Check for
Updates

Rearchitecting the Thread Model of In-Memory
Key-Value Stores with pTPS

Youmin Chen, Jiwu Shu’, Yanyan Shen, Linpeng Huang, Hong Mei
Shanghai Jiao Tong University

Abstract

This paper presents pfTPS, a new thread architecture tailored
for in-memory key-value stores (KVSs) that operate at tens of
millions of operations per second. We show through analysis
and demonstration that the widely used run-to-completion
thread architecture, which executes monolithic functions from
start to finish, often suffers from cache inefficiencies and con-
tention issues. To address this, we revisit the once widely used
thread-per-stage (TPS) architecture, but with a fresh perspec-
tive — separating cache-resident, contention-free stages and
memory-resident, conflict-prone stages into distinct thread
pools, and scheduling them with dedicated hardware resources
(e.g., CPU cores, cache ways). This novel division enables
independent optimization of each stage, significantly improv-
ing cache efficiency and mitigating contention. Additionally,
pTPS incorporates reconfigurable RPC, resizable caching, and
an auto-tuner to enhance its schedulability and performance.
We implement two in-memory key-value stores, pTPS-H and
pTPS-T, to demonstrate the effectiveness of this approach.
Evaluation results show that pTPS achieves higher perfor-
mance than the run-to-completion counterparts.

ACM Reference Format:

Youmin Chen, Jiwu Shu®, Yanyan Shen, Linpeng Huang, Hong
Mei. 2025. Rearchitecting the Thread Model of In-Memory Key-
Value Stores with pTPS. In ACM SIGOPS 31st Symposium on
Operating Systems Principles (SOSP ’25), October 13-16, 2025,
Seoul, Republic of Korea. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3731569.3764794

1 Introduction

In-memory key-value stores (KVSs) are a cornerstone of
modern data centers, enabling fast, concurrent, and shared
access to data across distributed clients. Optimizing KVS
design has become a vital area of research, driving extensive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SOSP 25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 979-8-4007-1870-0/25/10
https://doi.org/10.1145/3731569.3764794

1099

"Tsinghua University

efforts over the years to push the boundaries of throughput,
latency, and resource efficiency [21, 26, 46, 47, 50].

In a KVS, the thread architecture defines how client requests
are mapped to server threads and scheduled on CPU cores,
critically determining the throughput, latency, scalability, and
programmability [59]. Traditional storage systems [19, 36,
44] often adopt a thread-per-stage (TPS) architecture, based
loosely on SEDA design principles [64]. In this approach,
request processing is decomposed into a series of stages (or
functions), each running on a dedicated thread pool; requests
traverse these stages via event queues and are scheduled by the
operating system (OS). For example, HBase employs over 10
such stages (e.g., RPC handling, logging, data streaming) and
~1000 interacting threads [36]. The advantages of the TPS
approach are manifold, including much faster code velocity
due to the modular design, increased scheduling flexibility,
and independent scaling of individual stages [17, 66].

Over the past years, cloud networks evolved from 1Gbps
and a few hundred ps to over 200Gbps and single-digit us;
emerging memory/storage technologies like CXL-attached
RAM [24], memory-semantic SSDs [11], and Optane mem-
ory [6] can deliver millions of IOPS with sub-us latency. The
latency of these devices is significantly below the OS schedul-
ing latency (typically measured in ms), driving a fundamental
shift in the thread architecture design. A prominent example
of this shift can be seen in userspace dataplane libraries (e.g.,
DPDK [2], RDMA libibverbs [14]). They employ a non-
preemptive thread architecture, where threads are pinned on
CPU cores, interact directly with the hardware, and use spin-
polling to check hardwares’ completion status, eliminating
the costly context switch overhead.

The non-preemptive thread architecture delivers impressive
performance gains, exemplified by recent in-memory KVSs
such as MICA [47] and FaRM [26, 27]. They typically adopts
a run-to-completion (RTC) model, where each worker thread
handles an entire request from start to finish. In doing so,
conventionally decomposed processing stages are collapsed
into a single monolithic function, which diminishes CPU
cache efficiency and amplifies contention at extremely high
throughputs (e.g., >10M ops/s). In a KVS, processing a
KV operation typically involves multiple steps: fetching and
parsing the network request, traversing the index structure
to locate the data item, read or write data by copying it
between the network buffer and KVS storage, and returning
a response to the client. These sub-tasks exhibit varying
memory access patterns and multicore scalability. For instance,

https://doi.org/10.1145/3731569.3764794
https://doi.org/10.1145/3731569.3764794
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731569.3764794&domain=pdf&date_stamp=2025-10-12

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

request polling involves sequential accesses to a small network
buffer range and scales efficiently; instead, index traversal
and data copying require accessing a much broader memory
space and often necessitate locking mechanisms to handle
request conflicts. With the non-preemptive thread architecture,
these heterogeneous sub-tasks are executed sequentially by
each server thread, easily leading to cache thrashing and
unnecessary blocking between stages.

The impact of this issue is more severe than it may seem.
Modern NICs deliver packets at rates >10 Mops/s, requiring
each request to be completed at nanosecond-scale latencies.
With insufficient cache capacity, accesses are thus increasingly
served by main memory, resulting in higher per-request pro-
cessing times. This overhead translates to degraded throughput
and latency — a single cache miss can introduce a delay of
50-150ns [18], while completing a KV operation takes only
a few hundred ns. Recent works, e.g., ShRing [54], Iat [67],
and CacheDirector [30], advocate for improving the LLC
efficiency through better cache allocation and data structure
designs. However, they leave the thread architecture as is,
and thus cannot fundamentally address the cache thrashing
problem due to interferences between sub-tasks.

Instead, we address the problem by re-embracing the TPS
architecture in a non-preemptive context, and thus propose
puTPS. Rather than adhering strictly to the classic modular
design philosophy, pTPS is approached from a different per-
spective — separating cache-resident, contention-free stages
and memory-resident, conflict-prone stages into two distinct
thread pools. This bisected approach minimizes the frequency
of cross-stage communication, while enabling independent
optimization of each stage. At the cache-resident layer, we
allocate dedicated worker threads and cache ways, and em-
ploy customized data organization, ensuring that the managed
data is never evicted out of the CPU cache. At the memory-
resident layer, we extensively utilize batching and prefetching
to mitigate cache miss penalties. Moreover, this separation
allows more scalable stages to operate independently, thereby
preventing potential blocking overhead.

While pTPS offers compelling advantages, its practical
implementation faces several challenges. First, not all stages
offer a clear distinction between cache residency and memory
residency. For example, index traversal and data copying in
a KVS are workload-dependent: skewed workloads, which
are common in production environments [20, 65], can create
hotspots at specific memory locations. We address this by
further dividing such stages, where hot data is managed
separately by the cache-resident layer. Second, unTPS still
incurs additional overhead for inter-stage communication,
which may offset the benefits of the separation. We mitigate
this through a lightweight, scalable queue design and more
effective stage placement. Third, in uTPS, pinned worker
threads are no longer scheduled by the OS scheduler, and
the storage software is responsible for adjusting the number
of CPU cores (or threads) allocated to each stage as the

1100

Youmin Chen, Jiwu Shu, et al.

load fluctuates. Similar adjustments should also be made for
cache way allocation and hotspot management. These factors
not only create a complex scheduling space to explore and
optimize, but also require a more sophisticated design for each
stage to adapt to such dynamic changes. We introduce an auto-
tuner that hierarchically explores the optimal configurations
for each stage, complemented by tailored RPC and caching
mechanisms to support runtime reconfigurations.

We implement two in-memory KVSs, uTPS-H and pTPS-
T, based on pTPS, which use libcuckoo and MassTree,
respectively, as their index structures. Our extensive evalua-
tion demonstrates that pTPS achieves a 1.03-5.46x speedup
over KVSs with a RTC thread architecture, while maintaining
comparable latency levels. We also show that pTPS can be
automatically reconfigured to adapt to different workloads.
With hash-based index or uniform workloads, the performance
gains achieved by uTPS are modest; however, we believe these
improvements are still valuable: even minor reductions in
latency or increases in throughput can lead to significant cost
savings at scale in production environments.

In summary, our paper makes the following contributions:
» We provide a detailed taxonomy of KVS thread architectures

to motivate the design of pTPS.

« We introduce pTPS, a novel thread architecture that reem-
braces the TPS design in a non-preemptive context.

« We implement two in-memory KVSs based on uTPS and
our evaluation shows pTPS achieves excellent performance.

2 Background and Motivation

In this section, we first present a taxonomy of KVS thread
architectures (§2.1), which motivates our work through em-
pirical analysis (§2.2); then, we discuss the challenges when
realizing the system (§2.3).

2.1 A Taxonomy of the KVS Thread Architecture

A KVS thread architecture essentially defines two aspects
— how threads are scheduled on CPU cores and how client
requests are divided among threads. Based on the two dimen-
sions, we present a hierarchical taxonomy of existing KVS
thread architectures (Figure 1).

2.1.1 Preemptive Thread Architecture. Network and stor-
age devices were initially slow, with technologies like Gigabit
Ethernet and HDDs exhibiting millisecond-scale latencies.
To hide such high latencies, operating systems introduced
preemptive multitasking to improve CPU efficiency. When
interacting with a device, the CPU core performs a context
switch, yielding control to another task (thread), instead of
blocking on the current IO; when the IO completes, the device
sends an interrupt to the CPU core, allowing the original
thread to resume. Therefore, preemptive multitasking enables
multiple threads to time-share the same CPU core. We further
investigate the request-to-thread assignment policies when
applying the preemptive thread architecture in a KVS.

Rearchitecting the Thread Model of In-Memory Key-Value Stores with pTPS

r Thread Architecture

2 Disk/Elthemet I IB/DRAM I

o

L Preemptive Non-Preemptive

|_ interrupt, ~1ms polling, ~1us

@

(0]

=]

g P-TPQ NP-TPQ

CC|_ - Memcached, ... - MICA, FaRM, ...
P-TPS NP-TPS?

- RocksDB, Hbase, ... - uTPS
Figure 1. A Taxonomy of thread architectures. P and NP
indicate preemptive and non-preemptive, respectively.

Thread per request (P-TPR) was once a commonly used de-
sign and is well supported by many RPC frameworks [38, 58].
In this architecture, a new thread is spawned for each new
request or connection to handle its processing. Although
straightforward to implement, TPR introduces significant
scheduling overhead: as the offered load increases, the num-
ber of worker threads grows proportionally, leading to fre-
quent thread switching when they time-share CPU cores. This
results in cache pollution and context switch overhead, ul-
timately degrading performance severely. KVSs that adopt
P-TPR: BerkeleyDB with its RPC server wrapper [52], early
Voldemort [13] with default configuration, etc.

Thread per queue (P-TPQ) is a more scalable design used
in recent KVSs [31, 32]. In this model, a number of threads
are created at system startup, which loop continuously from
their dedicated queues and process requests when available;
optionally, a dispatching thread is responsible for forwarding
incoming requests to these worker threads. A key distinction
between P-TPQ and P-TPR is that the former reuses worker
threads among requests. This reuse is further facilitated by
issuing asynchronous I/Os (e.g., 1ibaio), where request pro-
cessing is implemented as finite state machines (FSM), and
completion notifications trigger transition between states. TPQ
interleaves computation and I/O across requests within the
system software, improving resource utilization and scalabil-
ity. KVSs that adopt P-TPQ: Memcached [32], KeyDB [10]
(a multithreaded fork of Redis), etc.

Thread per stage (P-TPS). As KVSs becomes increasingly
complex, processing a single request often involves multiple
stages (e.g., indexing, journaling, data I/O) and background
activities (e.g., garbage collection). As a result, P-TPS is
widely adopted by modern KVSs to handle this complex-
ity. P-TPS follows loosely on SEDA design principles [64],
which employs a series of thread pools, each responsible for
a specific stage of request processing, connected via event
queues. TPS improves code modularity and simplifies applica-
tion design by compartmentalizing distinct stages. Moreover,
dividing stages into separate thread pools further enhances
scheduling flexibility and performance isolation. For exam-
ple, TAM [66] retrofitted many existing TPS-based systems
with advanced scheduling features (e.g., weighted fairness)
by manipulating the request queues among stages; similarly,

1101

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

SILK [17] prevents latency spikes in log-structured merge
KVS by throttling background compaction activities. KVSs'
that adopt P-TPS: RocksDB [25], TiKV [37], HBase [36],
Cassandra [44], MongoDB [19], etc.

2.1.2 Non-preemptive Thread Architecture. Userspace
dataplane libraries (e.g., DPDK, RDMA) typically employ a
non-preemptive thread architecture, which use busy polling
to interact with the device. Unlike preemptive multitasking,
non-preemptive thread architectures rely heavily on the run-
to-completion model, making request-to-thread assignment
policies a critical design space. Among them, we identify two
widely used policies in existing KVSs.

Thread per request (NP-TPR). Spawning and destroying
threads for each request is prohibitively expensive when
managing fast hardware devices. Recent systems leverage
lightweight green threads or uthreads to implement NP-TPR [3,
15, 55]. These systems maintain a lightweight context for
each uthread in userspace and use longjump instructions
for fast context switching, bypassing the OS kernel. For
example, Arachne [55] can spawn a new uthread in just 320ns.
However, the overhead of temporarily creating and destroying
threads remains significant when dealing with network devices
delivering tens of millions of IOPS. KVSs that adopt NP-TPR:
Memcached running inside Arachne [55].

Thread per queue (NP-TPQ). The application of TPQ in
non-preemptive thread architectures is facilitated by several
key optimizations. First, traditional P-TPQ relies on a central-
ized dispatcher to assign requests to a pool of threads, which
easily becomes a bottleneck in face of high-speed network
devices. Recent systems [26, 27, 47] avoid this bottleneck
by establishing dedicated connections between client and
worker thread pairs and binding threads to specific CPU cores,
allowing clients to directly send requests to specific server
cores. Second, to avoid expensive synchronization among
server threads, these systems often employ the share-nothing
design [43, 45], where each thread exclusively manages a
subset of data (i.e., shard), enabling lock-free data modifica-
tions. Third, to better utilize CPU cores, these systems often
employ batching to amortize the cost when interacting with
the device [41, 42, 45]. Last, coroutines [1] are extensively
used to further harvest the CPU cycles that would otherwise be
wasted for busy-polling completion notifications [43]. KVSs
that adopt P-TPQ: MICA [47], FaRM-KV [26, 27], etc.

Why not thread per stage (i.e., NP-TPS)? In the non-
preemptive thread architecture, NP-TPQ has become the de
facto choice for building storage systems targeting fast net-
work/storage devices. This is in contrast to the preemptive
thread architecture, where P-TPS is widely adopted. The key
reason is that TPS introduces frequent inter-thread communi-
cation among stages, making it challenging to fully exploit
the performance potential of modern high-speed hardware.

I Databases that use KVSs as the storage engine are included as well.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

2.2 The Opportunity of NP-TPS

In contrast to conventional wisdom, our work presents a
contrary observation, showcasing NP-TPS’s strengths in cache
friendliness and contention mitigation. Building on these
insights, we design and implement a network-attached in-
memory KVS, demonstrating the viability of NP-TPS to
manage fast hardware devices.

2.2.1 Cache friendliness. As illustrated above, NP-TPQ
necessitates each worker thread to process requests from start
to finish in a run-to-completion manner. This necessitates
executing a single, monolithic function for every request. In
an in-memory KVS, the function encompasses tasks such as
polling requests from the network queue, performing index
lookups, copying data buffers, and sending responses to clients.
However, executing monolithic functions is inherently cache-
unfriendly due to the heterogeneity of their sub-steps in terms
of memory access patterns.

For example, in a KVS, polling requests via a userspace
network dataplane (e.g., RDMA) involves issuing load in-
structions from the network buffer to retrieve newly received
requests. Modern processors (e.g., Intel CPU) support direct
cache access (DCA), enabling an NIC to directly populate the
fast on-chip last-level cache (LLC), bypassing the slower main
memory. With proper network buffer design (e.g., keeping
buffer size smaller than LLC), polling can nearly eliminate
cache misses. However, index lookup and data access stages
involve accessing a broader memory space, which is the main
source of cache misses. Intuitively, packing such stages into a
single function often leads to cache thrashing at various cache
levels, severely degrading CPU pipeline efficiency.

Benefits of separating network buffers. To quantify the
cache inefficiency of NP-TPQ, we prototyped an in-memory
KVS using RDMA network and MassTree [49], adhering to
the NP-TPQ design. In our prototype, multiple worker threads
are launched to poll requests from clients, parse them to extract
the request type and key, perform lookups in MassTree to
locate the corresponding data items, and return responses to
the clients. For comparison, we also implement a NP-TPS
version, where the request polling/parsing/response stages
and the index lookup/data access stages are split into separate
thread pools. To isolate the benefits of TPS, we remove inter-
stage communication through deterministic replay at each
stage: instead of forwarding requests via inter-stage queues,
the second stage uses a deterministic generator to reproduce
the exact same sequence of requests for processing. Because
the two stages operate independently without communication,
we manually tuned the number of threads in each stage to
ensure the two stages process requests at matching rates.

We use two client nodes to send requests to a server node,
which are connected via a 200Gbps RDMA network; the de-
tailed experiment setup will be described in §5.1. As shown in
Figure 2a, TPS-based KVS, without the overhead of inter-stage

1102

Youmin Chen, Jiwu Shu, et al.

TPQ @ NP-TPS

» -

7 -TPQ-CAT (ideal) Beaeon | [ZSNTHMTTS

S U | P ... 140

=3

é. . m m 20 /{

<

(=]

o 0

s 8 64 256 1K 1M 10M 100M 0 10 20 30
Iltem Size (B) Keyspace # of Worker Threads

(a) (b) (c)
Figure 2. Comparison between NP-TPS and NP-TPQ. a)
Throughput of get oprations with an uniform workload; b) Through-
put of index lookup in MassTree with a skewed workload; c) Through-
put of put operations with a skewed workload (64B items).

communication, achieves a 1.22-1.54x throughput improve-
ment over the TPQ one. To better understand this performance
gain, we use Intel’s Performance Counter Monitor (PCM [7])
to measure last-level cache (LLC) miss rates. The results
reveal that: 1) threads in the first stage exhibit a significantly
lower LLC miss rate of just 2%, compared to 33% in NP-TPQ;
ii) threads in the second stage maintain a similar LLC miss
rate to those in NP-TPQ. Furthermore, TPS reduces the in-
struction cache footprint for each worker thread, contributing
to improved overall cache efficiency.

Separating LLC? The current implementation of DCA in
Intel processors (i.e., data direct I/O, DDIO [4]) typically
uses the two rightmost ways in LLC [29]. Hence, this setup
raises a potential argument: could the cache inefficiency of
NP-TPQ be mitigated by preventing worker threads from
using the cache ways reserved for DCA? Tools such as Intel’s
Cache Allocation Technology (CAT) [9] enable cache way
partitioning, which could, in theory, isolate DCA-reserved
cache ways from being polluted by worker threads. However,
our experiment shows that cache partitioning has a very close
performance to NP-TPQ for small item sizes, and only shows
slight performance improvements with larger item sizes, still
lagging behind NP-TPS (Figure 2a). This outcome stems from
the intricate behavior of DDIO: DDIO uses the two rightmost
ways in LLC only for cache allocation triggered by cache
misses; if a cacheline already resides in the LLC (beyond the
DCA-reserved ways), DDIO modifies or accesses it directly.
In TPQ, when worker threads poll new requests or prepare
response messages, these data items in the network buffer
can be fetched into arbitrary LLC ways except for the two
rightmost ones, and subsequent stages, such as indexing and
data access, can further evict these fetched cachelines, still
leading to frequent DDIO-initiated cache misses. In contrast,
TPS assigns indexing and data access stages to separate worker
threads, ensuring that cached network buffers mostly remain
intact, thereby preserving cache efficiency.

Benefits of separating hotspots. Skewed workloads, which
are common in production environments, create hotspots at
specific memory locations, blurring the distinction between
cache residency and memory residency of stages such as
indexing and data access. These hotspots, however, can be

Rearchitecting the Thread Model of In-Memory Key-Value Stores with pTPS

managed by dedicated threads and LLC ways, preventing them
from being evicted from the CPU cache. To demonstrate the
benefits of this approach, we conduct experiments measuring
the throughput of index lookup in MassTree, where we redirect
0.1%o queries associated with the hottest keys to a dedicated
thread pool for processing. As shown in Figure 2b, given the
same total number of worker threads, the separation yields
an average throughput improvement of 1.08x with Zipfian-
distributed keys generated by YCSB.

In summary, handling frequently accessed data in dedi-
cated threads and cache ways can potentially enhance cache
efficiency, thereby improving overall system performance.

2.2.2 Contention Mitigation. We further find that NP-TPS
strikes a better balance between load balancing and contention
mitigation under skewed workload. With the TPQ architecture,
a KVS typically employs a shared-nothing (SN) design, where
each worker thread is assigned a distinct shard to manage,
minimizing the need for synchronization between threads.
However, under skewed workloads, this approach often re-
sults in uneven load distribution, causing some threads to
become idle while others are overloaded. On the contrary, a
share-everything (SE) architecture allows clients to handle any
requests, achieving better load distribution. However, the ben-
efits come at the cost of significant synchronization overhead,
especially as the number of threads increases. Our experi-
ments illustrate this trade-off: as shown in Figure 2c, the peak
throughput of SE initially exceeds that of SN, but degrades
rapidly as more threads are added due to synchronization. Our
key insight lies in the fact that not all stages are equally sus-
ceptible to workload contention — stages other than index/data
updates are highly scalable. In NP-TPQ, different stages are
sequentially executed by each thread, synchronization at a
stage forces the worker thread to be blocked, preventing other
stages from making progress. Instead, NP-TPS allows different
stages to be processed by different threads, so we can throttle
the number of threads assigned to the index update stage,
leaving other threads to process other stages without being
blocked. This effectively mitigates the contention issue, as is
demonstrated by our experiments in Figure 2c.

2.3 Challenges

While the NP-TPS architecture offers compelling advantages
in cache efficiency and contention mitigation, its practical
implementation introduces several challenges.

Reconfiguration complexity. In order to keep each stage
within its operating regime, P-TPS systems need to adapt the
number of threads based on observed performance. However,
reconfiguration in NP-TPS is inherently more complex: work-
load variations impact not only the total number of threads
needed (e.g., under load changes) but also how threads are
distributed across stages. Workload shifts, such as changes
in access skew or item size, can alter the processing time
at each stage, requiring finer-grained thread reassignment.

1103

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

This is particularly critical in fast in-memory KVSs, where
suboptimal thread division can result in performance degra-
dation of up to millions of ops/s. Moreover, factors such as
cache way allocation and hotspot management also require
careful attention. For example, the memory-resident stages
often experience high cache miss rates, making it inefficient
to allocate additional cache ways to them. Similarly, hot items
must be dynamically adjusted in response to shifting hotspots.
These factors create a multidimensional scheduling landscape
that must be automatically explored in real time.

Reconfiguration overhead. Given the single-digit ys access
latencies of a KVS, each stage must be designed to adapt
rapidly to dynamic reconfiguration to prevent latency spikes.
As noted, the non-preemptive thread architecture relies on
client software to direct requests to specific worker threads.
Consequently, when the number of threads for the request
polling stage changes due to reconfiguration, this information
must be propagated to the clients — introducing additional
blocking overhead and increasing software complexity.

Inter-stage communication. The superior performance of NP-
TPS observed in §2.2.1 assumes no inter-stage communication.
However, reintroducing such overhead can undermine these
advantages. Addressing this challenge requires attention to two
key aspects: designing a more efficient communication queue,
and minimizing the frequency of inter-stage communication
through more effective stage placement.

3 pTPS Design
3.1 Overview

We present the design of pTPS to address the aforementioned
challenges. Figure 3 depicts the overall architecture of pTPS,
which organizes the stages of an in-memory KVS into two
layers: a cache-resident (CR) layer and a memory-resident
(MR) layer, and uses an auto-tuner to dynamically adjust the
two layers’ configuration.

« Cache-resident layer. Mainstream enterprise-level CPUs
has shared LLC (e.g., 42MB LLC in Xeon Gold 6330 CPU
and 504MB LLC in Xeon 6978P CPU) and private L1/L.2
caches. The cache-resident layer ensures that frequently
accessed data is largely resident in the CPU LLC. We
achieves this with a combination of the following ways: i)
using separate worker threads and pinning them to specific
CPU cores to execute the cache-resident layer; ii) allocating
dedicated LLC ways for these threads; and iii) keeping
the amount of data at the cache-resident layer small to
fit in the cache — only managing the hottest KV items
and network buffers. Note that these techniques cannot
completely eliminate cache evictions. For instance, in a
set-associative cache, conflicts among cachelines mapping
to the same set can still occur, leading to cache misses.
Memory-resident layer. The full index and data items are
stored at the memory-resident layer. At this layer, worker
threads fetch requests from the CR-MR queue posted by the

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

req.y ¥ ¥ 4 4 4 resp.

Reconfigurable RPC |, ‘_I—(Auto-tuner)
i 3
Thread - E . Thread
pool § é § i § § ; pool
Hot _ER-MR) Full
index queue index
Hot vl
data | = e |‘i‘l data
CR layer MR layer

XI_ T->] poll & parse |->{ indexing |->{ data |->{resp.} >[Il JZ

Figure 3. pTPS’s architecture and interactions. CR and MR
stand for cache- and memory-resident, respectively. The bottom part

describes the main steps for processing KV requests, with colored
box reflecting which layer(s) is(are) mapped to.

cache-resident layer, and extensively use batching, prefetch-
ing, and coroutines [1] to amortize the cost of cache misses
when processing them.
Auto-tuner. The auto-tuner dynamically adjust the config-
uration of the cache- and memory-resident layers to react
fast to load changes. At its core, the auto-tuner employs a
feedback loop to monitor the system’s performance, using
this data in conjunction with hierarchical searching to guide
adjustments in the number of worker threads, cache ways,
and the management of hot and cold items at each layer.
Like existing KVSs, uTPS provides standard APIs (e.g.,
put, get, and delete) to remote clients. The KVS server
node supports organizing key-value items using different
data structures (e.g., hash table, B*-tree, etc.). As shown in
Figure 3, when a new request arrives, the worker thread at
the cache-resident layer fetches the request from the network
receive buffer, parse it, and process it if it correspond to hot
items; otherwise, the request is forwarded to the memory-
resident layer for further processing. Once the request finishes
processing, the cache-resident layer worker thread sends the
response back to the client.

uTPS differs from the traditional TPS in the following
three aspects. First, traditional TPS follows a modular design,
dividing the system into multiple stages based on functional
boundaries; uTPS only has two stages, with task assignment
driven by cache residency. Second, traditional TPS optimizes
slow I/O bottlenecks using techniques like DRAM buffering
to boost throughput; In uTPS, modern NICs enable worker
threads to operate at extremely high speeds. To fully leverage
this, uTPS introduces CR-MR queue, polling, and batching to
ensure efficient interaction among cores and the NIC. Finally,
traditional TPS relies on the OS scheduler when adjusting the
thread pool at each stage as load changes; uTPS pins threads
on cores and schedules them in the storage software for rapid
adaptation with low blocking overhead.

1104

Youmin Chen, Jiwu Shu, et al.

Ci ; .append

C2 |- | ...HR |recv buf
5m modn =i

Cn g ; ; §
Clients 0 1 i n-1 CR Layer,

Figure 4. Receive buffer management in reconfigurable RPC.

3.2 Cache-Resident Layer

At the cache-resident layer, the number of worker threads
and cached hot items should be dynamically changed as load
functuates, and their memory footprint should be kept low.
We achieve this by introducing dedicated RPC and caching
designs.

3.2.1 Reconfigurable RPC. RPC systems based on kernel-
bypass networking (e.g., RDMA or DPDK) should maintain a
memory pool of network buffers to send and receive packets
through the NIC. Sizing the memory pool requires consider-
ation of several factors, including the number of open con-
nections, the worst-case delay in packet processing time, and
the network round trip time [34]. For example, RPC systems
that rely on one-sided RDMA verbs, such as FARM-RPC [26],
require a separate receive buffer for each client at each worker
thread, leading to substantial memory overhead that can easily
exceed CPU cache sizes as the number of clients increases;
eRPC [40], a fast and general-purpose RPC library, needs to
allocate a 15-MB buffer per worker thread.

Moreover, these RPCs do not support increasing or decreas-
ing the number of worker threads dynamically, and simply
reframing their software stack introduces extra overhead. For
example, both FARM-RPC and eRPC allows clients to spec-
ify a worker thread to send requests to; when the number
of worker threads changes, this information should be syn-
chronized across all clients. We address these challenges by
introducing reconfigurable RPC.

At the core of reconfigurable RPC is a single-queue receive
buffer at the server node (see Figure 4). Clients send requests
concurrently to the server node, and the server-side RNIC
appends requests of different clients to the end of a single
receive buffer. The worker threads then fetch and parse requests
from the receive buffer in a round-robin manner. Specifically,
the i*" worker thread only fetches requests located at the
mt" slot where m mod n = i, while requests at other slots
are untouched (n denotes the number of worker threads).
Moreover, the requests in the receive buffer are processed
independently — a request is fetched and processed without
waiting for the former ones in the queue to finish; this reduces
the potential risk of head-of-line blocking. The single-queue
design offers several advantages. First, it reduces the memory
overhead by sharing the receive buffer among all worker
threads. Second, the KVS server can easily adjust to a new
configuration by simply changing a global variable n (i.e.,
the number of worker threads) at the KVS server, eliminating
costly coordination with clients. A detailed reconfiguration
procedure will be shown in §3.5.

Rearchitecting the Thread Model of In-Memory Key-Value Stores with pTPS

Reconfigurable RPC is realized by creating a shared receive
queue (SRQ) [14] to associate all client connections (i.e.,
queue pairs). SRQ is a standard feature supported by all
NVIDIA RNICs. Specifically, we use a management thread to
post receive buffer slots (using the recv verb) into the SRQ in
an increasing address order, and clients use the send verbs to
send requests to the server. Newly received data are DMAed
into the first receive buffer slot in SRQ by the server-side RNIC.
Whenever a slot is digested by the RNIC, the management
thread posts another recv to push the slot back in SRQ.
Similar to prior work [63], we adopt the multi-packet receive
queue (MP-RQ) [12] to alleviate the overhead of posting recv
verbs, where a receive buffer slot associated with a recv verb
can accommodate multiple requests. For sending response
messages back to clients, we assign a dedicated response
buffer to each worker thread. The size of the response buffer
can be kept small (e.g., 64KB), as it can be reused among
different batches of requests.

3.2.2 Resizable Cache. The cache-resident layer also caches
hot items to prevent them from being evicted from the CPU
cache. Regarding the dynamic nature of real workload, the
cache-resident layer should adapt to changing of the hot set
and use as little memory space as possible.

Conventional caching mechanisms, such as LRU, incur
heavy bookkeeping overhead to track frequently accessed
items, and are not suitable for the cache-resident layer. Instead,
we adopt a hot set-based approach [56, 61]: using a background
thread to identify the hottest items and cache them, and
periodically refresh the cache to react to load changes. We
leverage Nap [61]’s non-blocking algorithms to manage the
hot set. Periodically, the background thread samples recently
accessed keys and uses a combination of count-min sketch [23]
and min heap to track the hottest items (10K items in our
implementation); then, it switches the cache space to the
new hot set via an epoch-based approach [33], ensuring that
cache modifications are reflected atomically to all worker
threads. The resizable cache distincts from existing hot set-
based approaches in that the cache layer is managed separately
at the cache-resident layer with dedicated worker threads and
LLC ways, and requires further refining to ensure the cache
module fits well with the cache-resident layer.

First, the number of cached items must be resizable to
prevent the hot set from being set to unreasonably large. Man-
aging a large hot set in pTPS is instead counterproductive
since the performance difference between the cache- and
memory-resident layers is not an order of magnitude apart (un-
like the disparity between DRAM and HDD). A large hot set
would result in a significant penalty when processing requests
that miss at the cache-resident layer. To this end, during each
refresh of the hot set, the management thread heuristically
adjusts the number of cached items using the epoch-based
approach until a maximal performance is achieved (see §3.5
for details).

1105

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

recv buf b
[T o polireq.)¢
Cindering e _oata

Figure 5. FSM execution model at the cache-resident layer.

Second, the cached items should be organized to occupy
less memory space. When using a tree-based index structure
that supports range queries, we organize the cached index
items at the cache-resident layer as an ordered array, as it
eliminates the intermediate pointers present in tree-based
structures. A sorted array is well-suited for this scenario since
the hot set is periodically constructed and refreshed, avoiding
the overhead from temporary insertions and deletions, while
still enabling efficient binary search. For KVS systems that
use a hash table as the index, we directly reuse the main
index structure to manage the hot set. Note that we do not
need to keep an extra copy of data items for caching at the
cache-resident layer — CPU loads them automatically into the
cache when they are accessed.

3.2.3 FSM Execution Model. The worker threads in the
cache-resident layer process requests using a finite state ma-
chine (FSM). As shown in Figure 5, the state is transitioned
along two main paths: the hit path and the miss path. For
each incoming request, the worker thread first checks if the
corresponding index item is cached. If it is, the worker thread
directly reads or writes data and sends the response back to
the client; otherwise, the worker thread forwards the request
to the memory-resident layer through the CR-MR queue and
begins polling for new requests. Responses from the memory-
resident layer are awaited asynchronously. Once the response
is received from the memory-resident layer, the worker thread
then sends it back to the client.

To ensure efficient state transitions in the FSM, polling
requests from the receive buffer and CR-MR queue is designed
to be non-blocking: the operation returns immediately after
an one-shot scan of the queue. The two queues are polled
iteratively when they are empty, ensuring that new requests
are discovered without delay.

3.3 Memory-Resident Layer

The memory-resident layer manages the full index and data
items, and processes requests sent from the cache-resident
layer. Batch and prefetch are extensively used to amortize the
cost of cache misses.

Batched indexing. Index traversing at the memory-resident
layer incurs random pointer-chasing operations, and is the
major source of cache misses. The memory-resident layer
employs batched prefetching with coroutine and hardware
prefetch to mitigate this overhead. While the concept of
batched indexing is not new, our design is distinct in that the

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

cache-resident layer has already filtered out the hottest items.
This prevents unnecessary context-switching overhead that
would otherwise occur when prefetching cache lines already
residing in the CPU cache.

Stackless coroutines, as supported in C++20 [1], achieve
single-dight nanosecond latencies for constructing and switch-
ing coroutines. We transform basic indexing operations (i.e.,
put/get) into their coroutine counterparts using co_wait and
co_return keywords, and insert prefetch and co_yield
before each pointer dereference operation. To support batched
indexing, each worker thread retrieves multiple requests from
the CR-MR queue simultaneously and creates indexing corou-
tines for each of them. The worker thread then functions as a
scheduler that switches between these coroutines. Whenever a
coroutine issues a prefetch, control is transferred to execute
the computation stage of another operation. This approach
effectively hides the latency of loading data from memory
across the batch of operations, improving overall efficiency.

Copying data items. Batched indexing helps with locating
the data items in the KVS, then the worker threads read or
write these data items. Data items are not transferred between
the cache- and memory-resident layers through the CR-MR
queue; instead, the worker threads at the memory-resident layer
copies data between the network buffer and the KV storage
directly without introducing redundant memory copies. For
get operations, data items are copied from the KVS to the
response network buffer; once finished, the cache-resident
layer sends the response messages back to clients. Notably, the
response network buffer can be cached at the memory-resident
layer during the data copy process; however, this does not
result in cache misses at the cache-resident layer when the
worker threads post the buffer to the RNIC. This is because the
RNIC is responsible for moving data from the response buffer
to the RNIC cache, and the cache-resident layer never touches
the buffer directly. For put operations, the memory-resident
layer copies data items from the receive buffer to the target
storage location. Still, since the memory-resident layer only
reads the receive buffer and does not modity it, there is no
cache invalidation at the cache-resident layer.

Concurrency control. Note that the separation of the cache-
and memory-resident layers does not change the concurrency
control protocol of pTPS. A point query is served by either the
cache-resident layer or the memory-resident layer, depending
on its hotness, so we only need to enforce concurrency control
at each layer independently. We adopt a share-everything
design at both cache- and memory-resident layers while con-
figuring the number of the worker threads assigned to each
layer to maximize system efficiency. This approach requires
the index structure and data management to be thread-safe, al-
lowing concurrent accesses and modifications to each KV item.
For the index structure, we reuse existing thread-safe and scal-
able implementation (i.e., MassTree [49] and libcuckoo [28])
directly. For data items, we embed additional lock and version

1106

Youmin Chen, Jiwu Shu, et al.

0145 POP

SR,

head

Figure 6. The architecture of the CR-MR queue.

bits within each item to serialize access conflicts. Specifically,
updates to data items of 8 bytes or smaller are performed
directly using atomic instructions. For larger items, a worker
thread first employs an atomic CAS operation to modify the
lock bits, placing the item in a locked state. The data item
is then updated, and the lock is subsequently released. The
item’s version is incremented both before and after the update.
Read operations are conducted in a lock-free manner, where
the version is read both before and after accessing the data
item. The old and new versions are then compared to ensure
the atomicity of the read operation.

3.4 CR-MR Queue

The CR-MR queue is used for efficient communication be-
tween the cache- and memory-resident layers. It is a multi-
producer, multi-consumer queue designed for high scalability
and high throughput. As shown in Figure 6, the CR-MR queue
establishes an all-to-all mapping between cache-resident layer
threads and memory-resident layer threads, where each pair
of threads is assigned a dedicated, lock-free ring buffer for
message transfer. To balance the load at the memory-resident
layer, threads at the cache-resident layer push new requests
to memory-resident layer threads in a round-robin fashion.
Accordingly, a worker thread at the memory-resident layer
needs to scan the queues corresponding to all cache-resident
layer threads to pop new messages. To further mitigate the
overhead of pushing (popping) items to (from) the CR-MR
queue, each slot in the ring buffer can accommodate multiple
requests. This means that a worker thread in the cache-resident
layer will push a new item only when enough requests have
accumulated. Similarly, memory-resident layer threads can
use a single pop to retrieve multiple requests at once.

As shown in the right part of Figure 6, Each request is
compactly represented in 16 bytes of memory. Specifically,
the key field (8 bytes) stores the key directly. If the key is
larger than 8 bytes, it is hashed into an 8-byte value. In the
rare case of a hash collision, multiple items are chained in a
linked list, and the original key is used to disambiguate them.
type and size fields indicate the request type and the size of
the KV item. buf field (32 bits) points to a slot in the network
buffer. Since each slot has a fixed size, this field only needs to
identify the slot’s position. Depending on the operation, buf
may point to a receive buffer (for put) or a response buffer
(for get). For efficiency, memory-resident layer threads do
not explicitly send completion messages back to the cache-
resident layer. Instead, they piggyback this information on the
advancement of the tail pointer. A tail pointer is updated only
after all requests in the batch have been processed and their

Rearchitecting the Thread Model of In-Memory Key-Value Stores with pTPS

responses placed in the response buffers. At that point, the
cache-resident layer threads can safely deliver the response
buffers to clients.

3.5 Auto-tuner

We first explain the detailed steps of thread reassignment,
cache resizing, and cache way allocation; then, we present
how to automatically tune these reconfiguration parameters.

Thread reassignment. This process involves reassigning
worker threads between the cache- and memory-resident
layers — i.e., moving some threads from the cache-resident
layer to the memory-resident layer or vice versa. The main
challenge is to prevent message loss during reassignment, and
we describe the procedures for each direction separately.

When moving threads from the cache-resident layer to the
memory-resident layer, the manager thread first updates two
global variables, Ncg and Nyr, which represent the number
of worker threads in the cache- and memory-resident layers,
respectively. It then notifies all cache-resident layer threads
to switch at a predefined receive buffer slot. Upon reaching
this slot: cache-resident layer threads that should remain in
their current layer update their local copies of Ncg and N
to match the global values, and then continue processing
requests using the updated variables for modulo operations
and CR-MR communication; cache-resident layer threads that
are designated to move to the memory-resident layer invoke
the memory-resident layer’s entry function to switch roles;
original memory-resident layer threads update their local
copies of the two variables only after the CR layer threads
have switched to the memory-resident layer and their CR-MR
queues do not contain residual requests.

When moving threads from the memory-resident layer to
the cache-resident layer, the process differs slightly. Memory-
resident threads that slate to move to the cache-resident layer
continue processing memory-resident requests upon receiving
the manager’s notification. They wait until all CR-layer threads
have reached the predefined slot and their CR-MR queues are
empty. Only then do they invoke the cache-resident layer’s en-
try function to switch roles. As illustrated, thread reallocation
is performed without blocking request processing.

Cache resizing. When the hot set is refreshed, the manager
thread further adjusts the number of cached items to improve
the overall performance. With a target cache size K, the top
K items from the hot set are selected to replace the original
cache. Cache resizing is performed in a similar way to cache
refreshing, using an epoch-based approach (§3.2.2).

LLC allocation. The manager thread allocates cache ways
using the PQOS utility [8]. The manager thread first associates
the worker threads of the cache- and memory-resident layers
into different classes of service (CLOS), and then allocates
cache ways to each CLOS accordingly.

Automatic tuning. The auto-tuner is triggered when the sys-
tem load exhibits significant changes (e.g., hot set shift, KV

1107

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

size change, etc.). The auto-tuner employs a feedback loop to
monitor the system’s throughput, and uses it as a hint to auto-
matically adjust the above three reconfiguration parameters.
Note that thread reallocation and cache resizing cannot be
tuned independently. This is because cache resizing alters the
load between the cache- and memory-resident layers, which in
turn affects the number of worker threads required at each layer.
To address this, the auto-tuner uses a hierarchical searching
algorithm to find the optimal configuration. For each cache
size, the manager thread iterates through all possible thread
allocations to identify the best allocation choice. Then, among
all possible cache sizes, the manager thread selects the one
that achieves the best performance as the final configuration.
Cache way allocation, which affects system performance in
an orthogonal manner, is tuned independently.

To speed up the search process, we introduce a trisecting
approach. We observe that system performance follows an
convex curve with respect to thread allocation and LLC
allocation, where the performance initially increases and then
decreases. Based on this, we trisect the searching space into
three parts (i.e., [0, a], (a, b), and [b, max]). If P, < P, (where
P, denotes the system throughput when the parameter is set to
x), the optimal configuration must be in the range [a, max], or
conversely, within the range [0, b] if P, > P,. The algorithm
then iteratively trisects the best-performing part of the search
space until the optimal configuration is found. Note that the
trisecting approach is inapplicable in cache resizing since it
does not exhibit a strict unimodal trend — cache resizing allows
finer-grained load balancing between the cache- and memory-
resident layers (varying thread counts does not always lead to
an optimal division of load). To this end, the auto-tuner finds
an optimal cache size by using a linear probe with a fixed
step (e.g., 1K in our implementation). Our evaluation shows
that, with a performance monitor time window of 10ms, the
entire reconfiguration process completes in 0.9 seconds; this
is acceptable as load changes in real-world workloads are not
that frequent [20, 60]. Moreover, the reconfiguration process
never blocks request processing, meaning that the system
remains operational during the reconfiguration period.

4 Implementation

Based on pTPS, we implement two in-memory KVSs, namely
pTPS-H and pTPS-T, which use libcuckoo and MassTree,
respectively, as the index structure. pTPS-H supports point
queries while pTPS-T supports both point and range queries.
In pTPS-T, a range query is processed collaboratively by the
cache-resident and memory-resident layers. KV items cached
at the cache-resident layer are first copied to the receive buffer,
and the range query request is subsequently forwarded to the
memory-resident layer for further processing. The memory-
resident layer leverages the full index to handle the request,
skipping items that are already present in the receive buffer.
To support this process, the request structure for range queries

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

exchanged between the cache-resident and memory-resident
layers is extended to include the lower and upper bounds
of the key range, and the number of items to return. Since
range queries typically have much lower throughput than
point queries, a larger request structure introduces negligible
performance overhead.

5 Evaluation
5.1 Experimental Setup

Testbed. The server node is equipped with two 28-core Intel
Xeon Gold 6330 CPUs and 256 GB of memory (each CPU
has 42MB of LLC). Two client nodes are installed with two
16-core Intel Xeon(R) Silver 4314 CPUs and 64 GB of mem-
ory. All nodes run the Ubuntu 20.04 and are equipped with
Mellanox ConnectX-6 200 Gbps NICs for communication,
interconnected through a Mellanox 200 Gbps switch. Unless
otherwise specified, all experiments are conducted on 28 cores
on a single NUMA node of the server. The client nodes utilize
all available CPU cores to generate maximum load.

Compared systems. We compare unTPS against the following
systems: (1) BaseKV. This system is identical to pTPS except
for its use of a run-to-completion thread pool architecture.
Optimizations such as reconfigurable RPC, batching, and
prefetching are enabled in BaseKV. (2) eRPCKV. This variant
replaces BaseKV’s RPC module with eRPC [40] and uses
a share-nothing architecture that directs requests to worker
threads by modding the key. We also compare with passive
KVSs where clients use one-sided RDMA verbs to access
KV items, bypassing the server-side CPUs. Among them,
RaceHash [68] is a state-of-the-art passive KVS that employs
a hash table as its index structure; Sherman [62] is a passive
KVS that uses B+ tree as its index structure.

5.2 Overal Performance

We evaluate pTPS using both synthetic workloads (YCSB [22])
and production workloads (Meta’s ETC pool [16] and Twit-
ter [65]). Unless otherwise specified, all tests are conducted
on a pre-populated database containing 10M KV items.

5.2.1 Synthetic workloads. As shown in Figure 7, we eval-
uate the compared systems under the YCSB workload by
varying item sizes, index types and operation mixes. we vary
the value size from 8 bytes to 1 KB and evaluate both uniform
and Zipfian key distributions. We select workloads A (50%
put and 50% get), B (5% put and 95% get), C ((100% get)),
and E (95% scan and 5% put), omitting workload D as it
closely resembles workload B. Additionally, we include a
custom workload consisting of 100% put operations to specif-
ically evaluate write performance. Our evaluation yields the
following key observations:

Read-intensive workload. pTPS consistently outperforms
BaseKV in read-intensive workloads across various item
sizes and index structures. For instance, with a tree-based

1108

Youmin Chen, Jiwu Shu, et al.

index, pTPS achieves 1.30x and 1.29x the throughput of
BaseKV on average under the YCSB-B and YCSB-C work-
loads, respectively. This advantage stems from pTPS’s de-
sign, which separately manages cache-resident and memory-
resident items, making it more cache-friendly than BaseKV’s
run-to-completion model. However, pTPS’s performance ad-
vantage is less significant under uniform workloads (i.e., 100%-
Get-Uniform), where the cache module at the cache-resident
layer cannot identify hot items, rendering it less effective in en-
hancing performance. eRPC-KV performs much slower than
pTPS and BaseKV under skewed workloads, due to its request
dispatch mechanism, which uses the modulo operation on keys
to assign requests to server threads, causing load imbalance. In
contrast, under the uniform workload, eRPC-KV outperforms
BaseKYV, and even delivers throughput comparable to pTPS
(e.g., with hash indexes and small items). In this case, the
load is evenly distributed across worker threads; and eRPC’s
highly optimized implementation delivers higher throughput
than Reconfigurable RPC, which relies on a single receive
buffer queue. Passive KVSs, such as RaceHash and Sherman,
perform poorly since they require multiple one-sided verbs
to locate a KV item. We also notice that Sherman exhibits
excellent performance with 1 KB items; in this case, internal
nodes are cached at the client node, and the throughput is
primarily constrained by network bandwidth.

Write-intensive skewed workload. pTPS’s threading design
also enables it to deliver superior performance over BaseKV in
write-intensive skewed workloads (e.g., YCSB-A and 100%-
Put-Skew). Specifically, BaseKV’s performance degrades
significantly with 64B and 256B items when using a hash
index. This behavior aligns with the results in §2.2, since
BaseKV relies on locks to serialize concurrent accesses to the
same key, which leads to high contention overhead when a
large number of worker threads are used. In contrast, pTPS
dynamically tunes its configuration to minimize contention
by adjusting the number of worker threads at each stage,
effectively mitigating the performance impact. BaseKV’s
performance normalizes with 8B items because updates to
8-byte values can be performed atomically, avoiding the
need for locks. For items larger than 8 bytes, eRPC-KV
outperforms BaseKV in most cases and occasionally achieves
slightly higher throughput than pTPS (up to 12%). eRPC-
KV’s shared-nothing architecture eliminates the need for
locks, and the benefits of avoiding contention often outweigh
the disadvantages of uneven load distribution. Nevertheless,
pTPS provides more consistent performance across various
item sizes and operation mixes, demonstrating its robustness
and adaptability under diverse workload conditions.

Write-intensive uniform workload. pTPS’s performance ad-
vantage over BaseKV is less pronounced under write-intensive
uniform workload (e.g., 100%-Put-Uniform). For example,
with 8B items, pfTPS achieves only 3.01% and 11.8% higher
throughput than BaseKV when using hash- and tree-based

Rearchitecting the Thread Model of In-Memory Key-Value Stores with pTPS

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

60 O Sheer(r)nan (O eRPCKV (@ BaseKV @ pTPSS-g
0 (a) 8B, Tree index (b) 64B, Tree index (c) 256B, Tree index | (d) 1KB, Tree index
[%2]
S 40} - 140 -0 -
2
‘g‘_ 20 | 1 20F |
5
3 0 0 0 0
£ A B C PytSetfuty A B C Py&etfury A B8 C PuGerfuy A B C PuGetfluty
= (O RaceHash (O eRPCKV (@ BaseKV @ pTPSS-g
& gol .. | (¢) 8B, hash Index | . go[.. [() 64B, Hash index| . | 60 |(g) 256B, Hash index | " | (h) 1KB, Hash index |
Sool M M W MHm{eoF 0 T 0 T Mgl 200 J0 -0 Boml2or0 f dng B o
>3
240
2
£ 0

A B

0
A B (6] PUt. §et~ 5[”_ U

0
C PurSetfluty

0
A B C PU1~§81~5U1~U A B

C PurSetfuty

Figure 7. uTPS’s overall performance. PUT-S, GET-U, and PUT-U indicate 100% put-skewed, 100% get-uniform, and 100% put-uniform,
respectively. The top half shows the throughput with MassTree as the index, while the bottom half is with libcuckoo as the index.

indexes, respectively. For put operations, newly received KV
items are stored at the receive buffer managed by the cache-
resident layer. When the memory-resident layer processes
the request, it fetches data directly from the receive buffer,
which incurs cache misses at the memory-resident layer. This
results in excessive cache-coherence traffic to the worker
threads at the cache-resident layer, since data has already been
prefetched into the CPU cache by the hardware when they
parse the requests. The cache-coherence traffic significantly
impacts the efficiency of the cache-resident layer worker
threads, especially with smaller items. In some rare cases,
pTPS underperforms eRPC-KV (e.g., with 8B and 64B items),
since eRPC achieves higher throughput than Reconfigurable
RPC. It is worth noting that integrating pTPS with eRPC
could further improve the performance of eRPC-KYV, although
these results are not shown here.

Effects of index type. In general, pyTPS achieves greater
performance improvements over BaseKV when using the
tree-based index. For instance, pTPS-T outperforms BaseKV
by 11.87% to 26.56% with 8B items under different operation
mixes, while pTPS-H outperforms BaseKV by 3.01% to
8.56% (except for 100%-Put-Skew). The reason for this is
also straightforward — traversing a tree-based index generates
more cache misses, creating a larger opportunity for pTPS to
optimize cache usage.

Effects of item size. pPTPS consistently outperforms BaseKV
across different item sizes. For read-intensive workloads, the
performance gap between pTPS and BaseKV increases as
the item size grows. For example, with the tree-based index
and YCSB-B workload, pTPS-T outperforms BaseKV by
19.71% with 8B items, and by 43.53% with 1KB items. pTPS
requires inter-core communication when processing each
request, whose overhead is amortized with larger items.

1109

15 | (a) Scanl | (b) ETC, Tree index| | (c) ETC, Hashl
O eRPC-KV| 80 O eRPCKV
@ BaseKV @ BaseK
10_.' HTPS-T 60 - @ pTPS-H:
40+
5F 20
10:9050:5090:10 10:9050:5090:10

Scan E Read/Write Ratio

Read/Write Ratio

Figure 8. (a) Throughput of scan; (b)-(c) Throughput with
the ETC pool. Scan: scan-only; E: YCSB-E (95%-scan + 5%-put).

(Mops/s)
N A O ®
o O O O

Throughput

o

C12

C19 C31 c12 C19 C31

Figure 9. Throughput with the Twitter traces.

Scan. As shown in Figure 8a, we use the YCSB-E workload
to evaluate the scan performance of pTPS; the results of
the scan-only workload are shown in the figure as well. We
set the average range size to 50 and use 8B items to avoid
network bandwidth bottlenecks. pf'TPS-T outperforms BaseKV
by 33.1% and 25.1%, and outperforms eRPC-KV by 58.9%
and 40.5% under the YCSB-E and scan-only workloads,
respectively. Scan-intensive workloads can be regarded as a
special case of read-intensive workloads, and the results in
this experiment are highly consistent with the results in the
YCSB-B experiments.

5.2.2 Real Workloads. For ETC, we use its default key and
value size distributions. Value sizes are distributed as follows:
1-13 bytes (Zipfian, 40%), 14-300 bytes (Zipfian, 55%), and

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

-4~ eRPC-KV - BaseKV uTPS-H/T

0 30 {(a) P50, Tree index | 1 (b) P50, Hash index |
¢C>,‘20_, R
8 : : :
3 1ot e
o v . . .
&
0

Z100f | (d) P99, Hash index [
GC) .
% 50F SRS £
- : : -
S ARttt A—8"3
o 0 1 1 1 1 1

20 40 0 20 40 60 80

Throughput (Mops/s) Throughput (Mops/s)

Figure 10. Throughput vs. P50 and P99 latencies by varying
the number of clients. We use YCSB-A workload and 8B items.

larger than 300 bytes (uniform, 5%). For Twitter, we select
three representative traces.

Table 1. Details of The selected Twitter traces.

Cluster-12 Cluster-19 Cluster-31

Ratio of put 80% 25% 94%
Avg. value size 1030B 101B 15B
Zipf alpha 0.30 0.74 0

ETC. When evaluating the ETC workload, we set the get
ratio to 10%, 50%, and 90%, respectively. The results are
shown in Figure 8b-c. In general, the performance of all
compared KVSs shows a similar trend to the skewed YCSB
workload (e.g., A, B) with 256B items. Specifically, pTPS-T
outperforms BaseKV by 29.1%, 13.0%, and 26.6% under the
10%, 50%, and 90% get ratio, respectively, and outperforms
eRPC-KV by 55.9%, 54.5%, and 67.3%.

Twitter. As shown in Table 1, we select three representa-
tive traces from Twitter. Among them, Cluster-12 is skewed
and write-intensive; Cluster-19 is skewed and read-intensive;
Cluster-31 is write-dominant and uniform. Figure 9 shows the
results: the performance of pTPS is highly consistent with
the results under the YCSB and ETC workload. Specifically,
uUTPS-T outperforms BaseKV by 44.5%, 39.8%, and 0.1%,
and outperforms eRPC-KV by 29.4%, 35.5%, and 39.5%
under Cluster-12, Cluster-19, and Cluster-31, respectively.

5.3 Latency

pTPS introduces additional latency due to the inter-core
communication. In this experiment, we evaluate the latency
of uTPS under the YCSB workload with 8B items. As shown
in Figure 10, we increase the number of client threads from 2
to 64 in increments of 4, and report both the median and 99th
percentile latencies as a function of the current throughput.

1110

Youmin Chen, Jiwu Shu, et al.

80 — eRPC-KV — BaseKV UTPS-T/H
Q) (a) 8B (b) 256B ©8B |, (d) 256B
360 L. .| Tree index Tree index Hash.index’| Hash index
o
340 : : : : : : :
Rl = K
2o i i 7 i i i i i i
£ 0 10 20 0 10 20 0 10 20 0 10 20 30

of Worker Threads

Figure 11. Scalability with varying number of worker threads.
We use the YCSB-A workload.

80 DpTPST DpTPS-H
> .
[Nery -
'S,% 60
3 G 40
ﬁgmﬂﬂﬂﬂ H
OI

248121620 248121620
Figure 12. Effects of Batching. YCSB-A and 8B items.

We can observe that pTPS exhibits slightly higher median
latency than BaseKV with the hash index; in other cases, they
have very close median or P99 latencies. Overall, the extra
latency introduced by pTPS is minimal. pTPS uses an all-to-all
mapping to direct requests to worker threads at the memory-
resident layer, effectively balancing the load among worker
threads without introducing extra queuing delays. Inter-core
communication itself only introduces ~100ns latency, and is
further amortized through batching, making it negligible.

5.4 Scalability

We evaluate pTPS’s scalability by varying the number of
worker threads from 1 to 28 with in increments of 4. We
use the YCSB-A workload with 8B and 256B items; both
hash- and tree-based indexes are evaluated. The results are
shown in Figure 11, and we make the following observations.
First, when using fewer worker threads, pTPS’s performance
is similar to competitors’, or even slightly worse. Using fewer
cores increases the likelihood of load imbalance between
the cache-resident and memory-resident layers, as thread
reallocation is constrained to integer increments. For instance,
if the ideal core allocation for the cache-resident and memory-
resident layers is 2:5, using only 3 cores would force an actual
allocation of 1:2 instead. pTPS gradually outperforms other
systems as the number of worker threads increases; with more
worker threads, pfTPS can provide an actual allocation that
is closer to the ideal case. Meanwhile, pTPS is more robust
to workload contention and can scale well with more worker
threads, while BaseKV suffers from performance decline with
the hash index and 256B items.

5.5 Ablation Study

5.5.1 Effects of Batching. unTPS extensively uses batching
to amortize the overhead of inter-core communication and
cache misses. In this experiment, we vary the batch size from

Rearchitecting the Thread Model of In-Memory Key-Value Stores with pTPS

100M
g 50M
®©

3 10M
™
0.1M

Skew

Skew

Tree index

0.39 0.43 0.50 0.54 OOM
0.43 0.43 0.43 0.57 0.68
0.32 0.39 0.43 0.50 0.68
0.32 0.32 0.36 0.54 0.57

0.32 0.29 0.29 0.61 0.68

0.92 1.00 1.00 1.00 OOM
0.83 1.00 1.00 1.00 1.60
1.00 1.00 1.00 1.00 0.92
1.00 0.92 1.00 0.92 1.00

1.00 0.92 1.00 0.83 0.92

0.54 0.08 0.46 0.08 0.31
0.31 0.15 0.31 0.31 0.54
0.15 031 0 0.23 0.23
0.54 0.08 0.38 0.69 0.08

0.69 0.69 0.23 0.15 0.62

Uniform

Uniform

Hash index

0.54 0.54 0.61 0.75 OOM
0.54 0.54 0.50 0.75 0..79
0.43 0.54 0.57 0.75 0.79
0.46 0.46 0.54 0.71 0.75

0.32 0.43 0.50 0.68 0.75

0.42 0.50 1.00 1.00 OOM
0.58 0.58 1.00 0.92 1.60
0.42 0.83 0.83 0.92 1.00
0.58 0.33 1.00 1.00 1.00

0.33 0.50 1.00 1.00 1.00

023 0 0 0.62 0.46

0.38 0.54 0.15 0.31 0.23

0.38 0.62 0.38 0.62 0.69

0.23 0.46 0.62 0.23 0.62

0.08 046 0 0.15 0

2% 92>
TE5 3N é
W ®
Item Size
(a) Core Allocation

53N B
W W
Iltem Size
(b) LLC Allocation

o 2 o o o
o N ™ © ©
©

Skewness
(c) Cache Resize

Figure 13. The effectiveness of the auto-tuner. (a)-(b) the
numbers indicate the ratio of worker threads and the ratio of cache
ways assigned to the memory-resident layer, respectively; (c) the
ratio of cached items from the hot set at the cache-resident layer.

1 to 20 and evaluate the performance of pTPS under the
YCSB-A workload with 8B items. The batch size determines
the number of requests sent and received by the cache-resident
and memory-resident layer at a time, and also presents the
number of indexing operations processed together. As shown
in Figure 12, batching improves the performance of pTPS-
T and pTPS-H by 51.6% and 93.7%, respectively. p\TPS-H
is more sensitive to the batch size since the overhead of
inter-layer communication is more significant.

5.5.2 Effects of Auto-tuner. In this part, we evaluate the
effectiveness of pTPS’s auto-tuner. By default, we use the
YCSB-A workload with 8B items and a tree-based index.

Core Allocation.As shown in Figure 13a, we report the
ratio of worker threads assigned to the memory-resident
layer as we vary the keyspace and item size. We make two
observations. First, the auto-tuner assigns more worker threads
to the memory-resident layer as we increase item size or
keyspace. A larger item or keyspace increases the overhead
of processing each request, requiring more worker threads
in the memory-resident layer for parallel processing. Second,
for the same keyspace and item size, the auto-tuner assigns
fewer worker threads to the memory-resident layer when
using a skewed workload. This is because the cache-resident
layer already processes the requests of hot keys, leaving
less workload to be processed by the memory-resident layer
workers.

LLC allocation. Our offline profiling suggests that allocating
all cache ways to the cache-resident layer and reusing a portion
for the memory-resident layer provides the best performance.
In Figure 13b, we report the ratio of cache ways reused by
the memory-resident layer as we vary the keyspace and item

1111

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

size. Under skewed workloads and uniform workloads with
large item sizes, the auto-tuner assigns almost all cache ways
to the memory-resident layer. However, under the uniform
workload with small item sizes, fewer cache ways are allocated
to the memory-resident layer. This is because assigning more
cache ways does not improve the cache hit rate of the memory-
resident layer, and instead leads to cache thrashing when cache
ways are shared with the cache-resident layer.

Cache resize. In Figure 13c, we report the ratio of cached
items at the cache-resident layer to the total hot set as we
vary skewness and index type. As expected, the number of
cached items shows no clear correlation with skewness, since
the cache layer is not only used to cache hot items, but also
rebalances the load between the cache-resident and memory-
resident layer at a finer granularity.

Dynamic Workloads In this experiment, we evaluate pTPS’s
ability to react to dynamic workloads by changing the value
sizes from 512 bytes to 8 bytes. Figure 14 shows the throughput
over time. The workload changes at time 4s. Initially, pTPS
does not discover the change in workload and still using
the old configuration. At 4.3s, the auto-tuner detects the
change and starts to reconfigure the system: for each cache
size, it searches for the optimal thread allocation with a
trisecting approach, and subsequently probes for the optimal
LLC allocation. The auto-tuner finishes at 5.2s, resulting in
a 20% increase in throughput. Notably, the system remains
operational throughout the reconfiguration process, with no
downtime required.

6 Related Work

Fast inter-core communication. ffwd [57] is a delegation
system that uses one thread process requests on behalf of
multiple client threads, and thus removes the requirements
of using locks. ffwd achieves fast inter-thread communica-
tion by effectively hiding the latency of interconnect link
between cores. pTPS holds a similar goal of fast inter-core
communication, but it is designed for the multi-producer multi-
consumer scenario. Intel Dynamic Load Balancer (DLB) [5]
is a hardware queue supported by the 4th and 5th generation
Xeon CPUs, which enables efficient and scalable core-to-core
communicatio. We believe DLB can further enhance pTPS’s
performance, and we leave this as our future work.

Single receive queue. Using a single receive queue to handle
incoming packets has received significant attention in recent
years. ShRing [54] shares each Rx ring among multiple cores
to avoid the DMA leak problem; Junction [34] supplies per-
core receive queues with a shared buffer queue to minimize
buffer memory consumption. pTPS shares the same goal
with them of using a smaller receive buffer to avoid cache
misses; moreover, a single receive queue also enables flexible
reconfiguration when pTPS reassigns CPU cores.
Userspace core scheduling. Recent operating systems intro-
duced userspace core scheduling to handle microsecond-scale

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

YCSB-A Cache resize ——

Value: 512B to 8B
3 —~ |Treeindex
5o
3§ S0 Ato-tiirier st
£2 [Loadchange

LLC resize
10 1 1 1 1
0 2000 4000 6000 8000

Figure 14. Throughput with workloads change.

tasks. For example, Shinjuku [39] avoids head-of-line block-
ing by using hardware support for virtualization to preempt
requests as often as every 5 us. Shenango [53] achieves high
CPU efliciency by providing a fast path that reallocates CPU
cores among applications at very fine granularity. Caladan [35]
and Arachne [55] further introduce scheduling policies that
assign an appropriate number of cores among applications
and enforce load balancing among CPU cores. These systems
can work in conjunction with pTPS to further save CPUs
when the reserved cores is under-saturated.

RDMA-based KVS. Many recent systems leverage one-sided
RDMA verbs to build high-performance key-value stores while
minimizing server-side CPU usage. For instance, FaRM [26]
and Pilaf [51] offload the processing of get operations to clients
by issuing multiple read verbs iteratively to locate and retrieve
a KV item; put operations involve extra memory allocation
and concurrency control and are handled by the server. Recent
KVSs designed specifically for disaggregated memory, such as
Sherman [62], SMART [48], and RaceHashing [68], further
offload the processing of put operations to clients as well.
While they effectively minimize CPU usage, they come at the
cost of increased network traffic, lower overall performance,
the requirement of customizing data structures, and higher
software overhead on the client side. The threading design
of uTPS can be broadly applied to systems that require CPU
involvement and operate at extremely fast speed.

7 Conclusion

In this work, we presented pTPS, a novel thread architec-
ture designed to address the limitations of run-to-completion
designs in in-memory KVS. uTPS separates monolithic run-to-
completion functions into cache-resident and memory-resident
stages, enabling finer-grained optimization for each. Comple-
mented by advanced techniques such as reconfigurable RPCs,
resizable caching, and an integrated auto-tuner, pfTPS offers
improved schedulability and performance.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Atul
Adya, for their insightful comments. This work is supported
by the National Key R&D Program of China (Grant No.
2022YFB4500302), National Natural Science Foundation of
China (Grant No. U22B2023, 62202255), and SJTU-Huawei
Explore X Program. Corresponding author: Youmin Chen
(chenyoumin@sjtu.edu.cn).

1112

Youmin Chen, Jiwu Shu, et al.

References
[1]

The boost c++ libraries.

coroutine/.

Data plane development kit. https://www.dpdk.org/.

The go programming language. https://golang.org/.

Intel data direct i/o technology. https://www.intel.com/content/www/

us/en/io/data-direct-i-o-technology.html.

Intel dynamic load balancer. https://www.intel.com/content/www/us/

en/download/686372/intel-dynamic-load-balancer.html.

Intel optane memory - responsive memory, accelerated perfor-

mance. https://www.intel.com/content/www/us/en/products/details/

memory-storage/optane-memory.html.

Intel performance counter monitor (intel pcm). https://github.com/

intel/pcm.

Intel rdt software package. https://github.com/intel/intel-cmt-cat.

Introduction to cache allocation technology in the intel xeon

processor e5 v4 family. https://www.intel.com/content/www/us/

en/developer/articles/technical/introduction-to-cache-allocation-

technology.html.

[10] Keydb - the faster redis alternative. https://docs.keydb.dev/.

[11] Memory-semantic ssd. https://samsungmsl.com/ms-ssd/.

[12] Multi-packet rq. https://docs.nvidia.com/networking/display/
rdmacore50/multi-packetrq.

[13] Project voldemort. http://project-voldemort.com/.

[14] Rdma aware network programming user manual. https://docs.nvidia.
com/rdma-aware-networks-programming-user-manual-1-7.pdf.

[15] uthreads: Concurrent user threads in c++. https://github.com/

samanbarghi/uThreads.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. SIGMET-

RICS Perform. Eval. Rev., 40(1):53-64, jun 2012.

Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravis-

hankar Chandhiramoorthi, and Diego Didona. SILK: Preventing latency

spikes in Log-Structured merge Key-Value stores. In 2019 USENIX An-

nual Technical Conference (USENIX ATC 19), pages 753-766, Renton,

WA, July 2019. USENIX Association.

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David

Novo, Ataberk Olgun, Mohammad Sadrosadati, and Onur Mutlu. Her-

mes: Accelerating long-latency load requests via perceptron-based

off-chip load prediction. In Proceedings of the 55th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 22, page 1-18.

IEEE Press, 2022.

Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow. MongoDB:

the definitive guide: powerful and scalable data storage. O’Reilly

Media, 2019.

Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Charac-

terizing, modeling, and benchmarking RocksDB Key-Value workloads

at facebook. In /8th USENIX Conference on File and Storage Tech-

nologies (FAST 20), pages 209-223, Santa Clara, CA, February 2020.

USENIX Association.

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-

doski, James Hunter, and Mike Barnett. Faster: A concurrent key-value

store with in-place updates. In Proceedings of the 2018 International

Conference on Management of Data, SIGMOD °18, page 275-290,

New York, NY, USA, 2018. Association for Computing Machinery.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC 10,

page 143-154, New York, NY, USA, 2010. Association for Computing

Machinery.

Graham Cormode and Shan Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. Journal of Algo-

rithms, 55(1):58-75, 2005.

https://theboostcpplibraries.com/boost.

[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

chenyoumin@sjtu.edu.cn
 https://theboostcpplibraries.com/boost.coroutine/
 https://theboostcpplibraries.com/boost.coroutine/
https://www.dpdk.org/
 https: //golang.org/
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://github.com/intel/pcm
https://github.com/intel/pcm
https://github.com/intel/intel-cmt-cat
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://docs.keydb.dev/
https://samsungmsl.com/ms-ssd/
https://docs.nvidia.com/networking/display/rdmacore50/multi-packet rq
https://docs.nvidia.com/networking/display/rdmacore50/multi-packet rq
http://project-voldemort.com/
https://docs.nvidia.com/rdma-aware-networks-programming-user-manual-1-7.pdf
https://docs.nvidia.com/rdma-aware-networks-programming-user-manual-1-7.pdf
https://github.com/samanbarghi/uThreads
https://github.com/samanbarghi/uThreads

Rearchitecting the Thread Model of In-Memory Key-Value Stores with pTPS

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31

[32

[33

[34

[35]

[36]
[37

[38]
[39]

[40]

[41]

Debendra Das Sharma, Robert Blankenship, and Daniel Berger. An
introduction to the compute express link (cxl) interconnect. ACM
Comput. Surv., 56(11), July 2024.

Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm.
Rocksdb: Evolution of development priorities in a key-value store
serving large-scale applications. ACM Trans. Storage, 17(4), October
2021.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. Farm: Fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’ 14, page 401414, USA, 2014. USENIX Association.
Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B. Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. No compromises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, page 54—70, New York,
NY, USA, 2015. Association for Computing Machinery.

Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact
and concurrent memcache with dumber caching and smarter hashing.
In Proc. 10th USENIX NSDI, Lombard, IL, April 2013.

Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kosti¢.
Reexamining direct cache access to optimize I/O intensive applications
for multi-hundred-gigabit networks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 673—689. USENIX Association,
July 2020.

Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kosti¢.
Make the most out of last level cache in intel processors. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys "19, New York,
NY, USA, 2019. Association for Computing Machinery.

Roy T. Fielding and Gail Kaiser. The apache http server project. /IEEE
Internet Computing, 1(4):88-90, 1997.

Brad Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

Keir Fraser. Practical lock-freedom. Technical report, University of
Cambridge, Computer Laboratory, 2004.

Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Inigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. Making
kernel bypass practical for the cloud with junction. In 275t USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24), pages 55-73, Santa Clara, CA, April 2024. USENIX Association.
Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In Pro-
ceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation, pages 281-297, 2020.

Lars George. HBase: The Definitive Guide. O’Reilly Media, Inc, 2011.
Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu,
Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu,
Jian Zhang, Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng
Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang. Tidb:
a raft-based htap database. Proc. VLDB Endow., 13(12):3072-3084,
August 2020.

RMI Java. Java remote method invocation. Sun Microsystems Inc, 2010.
Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Maziéres, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for psecond-scale tail latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages
345-360, 2019.

Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs
can be general and fast. In /6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 1-16, Boston,
MA, February 2019. USENIX Association.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guide-
lines for high performance RDMA systems. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 437-450, Denver, CO,

1113

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

June 2016. USENIX Association.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,
scalable and simple distributed transactions with Two-Sided (RDMA)
datagram RPCs. In /2th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 185-201, Savannah, GA,
November 2016. USENIX Association.

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping
the performance of fast nvm storage with udepot. In Proceedings of the
17th USENIX Conference on File and Storage Technologies, FAST’ 19,
page 1-15, USA, 2019. USENIX Association.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35-40, April
2010.

Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
Kvell: the design and implementation of a fast persistent key-value store.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 447-461, New York, NY, USA, 2019.
Association for Computing Machinery.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. Kv-direct:
High-performance in-memory key-value store with programmable nic.
In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP 17, page 137-152, New York, NY, USA, 2017. Association for
Computing Machinery.

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. Mica: A holistic approach to fast in-memory key-value storage. In
Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’ 14, page 429-444, USA, 2014.
USENIX Association.

Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang,
Michael R. Lyu, and Yangfan Zhou. SMART: A High-Performance
adaptive radix tree for disaggregated memory. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 23),
pages 553-571, Boston, MA, July 2023. USENIX Association.
Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache
craftiness for fast multicore key-value storage. In Proceedings of the
7th ACM European Conference on Computer Systems, EuroSys "12,
page 183-196, New York, NY, USA, 2012. Association for Computing
Machinery.

Alexander Merritt, Ada Gavrilovska, Yuan Chen, and Dejan Milojicic.
Concurrent log-structured memory for many-core key-value stores.
Proc. VLDB Endow., 11(4):458-471, December 2017.

Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided
RDMA reads to build a fast, CPU-Efficient Key-Value store. In 2013
USENIX Annual Technical Conference (USENIX ATC 13), pages 103—
114, San Jose, CA, June 2013. USENIX Association.

Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley db. In
USENIX Annual Technical Conference, FREENIX Track, pages 183-191,
1999.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high cpu efficiency for latency-
sensitive datacenter workloads. In NSDI, volume 19, pages 361-378,
2019.

Boris Pismenny, Adam Morrison, and Dan Tsafrir. ShRing: Networking
with shared receive rings. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 949-968, Boston,
MA, July 2023. USENIX Association.

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout.
Arachne: Core-Aware thread management. In /3th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages
145-160, Carlsbad, CA, October 2018. USENIX Association.

Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng Li, Xiaosong Ma,
Qi Chen, Mao Yang, and Yinlong Xu. Frozenhot cache: Rethinking cache
management for modern hardware. In Proceedings of the Eighteenth

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

(571

[58]

[59]

[60]

[61]

[62]

European Conference on Computer Systems, EuroSys ’23, page 557-573,
New York, NY, USA, 2023. Association for Computing Machinery.
Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. ffwd: del-
egation is (much) faster than you think. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP *17, page 342-358,
New York, NY, USA, 2017. Association for Computing Machinery.
Raj Srinivasan and RPC RFC1831. Remote procedure call protocol
specification version 2. Sun Microsystems, August, 1995.

Akshitha Sriraman and Thomas F. Wenisch. ptune: auto-tuned threading
for oldi microservices. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation, OSDI’18, page
177-194, USA, 2018. USENIX Association.

Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji Huang, and Jiwu
Shu. Pacman: An efficient compaction approach for Log-Structured Key-
Value store on persistent memory. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 773-788, Carlsbad, CA, July
2022. USENIX Association.

Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A Black-Box
approach to NUMA-Aware persistent memory indexes. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), pages 93—111. USENIX Association, July 2021.

Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized
distributed b+tree index on disaggregated memory. In Proceedings of
the 2022 International Conference on Management of Data, SIGMOD
’22, page 1033-1048, New York, NY, USA, 2022. Association for
Computing Machinery.

1114

[63]

[64]

[65]

[66]

[67]

[68]

Youmin Chen, Jiwu Shu, et al.

Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu. Replicating per-
sistent memory Key-Value stores with efficient RDMA abstraction. In
17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23), pages 441-459, Boston, MA, July 2023. USENIX
Association.

Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for
well-conditioned, scalable internet services. SIGOPS Oper. Syst. Rev.,
35(5):230-243, October 2001.

Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis
of hundreds of in-memory cache clusters at twitter. In /4th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 191-208. USENIX Association, nov 2020.

Suli Yang, Jing Liu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Principled schedulability analysis for distributed storage
systems using thread architecture models. In Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation,
OSDI'18, page 161-176, USA, 2018. USENIX Association.

Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren Wang, Ilia Kurakin,
Charlie Tai, and Nam Sung Kim. Don’t forget the i/o when allocating
your llc. In Proceedings of the 48th Annual International Symposium
on Computer Architecture, ISCA °21, page 112-125. IEEE Press, 2021.
Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua.
One-sided RDMA-Conscious extendible hashing for disaggregated
memory. In 2021 USENIX Annual Technical Conference (USENIX ATC
21), pages 15-29. USENIX Association, July 2021.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 A Taxonomy of the KVS Thread Architecture
	2.2 The Opportunity of NP-TPS
	2.3 Challenges

	3 TPS Design
	3.1 Overview
	3.2 Cache-Resident Layer
	3.3 Memory-Resident Layer
	3.4 CR-MR Queue
	3.5 Auto-tuner

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Overal Performance
	5.3 Latency
	5.4 Scalability
	5.5 Ablation Study

	6 Related Work
	7 Conclusion
	References

