27%) 4.66

Table 1: Micro-benchmark results (in milliseconds); the

percentage overhead is relative to the unreplicated case.

The overhead introduced by the replication library is

due to extra computation and communication. For exam-

ple, the computation overhead for the read-write 0/0 op-

eration is approximately 1.06ms, which includes 0.55ms

spent executing cryptographic operations. The remain-

ing 1.47ms of overhead are due to extra communication;

the replication library introduces an extra message round-

trip, it sends larger messages, and it increases the number

of messages received by each node relative to the service

without replication.

The overhead for read-only operations is significantly

lower because the optimization discussed in Section 5.1

reduces both computation and communication overheads.

For example, the computation overhead for the read-only

0/0 operation is approximately 0.43ms, which includes

0.23ms spent executing cryptographic operations, and

the communication overhead is only 0.37ms because the

protocol to execute read-only operations uses a single

round-trip.

Table 1 shows that the relative overhead is lower for

the 4/0 and 0/4 operations. This is because a significant

fraction of the overhead introduced by the replication

library is independent of the size of operation arguments

and results. For example, in the read-write 0/4 operation,

the large message (the reply) goes over the network

only once (as discussed in Section 5.1) and only the

cryptographic overhead to process the reply message is

increased. The overhead is higher for the read-write 4/0

operation because the large message (the request) goes

over the network twice and increases the cryptographic

overhead for processing both request and pre-prepare

messages.

It is important to note that this micro-benchmark

represents the worst case overhead for our algorithm

because the operations perform no work and the

unreplicated server provides very weak guarantees.

Most services will require stronger guarantees, e.g.,

authenticated connections, and the overhead introduced

by our algorithm relative to a server that implements these

guarantees will be lower. For example, the overhead

of the replication library relative to a version of the

unreplicated service that uses MACs for authentication

is only 243% for the read-write 0/0 operation and 4% for

the read-only 4/0 operation.

We can estimate a rough lower bound on the

performance gain afforded by our algorithm relative to

Rampart [30]. Reiter reports that Rampart has a latency

of 45ms for a multi-RPC of a null message in a 10 Mbit/s

Ethernet network of 4 SparcStation 10s [30]. The multi-

RPC is sufficient for the primary to invoke a state machine

operation but for an arbitrary client to invoke an operation

it would be necessary to add an extra message delay and

an extra RSA signature and verification to authenticate

the client; this would lead to a latency of at least 65ms

(using the RSA timings reported in [29].) Even if we

divide this latency by 1.7, the ratio of the SPECint92

ratings of the DEC 3000/400 and the SparcStation 10, our

algorithm still reduces the latency to invoke the read-write

and read-only 0/0 operations by factors of more than 10

and 20, respectively. Note that this scaling is conservative

because the network accounts for a significant fraction

of Rampart’s latency [29] and Rampart’s results were

obtained using 300-bit modulus RSA signatures, which

are not considered secure today unless the keys used to

11



generate them are refreshed very frequently.

There are no published performance numbers for

SecureRing [16] but it would be slower than Rampart

because its algorithm has more message delays and

signature operations in the critical path.

7.3 Andrew Benchmark

The Andrew benchmark [15] emulates a software

development workload. It has five phases: (1) creates

subdirectories recursively; (2) copies a source tree; (3)

examines the status of all the files in the tree without

examining their data; (4) examines every byte of data in

all the files; and (5) compiles and links the files.

We use the Andrew benchmark to compare BFS with

two other file system configurations: NFS-std, which is

the NFS V2 implementation in Digital Unix, and BFS-nr,

which is identical to BFS but with no replication. BFS-nr

ran two simple UDP relays on the client, and on the server

it ran a thin veneer linked with a version of snfsd from

which all the checkpoint management code was removed.

This configuration does not write modified file system

state to disk before replying to the client. Therefore, it

does not implement NFS V2 protocol semantics, whereas

both BFS and NFS-std do.

Out of the 18 operations in the NFS V2 protocol only

getattr is read-only because the time-last-accessed

attribute of files and directories is set by operations

that would otherwise be read-only, e.g., read and

lookup. The result is that our optimization for read-

only operations can rarely be used. To show the impact

of this optimization, we also ran the Andrew benchmark

on a second version of BFS that modifies the lookup

operation to be read-only. This modification violates

strict Unix file system semantics but is unlikely to have

adverse effects in practice.

For all configurations, the actual benchmark code ran

at the client workstation using the standard NFS client

implementation in the Digital Unix kernel with the same

mount options. The most relevant of these options for

the benchmark are: UDP transport, 4096-byte read and

write buffers, allowing asynchronous client writes, and

allowing attribute caching.

We report the mean of 10 runs of the benchmark for

each configuration. The sample standard deviation for

the total time to run the benchmark was always below

2.6% of the reported value but it was as high as 14% for

the individual times of the first four phases. This high

variance was also present in the NFS-std configuration.

The estimated error for the reported mean was below

4.5% for the individual phases and 0.8% for the total.

Table 2 shows the results for BFS and BFS-nr. The

comparison between BFS-strict and BFS-nr shows that

the overhead of Byzantine fault tolerance for this service

is low — BFS-strict takes only 26% more time to run

BFS

phase strict r/o lookup BFS-nr

1 0.55 (57%) 0.47 (34%) 0.35

2 9.24 (82%) 7.91 (56%) 5.08

3 7.24 (18%) 6.45 (6%) 6.11

4 8.77 (18%) 7.87 (6%) 7.41

5 38.68 (20%) 38.38 (19%) 32.12

total 64.48 (26%) 61.07 (20%) 51.07

Table 2: Andrew benchmark: BFS vs BFS-nr. The times

are in seconds.

the complete benchmark. The overhead is lower than

what was observed for the micro-benchmarks because

the client spends a significant fraction of the elapsed time

computing between operations, i.e., between receiving

the reply to an operation and issuing the next request,

and operations at the server perform some computation.

But the overhead is not uniform across the benchmark

phases. The main reason for this is a variation in the

amount of time the client spends computing between

operations; the first two phases have a higher relative

overhead because the client spends approximately 40%

of the total time computing between operations, whereas

it spends approximately 70% during the last three phases.

The table shows that applying the read-only optimiza-

tion to lookup improves the performance of BFS sig-

nificantly and reduces the overhead relative to BFS-nr

to 20%. This optimization has a significant impact in

the first four phases because the time spent waiting for

lookup operations to complete in BFS-strict is at least

20% of the elapsed time for these phases, whereas it is

less than 5% of the elapsed time for the last phase.

BFS

phase strict r/o lookup NFS-std

1 0.55 (-69%) 0.47 (-73%) 1.75

2 9.24 (-2%) 7.91 (-16%) 9.46

3 7.24 (35%) 6.45 (20%) 5.36

4 8.77 (32%) 7.87 (19%) 6.60

5 38.68 (-2%) 38.38 (-2%) 39.35

total 64.48 (3%) 61.07 (-2%) 62.52

Table 3: Andrew benchmark: BFS vs NFS-std. The

times are in seconds.

Table 3 shows the results for BFS vs NFS-std. These

results show that BFS can be used in practice — BFS-

strict takes only 3% more time to run the complete

benchmark. Thus, one could replace the NFS V2

implementation in Digital Unix, which is used daily

by many users, by BFS without affecting the latency

perceived by those users. Furthermore, BFS with the

read-only optimization for the lookup operation is

actually 2% faster than NFS-std.

The overhead of BFS relative to NFS-std is not the

12






