
Rearchitecting the Thread Model of In-Memory

Key-Value Stores with μTPS

Youmin Chen, Jiwu Shu†, Yanyan Shen, Linpeng Huang, Hong Mei
Shanghai Jiao Tong University †Tsinghua University

Abstract

This paper presents μTPS, a new thread architecture tailored

for in-memory key-value stores (KVSs) that operate at tens of

millions of operations per second. We show through analysis

and demonstration that the widely used run-to-completion

thread architecture, which executes monolithic functions from

start to finish, often suffers from cache inefficiencies and con-

tention issues. To address this, we revisit the once widely used

thread-per-stage (TPS) architecture, but with a fresh perspec-

tive – separating cache-resident, contention-free stages and

memory-resident, conflict-prone stages into distinct thread

pools, and scheduling them with dedicated hardware resources

(e.g., CPU cores, cache ways). This novel division enables

independent optimization of each stage, significantly improv-

ing cache efficiency and mitigating contention. Additionally,

μTPS incorporates reconfigurable RPC, resizable caching, and

an auto-tuner to enhance its schedulability and performance.

We implement two in-memory key-value stores, μTPS-H and

μTPS-T, to demonstrate the effectiveness of this approach.

Evaluation results show that μTPS achieves higher perfor-

mance than the run-to-completion counterparts.

ACM Reference Format:

Youmin Chen, Jiwu Shu†, Yanyan Shen, Linpeng Huang, Hong

Mei. 2025. Rearchitecting the Thread Model of In-Memory Key-

Value Stores with μTPS. In ACM SIGOPS 31st Symposium on

Operating Systems Principles (SOSP ’25), October 13–16, 2025,

Seoul, Republic of Korea. ACM, New York, NY, USA, 16 pages.

h�ps://doi.org/10.1145/3731569.3764794

1 Introduction

In-memory key-value stores (KVSs) are a cornerstone of

modern data centers, enabling fast, concurrent, and shared

access to data across distributed clients. Optimizing KVS

design has become a vital area of research, driving extensive

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s). Publication rights licensed to

ACM.

ACM ISBN 979-8-4007-1870-0/25/10

h�ps://doi.org/10.1145/3731569.3764794

efforts over the years to push the boundaries of throughput,

latency, and resource efficiency [21, 26, 46, 47, 50].

In a KVS, the thread architecture defines how client requests

are mapped to server threads and scheduled on CPU cores,

critically determining the throughput, latency, scalability, and

programmability [59]. Traditional storage systems [19, 36,

44] often adopt a thread-per-stage (TPS) architecture, based

loosely on SEDA design principles [64]. In this approach,

request processing is decomposed into a series of stages (or

functions), each running on a dedicated thread pool; requests

traverse these stages via event queues and are scheduled by the

operating system (OS). For example, HBase employs over 10

such stages (e.g., RPC handling, logging, data streaming) and

∼1000 interacting threads [36]. The advantages of the TPS

approach are manifold, including much faster code velocity

due to the modular design, increased scheduling flexibility,

and independent scaling of individual stages [17, 66].

Over the past years, cloud networks evolved from 1Gbps

and a few hundred `B to over 200Gbps and single-digit `B;

emerging memory/storage technologies like CXL-attached

RAM [24], memory-semantic SSDs [11], and Optane mem-

ory [6] can deliver millions of IOPS with sub-`B latency. The

latency of these devices is significantly below the OS schedul-

ing latency (typically measured in<B), driving a fundamental

shift in the thread architecture design. A prominent example

of this shift can be seen in userspace dataplane libraries (e.g.,

DPDK [2], RDMA libibverbs [14]). They employ a non-

preemptive thread architecture, where threads are pinned on

CPU cores, interact directly with the hardware, and use spin-

polling to check hardwares’ completion status, eliminating

the costly context switch overhead.

The non-preemptive thread architecture delivers impressive

performance gains, exemplified by recent in-memory KVSs

such as MICA [47] and FaRM [26, 27]. They typically adopts

a run-to-completion (RTC) model, where each worker thread

handles an entire request from start to finish. In doing so,

conventionally decomposed processing stages are collapsed

into a single monolithic function, which diminishes CPU

cache efficiency and amplifies contention at extremely high

throughputs (e.g., >10M ops/s). In a KVS, processing a

KV operation typically involves multiple steps: fetching and

parsing the network request, traversing the index structure

to locate the data item, read or write data by copying it

between the network buffer and KVS storage, and returning

a response to the client. These sub-tasks exhibit varying

memory access patterns and multicore scalability. For instance,

1099

https://doi.org/10.1145/3731569.3764794
https://doi.org/10.1145/3731569.3764794
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731569.3764794&domain=pdf&date_stamp=2025-10-12

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.

request polling involves sequential accesses to a small network

buffer range and scales efficiently; instead, index traversal

and data copying require accessing a much broader memory

space and often necessitate locking mechanisms to handle

request conflicts. With the non-preemptive thread architecture,

these heterogeneous sub-tasks are executed sequentially by

each server thread, easily leading to cache thrashing and

unnecessary blocking between stages.

The impact of this issue is more severe than it may seem.

Modern NICs deliver packets at rates >10 Mops/s, requiring

each request to be completed at nanosecond-scale latencies.

With insufficient cache capacity, accesses are thus increasingly

served by main memory, resulting in higher per-request pro-

cessing times. This overhead translates to degraded throughput

and latency – a single cache miss can introduce a delay of

50–150=B [18], while completing a KV operation takes only

a few hundred =B. Recent works, e.g., ShRing [54], Iat [67],

and CacheDirector [30], advocate for improving the LLC

efficiency through better cache allocation and data structure

designs. However, they leave the thread architecture as is,

and thus cannot fundamentally address the cache thrashing

problem due to interferences between sub-tasks.

Instead, we address the problem by re-embracing the TPS

architecture in a non-preemptive context, and thus propose

μTPS. Rather than adhering strictly to the classic modular

design philosophy, μTPS is approached from a different per-

spective – separating cache-resident, contention-free stages

and memory-resident, conflict-prone stages into two distinct

thread pools. This bisected approach minimizes the frequency

of cross-stage communication, while enabling independent

optimization of each stage. At the cache-resident layer, we

allocate dedicated worker threads and cache ways, and em-

ploy customized data organization, ensuring that the managed

data is never evicted out of the CPU cache. At the memory-

resident layer, we extensively utilize batching and prefetching

to mitigate cache miss penalties. Moreover, this separation

allows more scalable stages to operate independently, thereby

preventing potential blocking overhead.

While μTPS offers compelling advantages, its practical

implementation faces several challenges. First, not all stages

offer a clear distinction between cache residency and memory

residency. For example, index traversal and data copying in

a KVS are workload-dependent: skewed workloads, which

are common in production environments [20, 65], can create

hotspots at specific memory locations. We address this by

further dividing such stages, where hot data is managed

separately by the cache-resident layer. Second, μTPS still

incurs additional overhead for inter-stage communication,

which may offset the benefits of the separation. We mitigate

this through a lightweight, scalable queue design and more

effective stage placement. Third, in μTPS, pinned worker

threads are no longer scheduled by the OS scheduler, and

the storage software is responsible for adjusting the number

of CPU cores (or threads) allocated to each stage as the

load fluctuates. Similar adjustments should also be made for

cache way allocation and hotspot management. These factors

not only create a complex scheduling space to explore and

optimize, but also require a more sophisticated design for each

stage to adapt to such dynamic changes. We introduce an auto-

tuner that hierarchically explores the optimal configurations

for each stage, complemented by tailored RPC and caching

mechanisms to support runtime reconfigurations.

We implement two in-memory KVSs, μTPS-H and μTPS-

T, based on μTPS, which use libcuckoo and MassTree,

respectively, as their index structures. Our extensive evalua-

tion demonstrates that μTPS achieves a 1.03-5.46× speedup

over KVSs with a RTC thread architecture, while maintaining

comparable latency levels. We also show that μTPS can be

automatically reconfigured to adapt to different workloads.

With hash-based index or uniform workloads, the performance

gains achieved by uTPS are modest; however, we believe these

improvements are still valuable: even minor reductions in

latency or increases in throughput can lead to significant cost

savings at scale in production environments.

In summary, our paper makes the following contributions:

• We provide a detailed taxonomy of KVS thread architectures

to motivate the design of μTPS.

• We introduce μTPS, a novel thread architecture that reem-

braces the TPS design in a non-preemptive context.

• We implement two in-memory KVSs based on μTPS and

our evaluation shows μTPS achieves excellent performance.

2 Background and Motivation

In this section, we first present a taxonomy of KVS thread

architectures (§2.1), which motivates our work through em-

pirical analysis (§2.2); then, we discuss the challenges when

realizing the system (§2.3).

2.1 A Taxonomy of the KVS Thread Architecture

A KVS thread architecture essentially defines two aspects

– how threads are scheduled on CPU cores and how client

requests are divided among threads. Based on the two dimen-

sions, we present a hierarchical taxonomy of existing KVS

thread architectures (Figure 1).

2.1.1 Preemptive Thread Architecture. Network and stor-

age devices were initially slow, with technologies like Gigabit

Ethernet and HDDs exhibiting millisecond-scale latencies.

To hide such high latencies, operating systems introduced

preemptive multitasking to improve CPU efficiency. When

interacting with a device, the CPU core performs a context

switch, yielding control to another task (thread), instead of

blocking on the current IO; when the IO completes, the device

sends an interrupt to the CPU core, allowing the original

thread to resume. Therefore, preemptive multitasking enables

multiple threads to time-share the same CPU core. We further

investigate the request-to-thread assignment policies when

applying the preemptive thread architecture in a KVS.

1100

Rearchitecting the Thread Model of In-Memory Key-Value Stores with μTPS SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

NP-TPR
- Arachne, …

Preemptive

interrupt, ~1ms

Non-Preemptive

polling, ~1us

Thread Architecture

P-TPR
- Early BDB, …

P-TPQ
- Memcached, …

P-TPS
- RocksDB, Hbase, …

NP-TPQ
- MICA, FaRM, …

NP-TPS?
- µTPS

Disk/Ethernet IB/DRAM

C
P

U
R

e
q
u
e
s
t

Figure 1. A Taxonomy of thread architectures. P and NP

indicate preemptive and non-preemptive, respectively.

Thread per request (P-TPR) was once a commonly used de-

sign and is well supported by many RPC frameworks [38, 58].

In this architecture, a new thread is spawned for each new

request or connection to handle its processing. Although

straightforward to implement, TPR introduces significant

scheduling overhead: as the offered load increases, the num-

ber of worker threads grows proportionally, leading to fre-

quent thread switching when they time-share CPU cores. This

results in cache pollution and context switch overhead, ul-

timately degrading performance severely. KVSs that adopt

P-TPR: BerkeleyDB with its RPC server wrapper [52], early

Voldemort [13] with default configuration, etc.

Thread per queue (P-TPQ) is a more scalable design used

in recent KVSs [31, 32]. In this model, a number of threads

are created at system startup, which loop continuously from

their dedicated queues and process requests when available;

optionally, a dispatching thread is responsible for forwarding

incoming requests to these worker threads. A key distinction

between P-TPQ and P-TPR is that the former reuses worker

threads among requests. This reuse is further facilitated by

issuing asynchronous I/Os (e.g., libaio), where request pro-

cessing is implemented as finite state machines (FSM), and

completion notifications trigger transition between states. TPQ

interleaves computation and I/O across requests within the

system software, improving resource utilization and scalabil-

ity. KVSs that adopt P-TPQ: Memcached [32], KeyDB [10]

(a multithreaded fork of Redis), etc.

Thread per stage (P-TPS). As KVSs becomes increasingly

complex, processing a single request often involves multiple

stages (e.g., indexing, journaling, data I/O) and background

activities (e.g., garbage collection). As a result, P-TPS is

widely adopted by modern KVSs to handle this complex-

ity. P-TPS follows loosely on SEDA design principles [64],

which employs a series of thread pools, each responsible for

a specific stage of request processing, connected via event

queues. TPS improves code modularity and simplifies applica-

tion design by compartmentalizing distinct stages. Moreover,

dividing stages into separate thread pools further enhances

scheduling flexibility and performance isolation. For exam-

ple, TAM [66] retrofitted many existing TPS-based systems

with advanced scheduling features (e.g., weighted fairness)

by manipulating the request queues among stages; similarly,

SILK [17] prevents latency spikes in log-structured merge

KVS by throttling background compaction activities. KVSs1

that adopt P-TPS: RocksDB [25], TiKV [37], HBase [36],

Cassandra [44], MongoDB [19], etc.

2.1.2 Non-preemptive Thread Architecture. Userspace

dataplane libraries (e.g., DPDK, RDMA) typically employ a

non-preemptive thread architecture, which use busy polling

to interact with the device. Unlike preemptive multitasking,

non-preemptive thread architectures rely heavily on the run-

to-completion model, making request-to-thread assignment

policies a critical design space. Among them, we identify two

widely used policies in existing KVSs.

Thread per request (NP-TPR). Spawning and destroying

threads for each request is prohibitively expensive when

managing fast hardware devices. Recent systems leverage

lightweight green threads or uthreads to implement NP-TPR [3,

15, 55]. These systems maintain a lightweight context for

each uthread in userspace and use longjump instructions

for fast context switching, bypassing the OS kernel. For

example, Arachne [55] can spawn a new uthread in just 320ns.

However, the overhead of temporarily creating and destroying

threads remains significant when dealing with network devices

delivering tens of millions of IOPS. KVSs that adopt NP-TPR:

Memcached running inside Arachne [55].

Thread per queue (NP-TPQ). The application of TPQ in

non-preemptive thread architectures is facilitated by several

key optimizations. First, traditional P-TPQ relies on a central-

ized dispatcher to assign requests to a pool of threads, which

easily becomes a bottleneck in face of high-speed network

devices. Recent systems [26, 27, 47] avoid this bottleneck

by establishing dedicated connections between client and

worker thread pairs and binding threads to specific CPU cores,

allowing clients to directly send requests to specific server

cores. Second, to avoid expensive synchronization among

server threads, these systems often employ the share-nothing

design [43, 45], where each thread exclusively manages a

subset of data (i.e., shard), enabling lock-free data modifica-

tions. Third, to better utilize CPU cores, these systems often

employ batching to amortize the cost when interacting with

the device [41, 42, 45]. Last, coroutines [1] are extensively

used to further harvest the CPU cycles that would otherwise be

wasted for busy-polling completion notifications [43]. KVSs

that adopt P-TPQ: MICA [47], FaRM-KV [26, 27], etc.

Why not thread per stage (i.e., NP-TPS)? In the non-

preemptive thread architecture, NP-TPQ has become the de

facto choice for building storage systems targeting fast net-

work/storage devices. This is in contrast to the preemptive

thread architecture, where P-TPS is widely adopted. The key

reason is that TPS introduces frequent inter-thread communi-

cation among stages, making it challenging to fully exploit

the performance potential of modern high-speed hardware.

1Databases that use KVSs as the storage engine are included as well.

1101

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.

2.2 The Opportunity of NP-TPS

In contrast to conventional wisdom, our work presents a

contrary observation, showcasing NP-TPS’s strengths in cache

friendliness and contention mitigation. Building on these

insights, we design and implement a network-attached in-

memory KVS, demonstrating the viability of NP-TPS to

manage fast hardware devices.

2.2.1 Cache friendliness. As illustrated above, NP-TPQ

necessitates each worker thread to process requests from start

to finish in a run-to-completion manner. This necessitates

executing a single, monolithic function for every request. In

an in-memory KVS, the function encompasses tasks such as

polling requests from the network queue, performing index

lookups, copying data buffers, and sending responses to clients.

However, executing monolithic functions is inherently cache-

unfriendly due to the heterogeneity of their sub-steps in terms

of memory access patterns.

For example, in a KVS, polling requests via a userspace

network dataplane (e.g., RDMA) involves issuing load in-

structions from the network buffer to retrieve newly received

requests. Modern processors (e.g., Intel CPU) support direct

cache access (DCA), enabling an NIC to directly populate the

fast on-chip last-level cache (LLC), bypassing the slower main

memory. With proper network buffer design (e.g., keeping

buffer size smaller than LLC), polling can nearly eliminate

cache misses. However, index lookup and data access stages

involve accessing a broader memory space, which is the main

source of cache misses. Intuitively, packing such stages into a

single function often leads to cache thrashing at various cache

levels, severely degrading CPU pipeline efficiency.

Benefits of separating network buffers. To quantify the

cache inefficiency of NP-TPQ, we prototyped an in-memory

KVS using RDMA network and MassTree [49], adhering to

the NP-TPQ design. In our prototype, multiple worker threads

are launched to poll requests from clients, parse them to extract

the request type and key, perform lookups in MassTree to

locate the corresponding data items, and return responses to

the clients. For comparison, we also implement a NP-TPS

version, where the request polling/parsing/response stages

and the index lookup/data access stages are split into separate

thread pools. To isolate the benefits of TPS, we remove inter-

stage communication through deterministic replay at each

stage: instead of forwarding requests via inter-stage queues,

the second stage uses a deterministic generator to reproduce

the exact same sequence of requests for processing. Because

the two stages operate independently without communication,

we manually tuned the number of threads in each stage to

ensure the two stages process requests at matching rates.

We use two client nodes to send requests to a server node,

which are connected via a 200Gbps RDMA network; the de-

tailed experiment setup will be described in §5.1. As shown in

Figure 2a, TPS-based KVS, without the overhead of inter-stage

0

20

40

8 64 256 1K 1M 10M 100M 0 10 20 30

Item Size (B)

(a)

of Worker Threads

(c)

Keyspace

(b)

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

) NP-TPQ
NP-TPQ-CAT

NP-TPS
(ideal)

SE
SN

µTPSBase
Partition

0

50

100

0

20

40

Figure 2. Comparison between NP-TPS and NP-TPQ. a)

Throughput of get oprations with an uniform workload; b) Through-

put of index lookup in MassTree with a skewed workload; c) Through-

put of put operations with a skewed workload (64B items).

communication, achieves a 1.22-1.54× throughput improve-

ment over the TPQ one. To better understand this performance

gain, we use Intel’s Performance Counter Monitor (PCM [7])

to measure last-level cache (LLC) miss rates. The results

reveal that: i) threads in the first stage exhibit a significantly

lower LLC miss rate of just 2%, compared to 33% in NP-TPQ;

ii) threads in the second stage maintain a similar LLC miss

rate to those in NP-TPQ. Furthermore, TPS reduces the in-

struction cache footprint for each worker thread, contributing

to improved overall cache efficiency.

Separating LLC? The current implementation of DCA in

Intel processors (i.e., data direct I/O, DDIO [4]) typically

uses the two rightmost ways in LLC [29]. Hence, this setup

raises a potential argument: could the cache inefficiency of

NP-TPQ be mitigated by preventing worker threads from

using the cache ways reserved for DCA? Tools such as Intel’s

Cache Allocation Technology (CAT) [9] enable cache way

partitioning, which could, in theory, isolate DCA-reserved

cache ways from being polluted by worker threads. However,

our experiment shows that cache partitioning has a very close

performance to NP-TPQ for small item sizes, and only shows

slight performance improvements with larger item sizes, still

lagging behind NP-TPS (Figure 2a). This outcome stems from

the intricate behavior of DDIO: DDIO uses the two rightmost

ways in LLC only for cache allocation triggered by cache

misses; if a cacheline already resides in the LLC (beyond the

DCA-reserved ways), DDIO modifies or accesses it directly.

In TPQ, when worker threads poll new requests or prepare

response messages, these data items in the network buffer

can be fetched into arbitrary LLC ways except for the two

rightmost ones, and subsequent stages, such as indexing and

data access, can further evict these fetched cachelines, still

leading to frequent DDIO-initiated cache misses. In contrast,

TPS assigns indexing and data access stages to separate worker

threads, ensuring that cached network buffers mostly remain

intact, thereby preserving cache efficiency.

Benefits of separating hotspots. Skewed workloads, which

are common in production environments, create hotspots at

specific memory locations, blurring the distinction between

cache residency and memory residency of stages such as

indexing and data access. These hotspots, however, can be

1102

Rearchitecting the Thread Model of In-Memory Key-Value Stores with μTPS SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

managed by dedicated threads and LLC ways, preventing them

from being evicted from the CPU cache. To demonstrate the

benefits of this approach, we conduct experiments measuring

the throughput of index lookup in MassTree, where we redirect

0.1‰ queries associated with the hottest keys to a dedicated

thread pool for processing. As shown in Figure 2b, given the

same total number of worker threads, the separation yields

an average throughput improvement of 1.08× with Zipfian-

distributed keys generated by YCSB.

In summary, handling frequently accessed data in dedi-

cated threads and cache ways can potentially enhance cache

efficiency, thereby improving overall system performance.

2.2.2 Contention Mitigation. We further find that NP-TPS

strikes a better balance between load balancing and contention

mitigation under skewed workload. With the TPQ architecture,

a KVS typically employs a shared-nothing (SN) design, where

each worker thread is assigned a distinct shard to manage,

minimizing the need for synchronization between threads.

However, under skewed workloads, this approach often re-

sults in uneven load distribution, causing some threads to

become idle while others are overloaded. On the contrary, a

share-everything (SE) architecture allows clients to handle any

requests, achieving better load distribution. However, the ben-

efits come at the cost of significant synchronization overhead,

especially as the number of threads increases. Our experi-

ments illustrate this trade-off: as shown in Figure 2c, the peak

throughput of SE initially exceeds that of SN, but degrades

rapidly as more threads are added due to synchronization. Our

key insight lies in the fact that not all stages are equally sus-

ceptible to workload contention – stages other than index/data

updates are highly scalable. In NP-TPQ, different stages are

sequentially executed by each thread, synchronization at a

stage forces the worker thread to be blocked, preventing other

stages from making progress. Instead, NP-TPS allows different

stages to be processed by different threads, so we can throttle

the number of threads assigned to the index update stage,

leaving other threads to process other stages without being

blocked. This effectively mitigates the contention issue, as is

demonstrated by our experiments in Figure 2c.

2.3 Challenges

While the NP-TPS architecture offers compelling advantages

in cache efficiency and contention mitigation, its practical

implementation introduces several challenges.

Reconfiguration complexity. In order to keep each stage

within its operating regime, P-TPS systems need to adapt the

number of threads based on observed performance. However,

reconfiguration in NP-TPS is inherently more complex: work-

load variations impact not only the total number of threads

needed (e.g., under load changes) but also how threads are

distributed across stages. Workload shifts, such as changes

in access skew or item size, can alter the processing time

at each stage, requiring finer-grained thread reassignment.

This is particularly critical in fast in-memory KVSs, where

suboptimal thread division can result in performance degra-

dation of up to millions of ops/s. Moreover, factors such as

cache way allocation and hotspot management also require

careful attention. For example, the memory-resident stages

often experience high cache miss rates, making it inefficient

to allocate additional cache ways to them. Similarly, hot items

must be dynamically adjusted in response to shifting hotspots.

These factors create a multidimensional scheduling landscape

that must be automatically explored in real time.

Reconfiguration overhead. Given the single-digit `s access

latencies of a KVS, each stage must be designed to adapt

rapidly to dynamic reconfiguration to prevent latency spikes.

As noted, the non-preemptive thread architecture relies on

client software to direct requests to specific worker threads.

Consequently, when the number of threads for the request

polling stage changes due to reconfiguration, this information

must be propagated to the clients – introducing additional

blocking overhead and increasing software complexity.

Inter-stage communication. The superior performance of NP-

TPS observed in §2.2.1 assumes no inter-stage communication.

However, reintroducing such overhead can undermine these

advantages. Addressing this challenge requires attention to two

key aspects: designing a more efficient communication queue,

and minimizing the frequency of inter-stage communication

through more effective stage placement.

3 μTPS Design

3.1 Overview

We present the design of μTPS to address the aforementioned

challenges. Figure 3 depicts the overall architecture of μTPS,

which organizes the stages of an in-memory KVS into two

layers: a cache-resident (CR) layer and a memory-resident

(MR) layer, and uses an auto-tuner to dynamically adjust the

two layers’ configuration.

• Cache-resident layer. Mainstream enterprise-level CPUs

has shared LLC (e.g., 42MB LLC in Xeon Gold 6330 CPU

and 504MB LLC in Xeon 6978P CPU) and private L1/L2

caches. The cache-resident layer ensures that frequently

accessed data is largely resident in the CPU LLC. We

achieves this with a combination of the following ways: i)

using separate worker threads and pinning them to specific

CPU cores to execute the cache-resident layer; ii) allocating

dedicated LLC ways for these threads; and iii) keeping

the amount of data at the cache-resident layer small to

fit in the cache – only managing the hottest KV items

and network buffers. Note that these techniques cannot

completely eliminate cache evictions. For instance, in a

set-associative cache, conflicts among cachelines mapping

to the same set can still occur, leading to cache misses.

• Memory-resident layer. The full index and data items are

stored at the memory-resident layer. At this layer, worker

threads fetch requests from the CR-MR queue posted by the

1103

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.

CR layer

poll & parse indexing data resp.

MR layer

…

…

hit
miss

Hot

index

Hot

data

…

Full

index

Full

data

…

…

Reconfigurable RPC

…

Auto-tuner

…

network buffer

req. resp.

Thread

pool

Thread

pool

CR-MR
queue

Figure 3. μTPS’s architecture and interactions. CR and MR

stand for cache- and memory-resident, respectively. The bottom part

describes the main steps for processing KV requests, with colored

box reflecting which layer(s) is(are) mapped to.

cache-resident layer, and extensively use batching, prefetch-

ing, and coroutines [1] to amortize the cost of cache misses

when processing them.

• Auto-tuner. The auto-tuner dynamically adjust the config-

uration of the cache- and memory-resident layers to react

fast to load changes. At its core, the auto-tuner employs a

feedback loop to monitor the system’s performance, using

this data in conjunction with hierarchical searching to guide

adjustments in the number of worker threads, cache ways,

and the management of hot and cold items at each layer.

Like existing KVSs, μTPS provides standard APIs (e.g.,

put, get, and delete) to remote clients. The KVS server

node supports organizing key-value items using different

data structures (e.g., hash table, B+-tree, etc.). As shown in

Figure 3, when a new request arrives, the worker thread at

the cache-resident layer fetches the request from the network

receive buffer, parse it, and process it if it correspond to hot

items; otherwise, the request is forwarded to the memory-

resident layer for further processing. Once the request finishes

processing, the cache-resident layer worker thread sends the

response back to the client.

uTPS differs from the traditional TPS in the following

three aspects. First, traditional TPS follows a modular design,

dividing the system into multiple stages based on functional

boundaries; uTPS only has two stages, with task assignment

driven by cache residency. Second, traditional TPS optimizes

slow I/O bottlenecks using techniques like DRAM buffering

to boost throughput; In uTPS, modern NICs enable worker

threads to operate at extremely high speeds. To fully leverage

this, uTPS introduces CR-MR queue, polling, and batching to

ensure efficient interaction among cores and the NIC. Finally,

traditional TPS relies on the OS scheduler when adjusting the

thread pool at each stage as load changes; uTPS pins threads

on cores and schedules them in the storage software for rapid

adaptation with low blocking overhead.

CR Layer

0

1 2 m

……
0 1 i n-1

m mod n = i

… recv buf

appendC1

C2

Cn

…

Clients

Figure 4. Receive buffer management in reconfigurable RPC.

3.2 Cache-Resident Layer

At the cache-resident layer, the number of worker threads

and cached hot items should be dynamically changed as load

functuates, and their memory footprint should be kept low.

We achieve this by introducing dedicated RPC and caching

designs.

3.2.1 Reconfigurable RPC. RPC systems based on kernel-

bypass networking (e.g., RDMA or DPDK) should maintain a

memory pool of network buffers to send and receive packets

through the NIC. Sizing the memory pool requires consider-

ation of several factors, including the number of open con-

nections, the worst-case delay in packet processing time, and

the network round trip time [34]. For example, RPC systems

that rely on one-sided RDMA verbs, such as FaRM-RPC [26],

require a separate receive buffer for each client at each worker

thread, leading to substantial memory overhead that can easily

exceed CPU cache sizes as the number of clients increases;

eRPC [40], a fast and general-purpose RPC library, needs to

allocate a 15-MB buffer per worker thread.

Moreover, these RPCs do not support increasing or decreas-

ing the number of worker threads dynamically, and simply

reframing their software stack introduces extra overhead. For

example, both FaRM-RPC and eRPC allows clients to spec-

ify a worker thread to send requests to; when the number

of worker threads changes, this information should be syn-

chronized across all clients. We address these challenges by

introducing reconfigurable RPC.

At the core of reconfigurable RPC is a single-queue receive

buffer at the server node (see Figure 4). Clients send requests

concurrently to the server node, and the server-side RNIC

appends requests of different clients to the end of a single

receive buffer. The worker threads then fetch and parse requests

from the receive buffer in a round-robin manner. Specifically,

the 8Cℎ worker thread only fetches requests located at the

<Cℎ slot where < mod = = 8, while requests at other slots

are untouched (= denotes the number of worker threads).

Moreover, the requests in the receive buffer are processed

independently – a request is fetched and processed without

waiting for the former ones in the queue to finish; this reduces

the potential risk of head-of-line blocking. The single-queue

design offers several advantages. First, it reduces the memory

overhead by sharing the receive buffer among all worker

threads. Second, the KVS server can easily adjust to a new

configuration by simply changing a global variable = (i.e.,

the number of worker threads) at the KVS server, eliminating

costly coordination with clients. A detailed reconfiguration

procedure will be shown in §3.5.

1104

Rearchitecting the Thread Model of In-Memory Key-Value Stores with μTPS SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Reconfigurable RPC is realized by creating a shared receive

queue (SRQ) [14] to associate all client connections (i.e.,

queue pairs). SRQ is a standard feature supported by all

NVIDIA RNICs. Specifically, we use a management thread to

post receive buffer slots (using the recv verb) into the SRQ in

an increasing address order, and clients use the send verbs to

send requests to the server. Newly received data are DMAed

into the first receive buffer slot in SRQ by the server-side RNIC.

Whenever a slot is digested by the RNIC, the management

thread posts another recv to push the slot back in SRQ.

Similar to prior work [63], we adopt the multi-packet receive

queue (MP-RQ) [12] to alleviate the overhead of posting recv

verbs, where a receive buffer slot associated with a recv verb

can accommodate multiple requests. For sending response

messages back to clients, we assign a dedicated response

buffer to each worker thread. The size of the response buffer

can be kept small (e.g., 64KB), as it can be reused among

different batches of requests.

3.2.2 Resizable Cache. The cache-resident layer also caches

hot items to prevent them from being evicted from the CPU

cache. Regarding the dynamic nature of real workload, the

cache-resident layer should adapt to changing of the hot set

and use as little memory space as possible.

Conventional caching mechanisms, such as LRU, incur

heavy bookkeeping overhead to track frequently accessed

items, and are not suitable for the cache-resident layer. Instead,

we adopt a hot set-based approach [56, 61]: using a background

thread to identify the hottest items and cache them, and

periodically refresh the cache to react to load changes. We

leverage Nap [61]’s non-blocking algorithms to manage the

hot set. Periodically, the background thread samples recently

accessed keys and uses a combination of count-min sketch [23]

and min heap to track the hottest items (10K items in our

implementation); then, it switches the cache space to the

new hot set via an epoch-based approach [33], ensuring that

cache modifications are reflected atomically to all worker

threads. The resizable cache distincts from existing hot set-

based approaches in that the cache layer is managed separately

at the cache-resident layer with dedicated worker threads and

LLC ways, and requires further refining to ensure the cache

module fits well with the cache-resident layer.

First, the number of cached items must be resizable to

prevent the hot set from being set to unreasonably large. Man-

aging a large hot set in μTPS is instead counterproductive

since the performance difference between the cache- and

memory-resident layers is not an order of magnitude apart (un-

like the disparity between DRAM and HDD). A large hot set

would result in a significant penalty when processing requests

that miss at the cache-resident layer. To this end, during each

refresh of the hot set, the management thread heuristically

adjusts the number of cached items using the epoch-based

approach until a maximal performance is achieved (see §3.5

for details).

push
queue

pop
queue

resp.poll req.

indexing data
hit

missY

N N
Y

recv buf resp. buf

CR-MR queue

Figure 5. FSM execution model at the cache-resident layer.

Second, the cached items should be organized to occupy

less memory space. When using a tree-based index structure

that supports range queries, we organize the cached index

items at the cache-resident layer as an ordered array, as it

eliminates the intermediate pointers present in tree-based

structures. A sorted array is well-suited for this scenario since

the hot set is periodically constructed and refreshed, avoiding

the overhead from temporary insertions and deletions, while

still enabling efficient binary search. For KVS systems that

use a hash table as the index, we directly reuse the main

index structure to manage the hot set. Note that we do not

need to keep an extra copy of data items for caching at the

cache-resident layer – CPU loads them automatically into the

cache when they are accessed.

3.2.3 FSM Execution Model. The worker threads in the

cache-resident layer process requests using a finite state ma-

chine (FSM). As shown in Figure 5, the state is transitioned

along two main paths: the hit path and the miss path. For

each incoming request, the worker thread first checks if the

corresponding index item is cached. If it is, the worker thread

directly reads or writes data and sends the response back to

the client; otherwise, the worker thread forwards the request

to the memory-resident layer through the CR-MR queue and

begins polling for new requests. Responses from the memory-

resident layer are awaited asynchronously. Once the response

is received from the memory-resident layer, the worker thread

then sends it back to the client.

To ensure efficient state transitions in the FSM, polling

requests from the receive buffer and CR-MR queue is designed

to be non-blocking: the operation returns immediately after

an one-shot scan of the queue. The two queues are polled

iteratively when they are empty, ensuring that new requests

are discovered without delay.

3.3 Memory-Resident Layer

The memory-resident layer manages the full index and data

items, and processes requests sent from the cache-resident

layer. Batch and prefetch are extensively used to amortize the

cost of cache misses.

Batched indexing. Index traversing at the memory-resident

layer incurs random pointer-chasing operations, and is the

major source of cache misses. The memory-resident layer

employs batched prefetching with coroutine and hardware

prefetch to mitigate this overhead. While the concept of

batched indexing is not new, our design is distinct in that the

1105

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.

cache-resident layer has already filtered out the hottest items.

This prevents unnecessary context-switching overhead that

would otherwise occur when prefetching cache lines already

residing in the CPU cache.

Stackless coroutines, as supported in C++20 [1], achieve

single-dight nanosecond latencies for constructing and switch-

ing coroutines. We transform basic indexing operations (i.e.,

put/get) into their coroutine counterparts using co_wait and

co_return keywords, and insert prefetch and co_yield

before each pointer dereference operation. To support batched

indexing, each worker thread retrieves multiple requests from

the CR-MR queue simultaneously and creates indexing corou-

tines for each of them. The worker thread then functions as a

scheduler that switches between these coroutines. Whenever a

coroutine issues a prefetch, control is transferred to execute

the computation stage of another operation. This approach

effectively hides the latency of loading data from memory

across the batch of operations, improving overall efficiency.

Copying data items. Batched indexing helps with locating

the data items in the KVS, then the worker threads read or

write these data items. Data items are not transferred between

the cache- and memory-resident layers through the CR-MR

queue; instead, the worker threads at the memory-resident layer

copies data between the network buffer and the KV storage

directly without introducing redundant memory copies. For

get operations, data items are copied from the KVS to the

response network buffer; once finished, the cache-resident

layer sends the response messages back to clients. Notably, the

response network buffer can be cached at the memory-resident

layer during the data copy process; however, this does not

result in cache misses at the cache-resident layer when the

worker threads post the buffer to the RNIC. This is because the

RNIC is responsible for moving data from the response buffer

to the RNIC cache, and the cache-resident layer never touches

the buffer directly. For put operations, the memory-resident

layer copies data items from the receive buffer to the target

storage location. Still, since the memory-resident layer only

reads the receive buffer and does not modify it, there is no

cache invalidation at the cache-resident layer.

Concurrency control. Note that the separation of the cache-

and memory-resident layers does not change the concurrency

control protocol of μTPS. A point query is served by either the

cache-resident layer or the memory-resident layer, depending

on its hotness, so we only need to enforce concurrency control

at each layer independently. We adopt a share-everything

design at both cache- and memory-resident layers while con-

figuring the number of the worker threads assigned to each

layer to maximize system efficiency. This approach requires

the index structure and data management to be thread-safe, al-

lowing concurrent accesses and modifications to each KV item.

For the index structure, we reuse existing thread-safe and scal-

able implementation (i.e., MassTree [49] and libcuckoo [28])

directly. For data items, we embed additional lock and version

0 1 … m
0
1…

n
head

tail

0

1 …
batch u64 key;

u64 type : 8;
u64 size : 24;
u64 buf : 32;

push

pop

Figure 6. The architecture of the CR-MR queue.

bits within each item to serialize access conflicts. Specifically,

updates to data items of 8 bytes or smaller are performed

directly using atomic instructions. For larger items, a worker

thread first employs an atomic CAS operation to modify the

lock bits, placing the item in a locked state. The data item

is then updated, and the lock is subsequently released. The

item’s version is incremented both before and after the update.

Read operations are conducted in a lock-free manner, where

the version is read both before and after accessing the data

item. The old and new versions are then compared to ensure

the atomicity of the read operation.

3.4 CR-MR Queue

The CR-MR queue is used for efficient communication be-

tween the cache- and memory-resident layers. It is a multi-

producer, multi-consumer queue designed for high scalability

and high throughput. As shown in Figure 6, the CR-MR queue

establishes an all-to-all mapping between cache-resident layer

threads and memory-resident layer threads, where each pair

of threads is assigned a dedicated, lock-free ring buffer for

message transfer. To balance the load at the memory-resident

layer, threads at the cache-resident layer push new requests

to memory-resident layer threads in a round-robin fashion.

Accordingly, a worker thread at the memory-resident layer

needs to scan the queues corresponding to all cache-resident

layer threads to pop new messages. To further mitigate the

overhead of pushing (popping) items to (from) the CR-MR

queue, each slot in the ring buffer can accommodate multiple

requests. This means that a worker thread in the cache-resident

layer will push a new item only when enough requests have

accumulated. Similarly, memory-resident layer threads can

use a single pop to retrieve multiple requests at once.

As shown in the right part of Figure 6, Each request is

compactly represented in 16 bytes of memory. Specifically,

the key field (8 bytes) stores the key directly. If the key is

larger than 8 bytes, it is hashed into an 8-byte value. In the

rare case of a hash collision, multiple items are chained in a

linked list, and the original key is used to disambiguate them.

type and size fields indicate the request type and the size of

the KV item. buf field (32 bits) points to a slot in the network

buffer. Since each slot has a fixed size, this field only needs to

identify the slot’s position. Depending on the operation, buf

may point to a receive buffer (for put) or a response buffer

(for get). For efficiency, memory-resident layer threads do

not explicitly send completion messages back to the cache-

resident layer. Instead, they piggyback this information on the

advancement of the tail pointer. A tail pointer is updated only

after all requests in the batch have been processed and their

1106

Rearchitecting the Thread Model of In-Memory Key-Value Stores with μTPS SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

responses placed in the response buffers. At that point, the

cache-resident layer threads can safely deliver the response

buffers to clients.

3.5 Auto-tuner

We first explain the detailed steps of thread reassignment,

cache resizing, and cache way allocation; then, we present

how to automatically tune these reconfiguration parameters.

Thread reassignment. This process involves reassigning

worker threads between the cache- and memory-resident

layers – i.e., moving some threads from the cache-resident

layer to the memory-resident layer or vice versa. The main

challenge is to prevent message loss during reassignment, and

we describe the procedures for each direction separately.

When moving threads from the cache-resident layer to the

memory-resident layer, the manager thread first updates two

global variables, #�' and #"' , which represent the number

of worker threads in the cache- and memory-resident layers,

respectively. It then notifies all cache-resident layer threads

to switch at a predefined receive buffer slot. Upon reaching

this slot: cache-resident layer threads that should remain in

their current layer update their local copies of #�' and #"'

to match the global values, and then continue processing

requests using the updated variables for modulo operations

and CR-MR communication; cache-resident layer threads that

are designated to move to the memory-resident layer invoke

the memory-resident layer’s entry function to switch roles;

original memory-resident layer threads update their local

copies of the two variables only after the CR layer threads

have switched to the memory-resident layer and their CR-MR

queues do not contain residual requests.

When moving threads from the memory-resident layer to

the cache-resident layer, the process differs slightly. Memory-

resident threads that slate to move to the cache-resident layer

continue processing memory-resident requests upon receiving

the manager’s notification. They wait until all CR-layer threads

have reached the predefined slot and their CR-MR queues are

empty. Only then do they invoke the cache-resident layer’s en-

try function to switch roles. As illustrated, thread reallocation

is performed without blocking request processing.

Cache resizing. When the hot set is refreshed, the manager

thread further adjusts the number of cached items to improve

the overall performance. With a target cache size , the top

 items from the hot set are selected to replace the original

cache. Cache resizing is performed in a similar way to cache

refreshing, using an epoch-based approach (§3.2.2).

LLC allocation. The manager thread allocates cache ways

using the PQOS utility [8]. The manager thread first associates

the worker threads of the cache- and memory-resident layers

into different classes of service (CLOS), and then allocates

cache ways to each CLOS accordingly.

Automatic tuning. The auto-tuner is triggered when the sys-

tem load exhibits significant changes (e.g., hot set shift, KV

size change, etc.). The auto-tuner employs a feedback loop to

monitor the system’s throughput, and uses it as a hint to auto-

matically adjust the above three reconfiguration parameters.

Note that thread reallocation and cache resizing cannot be

tuned independently. This is because cache resizing alters the

load between the cache- and memory-resident layers, which in

turn affects the number of worker threads required at each layer.

To address this, the auto-tuner uses a hierarchical searching

algorithm to find the optimal configuration. For each cache

size, the manager thread iterates through all possible thread

allocations to identify the best allocation choice. Then, among

all possible cache sizes, the manager thread selects the one

that achieves the best performance as the final configuration.

Cache way allocation, which affects system performance in

an orthogonal manner, is tuned independently.

To speed up the search process, we introduce a trisecting

approach. We observe that system performance follows an

convex curve with respect to thread allocation and LLC

allocation, where the performance initially increases and then

decreases. Based on this, we trisect the searching space into

three parts (i.e., [0, a], (a, b), and [b, max]). If %0 < %1 (where

%G denotes the system throughput when the parameter is set to

G), the optimal configuration must be in the range [a, max], or

conversely, within the range [0, b] if %0 > %1 . The algorithm

then iteratively trisects the best-performing part of the search

space until the optimal configuration is found. Note that the

trisecting approach is inapplicable in cache resizing since it

does not exhibit a strict unimodal trend – cache resizing allows

finer-grained load balancing between the cache- and memory-

resident layers (varying thread counts does not always lead to

an optimal division of load). To this end, the auto-tuner finds

an optimal cache size by using a linear probe with a fixed

step (e.g., 1K in our implementation). Our evaluation shows

that, with a performance monitor time window of 10<B, the

entire reconfiguration process completes in 0.9 seconds; this

is acceptable as load changes in real-world workloads are not

that frequent [20, 60]. Moreover, the reconfiguration process

never blocks request processing, meaning that the system

remains operational during the reconfiguration period.

4 Implementation

Based on μTPS, we implement two in-memory KVSs, namely

μTPS-H and μTPS-T, which use libcuckoo and MassTree,

respectively, as the index structure. μTPS-H supports point

queries while μTPS-T supports both point and range queries.

In μTPS-T, a range query is processed collaboratively by the

cache-resident and memory-resident layers. KV items cached

at the cache-resident layer are first copied to the receive buffer,

and the range query request is subsequently forwarded to the

memory-resident layer for further processing. The memory-

resident layer leverages the full index to handle the request,

skipping items that are already present in the receive buffer.

To support this process, the request structure for range queries

1107

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.

exchanged between the cache-resident and memory-resident

layers is extended to include the lower and upper bounds

of the key range, and the number of items to return. Since

range queries typically have much lower throughput than

point queries, a larger request structure introduces negligible

performance overhead.

5 Evaluation

5.1 Experimental Setup

Testbed. The server node is equipped with two 28-core Intel

Xeon Gold 6330 CPUs and 256 GB of memory (each CPU

has 42MB of LLC). Two client nodes are installed with two

16-core Intel Xeon(R) Silver 4314 CPUs and 64 GB of mem-

ory. All nodes run the Ubuntu 20.04 and are equipped with

Mellanox ConnectX-6 200 Gbps NICs for communication,

interconnected through a Mellanox 200 Gbps switch. Unless

otherwise specified, all experiments are conducted on 28 cores

on a single NUMA node of the server. The client nodes utilize

all available CPU cores to generate maximum load.

Compared systems. We compare μTPS against the following

systems: (1) BaseKV. This system is identical to μTPS except

for its use of a run-to-completion thread pool architecture.

Optimizations such as reconfigurable RPC, batching, and

prefetching are enabled in BaseKV. (2) eRPCKV. This variant

replaces BaseKV’s RPC module with eRPC [40] and uses

a share-nothing architecture that directs requests to worker

threads by modding the key. We also compare with passive

KVSs where clients use one-sided RDMA verbs to access

KV items, bypassing the server-side CPUs. Among them,

RaceHash [68] is a state-of-the-art passive KVS that employs

a hash table as its index structure; Sherman [62] is a passive

KVS that uses B+ tree as its index structure.

5.2 Overal Performance

We evaluate μTPS using both synthetic workloads (YCSB [22])

and production workloads (Meta’s ETC pool [16] and Twit-

ter [65]). Unless otherwise specified, all tests are conducted

on a pre-populated database containing 10M KV items.

5.2.1 Synthetic workloads. As shown in Figure 7, we eval-

uate the compared systems under the YCSB workload by

varying item sizes, index types and operation mixes. we vary

the value size from 8 bytes to 1 KB and evaluate both uniform

and Zipfian key distributions. We select workloads A (50%

put and 50% get), B (5% put and 95% get), C ((100% get)),

and E (95% scan and 5% put), omitting workload D as it

closely resembles workload B. Additionally, we include a

custom workload consisting of 100% put operations to specif-

ically evaluate write performance. Our evaluation yields the

following key observations:

Read-intensive workload. μTPS consistently outperforms

BaseKV in read-intensive workloads across various item

sizes and index structures. For instance, with a tree-based

index, μTPS achieves 1.30× and 1.29× the throughput of

BaseKV on average under the YCSB-B and YCSB-C work-

loads, respectively. This advantage stems from μTPS’s de-

sign, which separately manages cache-resident and memory-

resident items, making it more cache-friendly than BaseKV’s

run-to-completion model. However, μTPS’s performance ad-

vantage is less significant under uniform workloads (i.e., 100%-

Get-Uniform), where the cache module at the cache-resident

layer cannot identify hot items, rendering it less effective in en-

hancing performance. eRPC-KV performs much slower than

μTPS and BaseKV under skewed workloads, due to its request

dispatch mechanism, which uses the modulo operation on keys

to assign requests to server threads, causing load imbalance. In

contrast, under the uniform workload, eRPC-KV outperforms

BaseKV, and even delivers throughput comparable to μTPS

(e.g., with hash indexes and small items). In this case, the

load is evenly distributed across worker threads; and eRPC’s

highly optimized implementation delivers higher throughput

than Reconfigurable RPC, which relies on a single receive

buffer queue. Passive KVSs, such as RaceHash and Sherman,

perform poorly since they require multiple one-sided verbs

to locate a KV item. We also notice that Sherman exhibits

excellent performance with 1KB items; in this case, internal

nodes are cached at the client node, and the throughput is

primarily constrained by network bandwidth.

Write-intensive skewed workload. μTPS’s threading design

also enables it to deliver superior performance over BaseKV in

write-intensive skewed workloads (e.g., YCSB-A and 100%-

Put-Skew). Specifically, BaseKV’s performance degrades

significantly with 64B and 256B items when using a hash

index. This behavior aligns with the results in §2.2, since

BaseKV relies on locks to serialize concurrent accesses to the

same key, which leads to high contention overhead when a

large number of worker threads are used. In contrast, μTPS

dynamically tunes its configuration to minimize contention

by adjusting the number of worker threads at each stage,

effectively mitigating the performance impact. BaseKV’s

performance normalizes with 8B items because updates to

8-byte values can be performed atomically, avoiding the

need for locks. For items larger than 8 bytes, eRPC-KV

outperforms BaseKV in most cases and occasionally achieves

slightly higher throughput than μTPS (up to 12%). eRPC-

KV’s shared-nothing architecture eliminates the need for

locks, and the benefits of avoiding contention often outweigh

the disadvantages of uneven load distribution. Nevertheless,

μTPS provides more consistent performance across various

item sizes and operation mixes, demonstrating its robustness

and adaptability under diverse workload conditions.

Write-intensive uniform workload. μTPS’s performance ad-

vantage over BaseKV is less pronounced under write-intensive

uniform workload (e.g., 100%-Put-Uniform). For example,

with 8B items, μTPS achieves only 3.01% and 11.8% higher

throughput than BaseKV when using hash- and tree-based

1108

Rearchitecting the Thread Model of In-Memory Key-Value Stores with μTPS SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Sherman eRPC-KV BaseKV µTPS-T

(a) 8B, Tree index

0

20

40

60

A B C Put-S
Get-U

Put-U

(b) 64B, Tree index

0

20

40

60

A B C Put-S
Get-U

Put-U

(c) 256B, Tree index

0

20

40

A B C Put-S
Get-U

Put-U

(d) 1KB, Tree index

0

10

20

30

A B C Put-S
Get-U

Put-U

RaceHash eRPC-KV BaseKV µTPS-H

(e) 8B, hash Index

0

20

40

60

80

A B C Put-S
Get-U

Put-U

(f) 64B, Hash index

0

20

40

60

80

A B C Put-S
Get-U

Put-U

(g) 256B, Hash index

0

20

40

60

A B C Put-S
Get-U

Put-U

(h) 1KB, Hash index

0

10

20

30

A B C Put-S
Get-U

Put-U

T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)
T

h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

Figure 7. μTPS’s overall performance. PUT-S, GET-U, and PUT-U indicate 100% put-skewed, 100% get-uniform, and 100% put-uniform,

respectively. The top half shows the throughput with MassTree as the index, while the bottom half is with libcuckoo as the index.

indexes, respectively. For put operations, newly received KV

items are stored at the receive buffer managed by the cache-

resident layer. When the memory-resident layer processes

the request, it fetches data directly from the receive buffer,

which incurs cache misses at the memory-resident layer. This

results in excessive cache-coherence traffic to the worker

threads at the cache-resident layer, since data has already been

prefetched into the CPU cache by the hardware when they

parse the requests. The cache-coherence traffic significantly

impacts the efficiency of the cache-resident layer worker

threads, especially with smaller items. In some rare cases,

μTPS underperforms eRPC-KV (e.g., with 8B and 64B items),

since eRPC achieves higher throughput than Reconfigurable

RPC. It is worth noting that integrating μTPS with eRPC

could further improve the performance of eRPC-KV, although

these results are not shown here.

Effects of index type. In general, μTPS achieves greater

performance improvements over BaseKV when using the

tree-based index. For instance, μTPS-T outperforms BaseKV

by 11.87% to 26.56% with 8B items under different operation

mixes, while μTPS-H outperforms BaseKV by 3.01% to

8.56% (except for 100%-Put-Skew). The reason for this is

also straightforward – traversing a tree-based index generates

more cache misses, creating a larger opportunity for μTPS to

optimize cache usage.

Effects of item size. μTPS consistently outperforms BaseKV

across different item sizes. For read-intensive workloads, the

performance gap between μTPS and BaseKV increases as

the item size grows. For example, with the tree-based index

and YCSB-B workload, μTPS-T outperforms BaseKV by

19.71% with 8B items, and by 43.53% with 1KB items. μTPS

requires inter-core communication when processing each

request, whose overhead is amortized with larger items.

Read/Write Ratio

eRPC-KV
BaseKV
µTPS-T

(b) ETC, Tree index

0

20

40

60

10:9050:5090:10

eRPC-KV
BaseKV
µTPS-T

(a) Scan

0

5

10

15

Scan E

eRPC-KV
BaseKV
µTPS-H

(c) ETC, Hash

Read/Write Ratio

0

20

40

60

80

10:9050:5090:10

Figure 8. (a) Throughput of scan; (b)-(c) Throughput with

the ETC pool. Scan: scan-only; E: YCSB-E (95%-scan + 5%-put).

T
h
ro
u
g
h
p
u
t

(M
o
p
s
/s
)

µTPS-T

BaseKV

uTPS-T

µTPS-H

BaseKV

uTPS-H

0

20

40

60

80

C12 C19 C31 C12 C19 C31

Figure 9. Throughput with the Twitter traces.

Scan. As shown in Figure 8a, we use the YCSB-E workload

to evaluate the scan performance of μTPS; the results of

the scan-only workload are shown in the figure as well. We

set the average range size to 50 and use 8B items to avoid

network bandwidth bottlenecks. μTPS-T outperforms BaseKV

by 33.1% and 25.1%, and outperforms eRPC-KV by 58.9%

and 40.5% under the YCSB-E and scan-only workloads,

respectively. Scan-intensive workloads can be regarded as a

special case of read-intensive workloads, and the results in

this experiment are highly consistent with the results in the

YCSB-B experiments.

5.2.2 Real Workloads. For ETC, we use its default key and

value size distributions. Value sizes are distributed as follows:

1-13 bytes (Zipfian, 40%), 14-300 bytes (Zipfian, 55%), and

1109

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.
P

9
9

 L
a

te
n

c
y
 (

µ
s
)

P
5

0
 L

a
te

n
c
y
 (

µ
s
)

Throughput (Mops/s) Throughput (Mops/s)

eRPC-KV BaseKV µTPS-H/T

(a) P50, Tree index (b) P50, Hash index

(c) P99, Tree index (d) P99, Hash index

0

50

100

0

10

20

30

20 40 0 20 40 60 80

Figure 10. Throughput vs. P50 and P99 latencies by varying

the number of clients. We use YCSB-A workload and 8B items.

larger than 300 bytes (uniform, 5%). For Twitter, we select

three representative traces.

Table 1. Details of The selected Twitter traces.

Cluster-12 Cluster-19 Cluster-31

Ratio of put 80% 25% 94%

Avg. value size 1030B 101B 15B

Zipf alpha 0.30 0.74 0

ETC. When evaluating the ETC workload, we set the get

ratio to 10%, 50%, and 90%, respectively. The results are

shown in Figure 8b-c. In general, the performance of all

compared KVSs shows a similar trend to the skewed YCSB

workload (e.g., A, B) with 256B items. Specifically, μTPS-T

outperforms BaseKV by 29.1%, 13.0%, and 26.6% under the

10%, 50%, and 90% get ratio, respectively, and outperforms

eRPC-KV by 55.9%, 54.5%, and 67.3%.

Twitter. As shown in Table 1, we select three representa-

tive traces from Twitter. Among them, Cluster-12 is skewed

and write-intensive; Cluster-19 is skewed and read-intensive;

Cluster-31 is write-dominant and uniform. Figure 9 shows the

results: the performance of μTPS is highly consistent with

the results under the YCSB and ETC workload. Specifically,

μTPS-T outperforms BaseKV by 44.5%, 39.8%, and 0.1%,

and outperforms eRPC-KV by 29.4%, 35.5%, and 39.5%

under Cluster-12, Cluster-19, and Cluster-31, respectively.

5.3 Latency

μTPS introduces additional latency due to the inter-core

communication. In this experiment, we evaluate the latency

of μTPS under the YCSB workload with 8B items. As shown

in Figure 10, we increase the number of client threads from 2

to 64 in increments of 4, and report both the median and 99th

percentile latencies as a function of the current throughput.

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

of Worker Threads

eRPC-KV BaseKV µTPS-T/H

(a) 8B

Tree index

(b) 256B

Tree index

(d) 256B

Hash index

(c) 8B

Hash index

0

20

40

60

80

0 10 20 0 10 20 0 10 20 0 10 20 30

Figure 11. Scalability with varying number of worker threads.
We use the YCSB-A workload.

T
h
ro
u
g
h
p
u
t

(M
o
p
s
/s
)

µTPS-T µTPS-H

0

20

40

60

80

1 2 4 8 12 16 20 1 2 4 8 12 16 20

Figure 12. Effects of Batching. YCSB-A and 8B items.

We can observe that μTPS exhibits slightly higher median

latency than BaseKV with the hash index; in other cases, they

have very close median or P99 latencies. Overall, the extra

latency introduced by μTPS is minimal. μTPS uses an all-to-all

mapping to direct requests to worker threads at the memory-

resident layer, effectively balancing the load among worker

threads without introducing extra queuing delays. Inter-core

communication itself only introduces ∼100ns latency, and is

further amortized through batching, making it negligible.

5.4 Scalability

We evaluate μTPS’s scalability by varying the number of

worker threads from 1 to 28 with in increments of 4. We

use the YCSB-A workload with 8B and 256B items; both

hash- and tree-based indexes are evaluated. The results are

shown in Figure 11, and we make the following observations.

First, when using fewer worker threads, μTPS’s performance

is similar to competitors’, or even slightly worse. Using fewer

cores increases the likelihood of load imbalance between

the cache-resident and memory-resident layers, as thread

reallocation is constrained to integer increments. For instance,

if the ideal core allocation for the cache-resident and memory-

resident layers is 2:5, using only 3 cores would force an actual

allocation of 1:2 instead. μTPS gradually outperforms other

systems as the number of worker threads increases; with more

worker threads, μTPS can provide an actual allocation that

is closer to the ideal case. Meanwhile, μTPS is more robust

to workload contention and can scale well with more worker

threads, while BaseKV suffers from performance decline with

the hash index and 256B items.

5.5 Ablation Study

5.5.1 Effects of Batching. μTPS extensively uses batching

to amortize the overhead of inter-core communication and

cache misses. In this experiment, we vary the batch size from

1110

Rearchitecting the Thread Model of In-Memory Key-Value Stores with μTPS SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea
K

e
y
s
p

a
c
e

K
e

y
s
p

a
c
e

Item Size

(a) Core Allocation

Item Size

(b) LLC Allocation

Skewness

(c) Cache Resize

0.32 0.29 0.29 0.61 0.68

0.32 0.32 0.36 0.54 0.57

0.32 0.39 0.43 0.50 0.68

0.43 0.43 0.43 0.57 0.68

0.39 0.43 0.50 0.54

1.00 0.92 1.00 0.83 0.92

1.00 0.92 1.00 0.92 1.00

1.00 1.00 1.00 1.00 0.92

0.83 1.00 1.00 1.00 1.00

0.92 1.00 1.00 1.00

0.69 0.69 0.23 0.15 0.62

0.54 0.08 0.38 0.69 0.08

0.15 0.31 0 0.23 0.23

0.31 0.15 0.31 0.31 0.54

0.54 0.08 0.46 0.08 0.31

0.32 0.43 0.50 0.68 0.75

0.46 0.46 0.54 0.71 0.75

0.43 0.54 0.57 0.75 0.79

0.54 0.54 0.50 0.75 0.79

0.54 0.54 0.61 0.75

0.33 0.50 1.00 1.00 1.00

0.58 0.33 1.00 1.00 1.00

0.42 0.83 0.83 0.92 1.00

0.58 0.58 1.00 0.92 1.00

0.42 0.50 1.00 1.00

0.08 0.46 0 0.15 0

0.23 0.46 0.62 0.23 0.62

0.38 0.62 0.38 0.62 0.69

0.38 0.54 0.15 0.31 0.23

0.23 0 0 0.62 0.46

Skew

Uniform

Skew

Uniform

Tree index

Hash index

OOM OOM

OOM OOM

0.1M

1M

10M

50M

100M

0.1M

1M

10M

50M

100M

8
B

6
4

B

2
5

6
B

5
1

2
B

1
K

B

8
B

6
4

B

2
5

6
B

5
1

2
B

1
K

B

0
.6

0
.7

0
.8

0
.9

0
.9

9

Figure 13. The effectiveness of the auto-tuner. (a)-(b) the

numbers indicate the ratio of worker threads and the ratio of cache

ways assigned to the memory-resident layer, respectively; (c) the

ratio of cached items from the hot set at the cache-resident layer.

1 to 20 and evaluate the performance of μTPS under the

YCSB-A workload with 8B items. The batch size determines

the number of requests sent and received by the cache-resident

and memory-resident layer at a time, and also presents the

number of indexing operations processed together. As shown

in Figure 12, batching improves the performance of μTPS-

T and μTPS-H by 51.6% and 93.7%, respectively. μTPS-H

is more sensitive to the batch size since the overhead of

inter-layer communication is more significant.

5.5.2 Effects of Auto-tuner. In this part, we evaluate the

effectiveness of μTPS’s auto-tuner. By default, we use the

YCSB-A workload with 8B items and a tree-based index.

Core Allocation.As shown in Figure 13a, we report the

ratio of worker threads assigned to the memory-resident

layer as we vary the keyspace and item size. We make two

observations. First, the auto-tuner assigns more worker threads

to the memory-resident layer as we increase item size or

keyspace. A larger item or keyspace increases the overhead

of processing each request, requiring more worker threads

in the memory-resident layer for parallel processing. Second,

for the same keyspace and item size, the auto-tuner assigns

fewer worker threads to the memory-resident layer when

using a skewed workload. This is because the cache-resident

layer already processes the requests of hot keys, leaving

less workload to be processed by the memory-resident layer

workers.

LLC allocation. Our offline profiling suggests that allocating

all cache ways to the cache-resident layer and reusing a portion

for the memory-resident layer provides the best performance.

In Figure 13b, we report the ratio of cache ways reused by

the memory-resident layer as we vary the keyspace and item

size. Under skewed workloads and uniform workloads with

large item sizes, the auto-tuner assigns almost all cache ways

to the memory-resident layer. However, under the uniform

workload with small item sizes, fewer cache ways are allocated

to the memory-resident layer. This is because assigning more

cache ways does not improve the cache hit rate of the memory-

resident layer, and instead leads to cache thrashing when cache

ways are shared with the cache-resident layer.

Cache resize. In Figure 13c, we report the ratio of cached

items at the cache-resident layer to the total hot set as we

vary skewness and index type. As expected, the number of

cached items shows no clear correlation with skewness, since

the cache layer is not only used to cache hot items, but also

rebalances the load between the cache-resident and memory-

resident layer at a finer granularity.

Dynamic Workloads In this experiment, we evaluate μTPS’s

ability to react to dynamic workloads by changing the value

sizes from 512 bytes to 8 bytes. Figure 14 shows the throughput

over time. The workload changes at time 4s. Initially, μTPS

does not discover the change in workload and still using

the old configuration. At 4.3s, the auto-tuner detects the

change and starts to reconfigure the system: for each cache

size, it searches for the optimal thread allocation with a

trisecting approach, and subsequently probes for the optimal

LLC allocation. The auto-tuner finishes at 5.2s, resulting in

a 20% increase in throughput. Notably, the system remains

operational throughout the reconfiguration process, with no

downtime required.

6 Related Work

Fast inter-core communication. ffwd [57] is a delegation

system that uses one thread process requests on behalf of

multiple client threads, and thus removes the requirements

of using locks. ffwd achieves fast inter-thread communica-

tion by effectively hiding the latency of interconnect link

between cores. μTPS holds a similar goal of fast inter-core

communication, but it is designed for the multi-producer multi-

consumer scenario. Intel Dynamic Load Balancer (DLB) [5]

is a hardware queue supported by the 4th and 5th generation

Xeon CPUs, which enables efficient and scalable core-to-core

communicatio. We believe DLB can further enhance μTPS’s

performance, and we leave this as our future work.

Single receive queue. Using a single receive queue to handle

incoming packets has received significant attention in recent

years. ShRing [54] shares each Rx ring among multiple cores

to avoid the DMA leak problem; Junction [34] supplies per-

core receive queues with a shared buffer queue to minimize

buffer memory consumption. μTPS shares the same goal

with them of using a smaller receive buffer to avoid cache

misses; moreover, a single receive queue also enables flexible

reconfiguration when μTPS reassigns CPU cores.

Userspace core scheduling. Recent operating systems intro-

duced userspace core scheduling to handle microsecond-scale

1111

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.

Load change

Auto-tuner starts

Auto-tuner finishesT
h

ro
u

g
h

p
u

t

(M
o

p
s
/s

)
Cache resize

LLC resize

Thread allocation
YCSB-A

Value: 512B to 8B

Tree index

10

30

50

0 2000 4000 6000 8000

Figure 14. Throughput with workloads change.

tasks. For example, Shinjuku [39] avoids head-of-line block-

ing by using hardware support for virtualization to preempt

requests as often as every 5 `B. Shenango [53] achieves high

CPU efficiency by providing a fast path that reallocates CPU

cores among applications at very fine granularity. Caladan [35]

and Arachne [55] further introduce scheduling policies that

assign an appropriate number of cores among applications

and enforce load balancing among CPU cores. These systems

can work in conjunction with μTPS to further save CPUs

when the reserved cores is under-saturated.

RDMA-based KVS. Many recent systems leverage one-sided

RDMA verbs to build high-performance key-value stores while

minimizing server-side CPU usage. For instance, FaRM [26]

and Pilaf [51] offload the processing of get operations to clients

by issuing multiple read verbs iteratively to locate and retrieve

a KV item; put operations involve extra memory allocation

and concurrency control and are handled by the server. Recent

KVSs designed specifically for disaggregated memory, such as

Sherman [62], SMART [48], and RaceHashing [68], further

offload the processing of put operations to clients as well.

While they effectively minimize CPU usage, they come at the

cost of increased network traffic, lower overall performance,

the requirement of customizing data structures, and higher

software overhead on the client side. The threading design

of μTPS can be broadly applied to systems that require CPU

involvement and operate at extremely fast speed.

7 Conclusion

In this work, we presented μTPS, a novel thread architec-

ture designed to address the limitations of run-to-completion

designs in in-memory KVS. μTPS separates monolithic run-to-

completion functions into cache-resident and memory-resident

stages, enabling finer-grained optimization for each. Comple-

mented by advanced techniques such as reconfigurable RPCs,

resizable caching, and an integrated auto-tuner, μTPS offers

improved schedulability and performance.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Atul

Adya, for their insightful comments. This work is supported

by the National Key R&D Program of China (Grant No.

2022YFB4500302), National Natural Science Foundation of

China (Grant No. U22B2023, 62202255), and SJTU-Huawei

Explore X Program. Corresponding author: Youmin Chen

(chenyoumin@sjtu.edu.cn).

References
[1] The boost c++ libraries. h�ps://theboostcpplibraries.com/boost.

coroutine/.

[2] Data plane development kit. h�ps://www.dpdk.org/.

[3] The go programming language. h�ps://golang.org/.

[4] Intel data direct i/o technology. h�ps://www.intel.com/content/www/

us/en/io/data-direct-i-o-technology.html.

[5] Intel dynamic load balancer. h�ps://www.intel.com/content/www/us/

en/download/686372/intel-dynamic-load-balancer.html.

[6] Intel optane memory - responsive memory, accelerated perfor-

mance. h�ps://www.intel.com/content/www/us/en/products/details/

memory-storage/optane-memory.html.

[7] Intel performance counter monitor (intel pcm). h�ps://github.com/

intel/pcm.

[8] Intel rdt software package. h�ps://github.com/intel/intel-cmt-cat.

[9] Introduction to cache allocation technology in the intel xeon

processor e5 v4 family. h�ps://www.intel.com/content/www/us/

en/developer/articles/technical/introduction-to-cache-allocation-

technology.html.

[10] Keydb - the faster redis alternative. h�ps://docs.keydb.dev/.

[11] Memory-semantic ssd. h�ps://samsungmsl.com/ms-ssd/.

[12] Multi-packet rq. h�ps://docs.nvidia.com/networking/display/

rdmacore50/multi-packetrq.

[13] Project voldemort. h�p://project-voldemort.com/.

[14] Rdma aware network programming user manual. h�ps://docs.nvidia.

com/rdma-aware-networks-programming-user-manual-1-7.pdf.

[15] uthreads: Concurrent user threads in c++. h�ps://github.com/

samanbarghi/uThreads.

[16] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. SIGMET-

RICS Perform. Eval. Rev., 40(1):53–64, jun 2012.

[17] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravis-

hankar Chandhiramoorthi, and Diego Didona. SILK: Preventing latency

spikes in Log-Structured merge Key-Value stores. In 2019 USENIX An-

nual Technical Conference (USENIX ATC 19), pages 753–766, Renton,

WA, July 2019. USENIX Association.

[18] Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David

Novo, Ataberk Olgun, Mohammad Sadrosadati, and Onur Mutlu. Her-

mes: Accelerating long-latency load requests via perceptron-based

off-chip load prediction. In Proceedings of the 55th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO ’22, page 1–18.

IEEE Press, 2022.

[19] Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow. MongoDB:

the definitive guide: powerful and scalable data storage. O’Reilly

Media, 2019.

[20] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Charac-

terizing, modeling, and benchmarking RocksDB Key-Value workloads

at facebook. In 18th USENIX Conference on File and Storage Tech-

nologies (FAST 20), pages 209–223, Santa Clara, CA, February 2020.

USENIX Association.

[21] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-

doski, James Hunter, and Mike Barnett. Faster: A concurrent key-value

store with in-place updates. In Proceedings of the 2018 International

Conference on Management of Data, SIGMOD ’18, page 275–290,

New York, NY, USA, 2018. Association for Computing Machinery.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,

page 143–154, New York, NY, USA, 2010. Association for Computing

Machinery.

[23] Graham Cormode and Shan Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. Journal of Algo-

rithms, 55(1):58–75, 2005.

1112

chenyoumin@sjtu.edu.cn
 https://theboostcpplibraries.com/boost.coroutine/
 https://theboostcpplibraries.com/boost.coroutine/
https://www.dpdk.org/
 https: //golang.org/
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html
https://www.intel.com/content/www/us/en/download/686372/intel-dynamic-load-balancer.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://github.com/intel/pcm
https://github.com/intel/pcm
https://github.com/intel/intel-cmt-cat
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://docs.keydb.dev/
https://samsungmsl.com/ms-ssd/
https://docs.nvidia.com/networking/display/rdmacore50/multi-packet rq
https://docs.nvidia.com/networking/display/rdmacore50/multi-packet rq
http://project-voldemort.com/
https://docs.nvidia.com/rdma-aware-networks-programming-user-manual-1-7.pdf
https://docs.nvidia.com/rdma-aware-networks-programming-user-manual-1-7.pdf
https://github.com/samanbarghi/uThreads
https://github.com/samanbarghi/uThreads

Rearchitecting the Thread Model of In-Memory Key-Value Stores with μTPS SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

[24] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. An

introduction to the compute express link (cxl) interconnect. ACM

Comput. Surv., 56(11), July 2024.

[25] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm.

Rocksdb: Evolution of development priorities in a key-value store

serving large-scale applications. ACM Trans. Storage, 17(4), October

2021.

[26] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and

Miguel Castro. Farm: Fast remote memory. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Implementation,

NSDI’14, page 401–414, USA, 2014. USENIX Association.

[27] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,

Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel

Castro. No compromises: Distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th Symposium

on Operating Systems Principles, SOSP ’15, page 54–70, New York,

NY, USA, 2015. Association for Computing Machinery.

[28] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact

and concurrent memcache with dumber caching and smarter hashing.

In Proc. 10th USENIX NSDI, Lombard, IL, April 2013.

[29] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić.

Reexamining direct cache access to optimize I/O intensive applications

for multi-hundred-gigabit networks. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20), pages 673–689. USENIX Association,

July 2020.

[30] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostić.

Make the most out of last level cache in intel processors. In Proceedings

of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New York,

NY, USA, 2019. Association for Computing Machinery.

[31] Roy T. Fielding and Gail Kaiser. The apache http server project. IEEE

Internet Computing, 1(4):88–90, 1997.

[32] Brad Fitzpatrick. Distributed caching with memcached. Linux journal,

2004(124):5, 2004.

[33] Keir Fraser. Practical lock-freedom. Technical report, University of

Cambridge, Computer Laboratory, 2004.

[34] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,

Inigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. Making

kernel bypass practical for the cloud with junction. In 21st USENIX

Symposium on Networked Systems Design and Implementation (NSDI

24), pages 55–73, Santa Clara, CA, April 2024. USENIX Association.

[35] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.

Caladan: Mitigating interference at microsecond timescales. In Pro-

ceedings of the 14th USENIX Conference on Operating Systems Design

and Implementation, pages 281–297, 2020.

[36] Lars George. HBase: The Definitive Guide. O’Reilly Media, Inc, 2011.

[37] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu,

Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu,

Jian Zhang, Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng

Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang. Tidb:

a raft-based htap database. Proc. VLDB Endow., 13(12):3072–3084,

August 2020.

[38] RMI Java. Java remote method invocation. Sun Microsystems Inc, 2010.

[39] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,

David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive sched-

uling for `second-scale tail latency. In 16th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 19), pages

345–360, 2019.

[40] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs

can be general and fast. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages 1–16, Boston,

MA, February 2019. USENIX Association.

[41] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guide-

lines for high performance RDMA systems. In 2016 USENIX Annual

Technical Conference (USENIX ATC 16), pages 437–450, Denver, CO,

June 2016. USENIX Association.

[42] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,

scalable and simple distributed transactions with Two-Sided (RDMA)

datagram RPCs. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16), pages 185–201, Savannah, GA,

November 2016. USENIX Association.

[43] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping

the performance of fast nvm storage with udepot. In Proceedings of the

17th USENIX Conference on File and Storage Technologies, FAST’19,

page 1–15, USA, 2019. USENIX Association.

[44] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized

structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April

2010.

[45] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.

Kvell: the design and implementation of a fast persistent key-value store.

In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, SOSP ’19, page 447–461, New York, NY, USA, 2019.

Association for Computing Machinery.

[46] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang

Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. Kv-direct:

High-performance in-memory key-value store with programmable nic.

In Proceedings of the 26th Symposium on Operating Systems Principles,

SOSP ’17, page 137–152, New York, NY, USA, 2017. Association for

Computing Machinery.

[47] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-

sky. Mica: A holistic approach to fast in-memory key-value storage. In

Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation, NSDI’14, page 429–444, USA, 2014.

USENIX Association.

[48] Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang,

Michael R. Lyu, and Yangfan Zhou. SMART: A High-Performance

adaptive radix tree for disaggregated memory. In 17th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 23),

pages 553–571, Boston, MA, July 2023. USENIX Association.

[49] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache

craftiness for fast multicore key-value storage. In Proceedings of the

7th ACM European Conference on Computer Systems, EuroSys ’12,

page 183–196, New York, NY, USA, 2012. Association for Computing

Machinery.

[50] Alexander Merritt, Ada Gavrilovska, Yuan Chen, and Dejan Milojicic.

Concurrent log-structured memory for many-core key-value stores.

Proc. VLDB Endow., 11(4):458–471, December 2017.

[51] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided

RDMA reads to build a fast, CPU-Efficient Key-Value store. In 2013

USENIX Annual Technical Conference (USENIX ATC 13), pages 103–

114, San Jose, CA, June 2013. USENIX Association.

[52] Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley db. In

USENIX Annual Technical Conference, FREENIX Track, pages 183–191,

1999.

[53] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. Shenango: Achieving high cpu efficiency for latency-

sensitive datacenter workloads. In NSDI, volume 19, pages 361–378,

2019.

[54] Boris Pismenny, Adam Morrison, and Dan Tsafrir. ShRing: Networking

with shared receive rings. In 17th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 23), pages 949–968, Boston,

MA, July 2023. USENIX Association.

[55] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout.

Arachne: Core-Aware thread management. In 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18), pages

145–160, Carlsbad, CA, October 2018. USENIX Association.

[56] Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng Li, Xiaosong Ma,

Qi Chen, Mao Yang, and Yinlong Xu. Frozenhot cache: Rethinking cache

management for modern hardware. In Proceedings of the Eighteenth

1113

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Youmin Chen, Jiwu Shu, et al.

European Conference on Computer Systems, EuroSys ’23, page 557–573,

New York, NY, USA, 2023. Association for Computing Machinery.

[57] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. ffwd: del-

egation is (much) faster than you think. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17, page 342–358,

New York, NY, USA, 2017. Association for Computing Machinery.

[58] Raj Srinivasan and RPC RFC1831. Remote procedure call protocol

specification version 2. Sun Microsystems, August, 1995.

[59] Akshitha Sriraman and Thomas F. Wenisch. µtune: auto-tuned threading

for oldi microservices. In Proceedings of the 13th USENIX Conference

on Operating Systems Design and Implementation, OSDI’18, page

177–194, USA, 2018. USENIX Association.

[60] Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji Huang, and Jiwu

Shu. Pacman: An efficient compaction approach for Log-Structured Key-

Value store on persistent memory. In 2022 USENIX Annual Technical

Conference (USENIX ATC 22), pages 773–788, Carlsbad, CA, July

2022. USENIX Association.

[61] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A Black-Box

approach to NUMA-Aware persistent memory indexes. In 15th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

21), pages 93–111. USENIX Association, July 2021.

[62] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized

distributed b+tree index on disaggregated memory. In Proceedings of

the 2022 International Conference on Management of Data, SIGMOD

’22, page 1033–1048, New York, NY, USA, 2022. Association for

Computing Machinery.

[63] Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu. Replicating per-

sistent memory Key-Value stores with efficient RDMA abstraction. In

17th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 23), pages 441–459, Boston, MA, July 2023. USENIX

Association.

[64] Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for

well-conditioned, scalable internet services. SIGOPS Oper. Syst. Rev.,

35(5):230–243, October 2001.

[65] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis

of hundreds of in-memory cache clusters at twitter. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

20), pages 191–208. USENIX Association, nov 2020.

[66] Suli Yang, Jing Liu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Principled schedulability analysis for distributed storage

systems using thread architecture models. In Proceedings of the 13th

USENIX Conference on Operating Systems Design and Implementation,

OSDI’18, page 161–176, USA, 2018. USENIX Association.

[67] Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren Wang, Ilia Kurakin,

Charlie Tai, and Nam Sung Kim. Don’t forget the i/o when allocating

your llc. In Proceedings of the 48th Annual International Symposium

on Computer Architecture, ISCA ’21, page 112–125. IEEE Press, 2021.

[68] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua.

One-sided RDMA-Conscious extendible hashing for disaggregated

memory. In 2021 USENIX Annual Technical Conference (USENIX ATC

21), pages 15–29. USENIX Association, July 2021.

1114

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 A Taxonomy of the KVS Thread Architecture
	2.2 The Opportunity of NP-TPS
	2.3 Challenges

	3 TPS Design
	3.1 Overview
	3.2 Cache-Resident Layer
	3.3 Memory-Resident Layer
	3.4 CR-MR Queue
	3.5 Auto-tuner

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Overal Performance
	5.3 Latency
	5.4 Scalability
	5.5 Ablation Study

	6 Related Work
	7 Conclusion
	References

