
ITA: Innocuous Topology Awareness for
Unstructured P2P Networks

Harris Papadakis, Mema Roussopoulos, Paraskevi Fragopoulou and Evangelos P. Markatos
Foundation for Research and Technology-Hellas, Instituteof Computer Science

N. Plastira 100, Vassilika Vouton, GR-70013 Heraklion, Crete, Greece
{adanar|mema|fragopou|markatos}@ics.forth.gr

Abstract—One of the most appealing characteristics of unstruc-
tured P2P overlays is their enhanced self-* properties, which is
due to their loose, random structure. In addition, most of the
algorithms which make searching in unstructured P2P systems
scalable, such as dynamic querying and 1-hop replication, rely
on the random nature of the overlay to function efficiently. The
underlying communications network (i.e. the Internet), however,
is not as randomly constructed. This leads to a mismatch between
the distance between two peers on the overlay and the hosts they
reside on at the IP layer, which in turn leads to its misuse.
The crux of the problem arises from the fact that any effort to
provide a better match between the overlay and the IP layer
will inevitably lead to a reduction in the random structure
of the P2P overlay, with many adverse results. With this in
mind, we propose ITA, an algorithm which creates a random
overlay of randomly connected neighborhoods providing topology
awareness to P2P systems, while at the same time has no negative
effect on the self-* properties or the operation of the otherP2P
algorithms. Using extensive simulations, both at the IP router
level and autonomous system level, we show that ITA reduces
communication latencies by as much as 50%. Furthermore, it
not only reduces by 20% the number of IP network messages
which is critical for ISPs carrying the burden of transporti ng
P2P traffic, but also distributes the traffic load more fairly on
the routers of the IP network layer.
Index Terms—Peer-to-peer, unstructured overlay network, topol-
ogy awareness, self-* properties, IP network layer, communica-
tion latency.

I. I NTRODUCTION

The P2P paradigm has received substantial attention from
researchers of several fields of the distributed systems, span-
ning from file-sharing and content delivery to Grid systems.
In addition, several P2P-based applications have been in
widespread use from the aforementioned file-sharing to IP-
telephony. Almost all these uses and applications have one
thing in common and that is the global-scale deployment since
the P2P paradigm emerged as a design paradigm to provide
global scalability, something that the traditional client-server
paradigm was unable to achieve. However, as we will describe
later, this global deployment magnifies the problem this paper
tries to solve.

One of the most critical design aspects of any P2P system
is the overlay layer, that is a virtual network of interconnected
peers (P2P client-servers) through (and on top of) the under-
lying IP network. The structure of this overlay network is
tightly coupled with the search algorithm, which is usuallythe
main function of a P2P system. This means that the network

structure is such as to enable and facilitate this function,which
also means that there are rules governing which peers are
connected to which peers.This is more apparent in the case
of structured P2P systems, where the structure of the overlay
network is such as to allow for a binary-tree like search to
be performed, which requires a logarithmic (O(logN)) search
cost in the number of messages.

On the other hand, unstructured systems, by definition, do
not impose a specific structure on the overlay. Each peer is
free to connect to any other (available) peer. Even though this
lack of structure denotes a large degree of freedom in the
creation of the overlay, we will show that this is misleading.
Most mechanisms used widely in unstructured P2P systems
today, actually rely on this random selection of neighbors (the
peers to connect to), regardless of their distance and position
in the IP network. This leads to a complete lack of corellation
between the two respective distances (IP network and overlay),
wherein lies the problem we aim to rectify.

So, either structured or unstructured, all P2P systems have
their own design goals on overlay creation, which do not
include taking into consideration the structure of the under-
lying physical network, the Internet. As a result, most P2P
systems make an inneficient use of the IP layer, which has
adverse impact not only on their own operation but also on
the operation of the other applications, which co-exist on the
same medium (the Internet). Some proposals have already
been published, which aim to rectify this. Most of them
rely on the freedom of peers in unstructured neighbors to
connect to any peer they want, in order to create an overlay
which better matches the IP layer. However, as we mentioned
and will show, this freedom to choose any peer as neighbor
is more of a requirement than actual freedom. This means
that showing any preference, during neighbourhood selection,
on peers depending on their position and distance in the
IP network violates this requirement, and thus, we argue,
these approaches greatly affect some of the most fundamental
characteristics of P2P systems.

The obliviousness of P2P systems to the underlying network
has two main drawbacks. The first is that the average latency
between any two neighbors on the P2P overlay is increased
since each peer does not actively try to connect to peers
which are closer at the IP layer and/or have smaller latency.
The second and most important drawback is that the IP path
behind each P2P overlay connection contains a large number

2

Fig. 1: Illustration of inefficient routing in todayś unstructured P2P
systems

of routers. This means that even a single, 1-hop, message
between neighbors (at the P2P overlay) may travel through
many routers and autonomous systems before it reaches its
destination. Figure 1 illustrates such a simple scenario, where
a message from peer A to peer C crosses the Atlantic twice
before it reaches peer C on the same continent as peer A.
This inefficient routing, is one of the main reasons behind
the observed domination of P2P traffic in the Internet [24],
[25]. An obvious solution to this problem is to have each peer
connect to those peers which are closest to itself, in terms
of latency, while maintaining a small number of further links
to avoid overlay partitioning. However this would create an
overlay with a higher degree of structure (clustering), which
will have a negative impact on the mechanisms employed in
unstructured P2P networks.

In this paper, we aim to solve this canandrum. We propose
ITA, an algorithm forInnocuous Topology Aware construc-
tion, which provides unstructured P2P overlay creation with
a large degree of topology awareness, while at the same time
taking into consideration the impact the proposed changes will
have on the rest of the mechanisms employed in unstructured
P2P systems. It is able to do so by building a random
graph of random graphs, therefore preserving, in a sense,
the random nature of the overlay, while at the same time
allowing for the existence of ”neighborhoods”, allowing peers
to randomly connect to close-by peers. We use a diverse set
of metrics to experimentally evaluate out proposal and to give
a complete view of its impact on the system’s operation.
The results we obtain include a 50% reduction in search
latency, a 20% reduction in the number of IP messages and
a significant (approx also 50%) reduction on the load of the
IP network routers. ITA is shown to have no negative impact
whatsoever on the 1-hop replication and the dynamic querying
mechanisms, which we describe below.

The remaining of the paper is organized as follows: In
Section 2, prior work related to the problem is reviewed. Sub-
sequently, in Section 3 some background knowledge necessary
to the understanding of the remaining material is provided.The
main result of this paper, the construction of the ITA algorithm
and its accompanied searching method, is presented in Section
4 along with some analysis and discussion. Extensive experi-
mental results are demonstrated in Section 5 and, finally, we
conclude in Section 6.

II. RELATED WORK

One of the main drawbacks of unstructured P2P systems
is the limitation of their scalability due to the large number
of messages generated by their search mechanism, called
flooding. This is evident in the fact that a large part of the
existing literature aims at reducing those messages [20], [27],
[9], [5]. However, the vast majority of this work is concerned
with reducing the number of the overlay messages, even
though a single overlay message usually translates to several IP
messages. This abstraction has been shown to be problematic
for the network layer.

In the case of structured systems, some work has been
carried out aiming to address this problem, even though the
possibilities are limited since there are specific requirements
for the neighbor selection of each peer. Due to the more
rigid structure of those systems, one has less freedom on how
to rewire the connections in the system to allow for greater
topology awareness. In [6] the authors propose the selection of
the closest neighbor whenever there are more than one choices.
This approach can be applied in systems like Pastry [23],
Kademlia [18], and Tapestry [30]. However, in systems like
Chord [28] and CAN [21], each neighbor is uniquely defined.

Our work focuses on unstructured systems, which are not
as sensitive to changes in the overlay creation. Topology
awareness algorithms that have been proposed for unstructured
systems, such as [13], [15], aim at constructing a generic,
topologically aware overlay, and thus do not describe any
mechanism for efficiently searching on that overlay. In ad-
dition, the constructed graph has a high clustering degree,
which predicates that the mechanisms already employed in
unstructured P2P systems and which depend on a random
overlay to function properly, will experience a high loss in
efficiency. In particular, the authors of [13] describe an overlay
graph creation method, which is based on having each peer
connect to those other peers with which it has the longest com-
mon domain suffix. Some random links are also maintained
in order to avoid the partitioning of the network. In addition
to the drawbacks common to all approaches which increase
topology awareness by reducing the randomness of the graph
this approach has an additional disadvantage. The graph that is
formed is comprised of neighborhoods of diverse sizes, since
not all domains have the same peer population. This makes the
choice for a universal value for theT ime−To−Live(TTL)
difficult. The same holds for the systems described in [14],
[19], where the neighborhoods are defined by the IP addresses
instead of the domain names. In flood-based P2P systems,
the TTL value is critical for the efficient operation of the
system and is directly connected not only its scalability but
also its operational success. ATTL value which is appropriate
for some of the neighborhoods can be inefficient for others,
leading to either failure to locate content, or to the generation
of a large number of duplicate messages.ITA constructs
randomly connected “neighborhoods” of roughly equal size,
which means that oneTTL value “fits all”.

In [8], the authors use synthetic coordinates to create

3

neighborhoods of close-by, in terms of latency, peers. Their
simulations were performed on a network which comprised
92 IP layer nodes and included 42 overlay peers. This small
network size makes it difficult to reveal the real benefit
of the algorithm. In addition, in experiments of this scale
it would be difficult to notice the effect of the increased
clustering in the flooding mechanisms. In [15] overlay creation
is inspired by thek-median algorithm, in order to, again,
construct neighborhoods of nearby, latency-wise peers and
thus reduce the average latency of any path between any two
peers in the overlay. This theoretical algorithm appears to
be computationally expensive since it requires knowledge of
the entire overlay topology to function. Furthermore, as the
overlay changes from the departure and arrival of peers, the
algorithm needs to continuously adjust the overlay in order
to maintain its efficiency. The work described in [26] is a
follow-up of [15]. The algorithm still needs to be active all
the time to preserve the structure of the network. In addition,
the main focus of this work is on the construction of an
efficient graph for general use, as is the case for the work
described in [16], [17], so there is no descrption on how to
search the overlay. We focus on how to efficiently construct
an overlay with low clustering that maintains the beneficial
properties of random graphs and leads to efficient information
lookup. Finally, an interesting work is presented in [29]. The
method described limits the reorganization of the network to
add topology awareness in a 2-hop neighborhood for each peer.
ITA constructs the entire overlay from the beginning to allow
for the desired topology-awareness.

As we mentioned, the method used to construct and the
resulting structure of the overlay is tightly coupled with the
other mechanisms at work in a P2P system. In existing P2P
systems this is especially true for the mechanisms that com-
prise the search-lookup function. The work we just mentioned
does not take into consideration the impact of the proposed
methods on those widely deployed mechanisms such as 1-
hop replication and dynamic querying.ITA functions without
affecting them in any way, which means that there is no trade-
off. Any increase in topology awareness comes at no-cost. In
addition, most of the aforemention work requires that each
peer continuously execute the topology-awareness algorithm
to adopt to changes in the P2P overlay. This is mainly because
most of the aforementioned proposed methods try to connect
each peer to its closest possible neighbors. This set however
changes dynamically in time, due to the churn in the network.
ITA only requires a simple and quick bootstrapping process,
after which it can continue to function unaffected by the churn
of the system. Furthermore, this continuous operation of most
of the aforementioned proposed methods requires each peer
to continuously probe the network in case some new, closest
peer has joined, imposing additional traffic in the network and
burden on each peer.

The most recent related work can be found in [12]. In this
work, they describe an algorithm for creating an overlay with
constant delay between any two peers in the network. Each
peer maintains a number of small random ids. In addition,

it samples the network by contacting a number of random
peers and initiating a walk from each one, by following peers
of decreasing ids, towards the peer with the minimum id in
the network. The peers with the lowest latency are chosen
as neighbours. We chose this algorithm to compare with ITA
latency-wise. Experimental results show that ITA obtains lower
latency between peers. In addition, as we shall describe, ITA
requires a constant number of samples to create the overlay,
whereas Hsiao et al. algorithm requires a number of samples,
which is logarithmic to the number of peers in the system.
Finally, most of the existing literature focuses on reducing the
IP latency of queries. We evaluate our work using a variety of
metrics including IP latency reduction, IP message reduction,
and the traffic load placed on each router in the underling IP
network. The latter we believe to be a crucial, often neglected,
metric in current widely deployed P2P systems.

III. B ACKGROUND

In this section we describe those technologies used in
unstructured P2P systems today which are both essential for
the understanding of the remaining of the paper and also
are those more negatively affected by changes in the overlay
structure. We will also show both the importance of those
mechanisms and why they are so negatively affected. One of
the most important, scalability-wise, techniques widely used
in unstructured P2P systems today, is 1-hop replication [22].
One-hop replication dictates that each peer should send to all
of its immediate neighbors an index of its content (usually
in the form of a Bloom filter). This information is used
during the last hop propagation (at the Ultrapeer level) of
a query, by forwarding the request only to those last hop
Ultrapeers that their index indicates that they may contain
the requested file. One-hop replication reduces only those
messages generated during the last hop of flooding. However,
as shown below, the traffic generated during that last hop
constitutes the overwhelming majority of the traffic generated
during the entire flooding, since the number of messages per
increasing TTL, increases exponentially.

Below we show the efficiency of flooding using 1-hop
replication. We further demonstrate that the efficiency of 1-
hop replication relies on a random graph. Proposition 2 shows
that in order to flood an entire, randomly constructed, network
that employs 1-hop replication, one need only reach3/(d−1)
of the peers during all hops but the last. Before we proceed
to Proposition 2 we need to introduce a preliminary result
(Proposition 1). In what follows, we assume full network
coverage is achieved when flooding has reached 95% of the
graph nodes.

Proposition 1: In order to reach95% of a graph’s nodes
using naı̈ve flooding we need a minimum of3 ∗N messages.

Proof: Let x be the number of messages generated during
flooding. We want to computex so that the flood reaches at
least95% of the graph nodes. This means that at most5% of
the peers will not receive any of thex messages. In a random
graph, each time a message is sent, each peer has the same
probability1/N of being on the receiving side of that message.

4

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

of
 d

up
lic

at
e

m
es

sa
ge

s

Hops

clustered graph
random graph

Fig. 2: Percentage of duplicate messages over all messages
generated during each distinct flood hop

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0+e 2+e5 4+e5 6+e5 8+e5 1+e6

C
ov

er
ag

e

Nr. of messages

random graph
clustered graph

Fig. 3: Coverage of the graph for given number of messages

The probability that a peer receives neither one ofx messages
is (1 − 1/N)x ≈ e−x/N . In order to achieve95% coverage,
this probability should be less than0.05:

e−x/N ≤ 0.05 ⇒ ln(e−x/N) ≤ ln(0.05) ⇒

−x/N ≤ −3 ⇒ x ≥ 3 ∗ N

Thus, we need at least3∗N messages using flooding to reach
95% of the graph nodes.

Proposition 2: In order to reach95% of a graph’s nodes
that employs 1-hop replication using flooding, we need to
reach3/(d − 1) of the graph nodes in all hops except the
last one.

Proof: Let n be a function that returns the number of new
peers contacted at a given hop. Letf be a function that returns
the number of messages generated on a single, given hop. Let
d be the average degree of the graph. Initiallyf(0) = 0 and
n(0) = 1. At each hopi it holds: f(i) = n(i − 1) ∗ (d − 1)
(1) because each one of the nodes that received a message
for the first time at hopi − 1, will send it, at hopi, to all of
their neighbors except the one it received the message from,
thus to d − 1 neighbors. LetH be the hop before the last
one. The total number of peers contacted up to hopH is∑H

i=0
n(i). Let r be the ratio of peers contacted up to hop

H , then:
∑H

i=0
n(i) = r ∗ N (2) We want to compute ratior

so that after hopH + 1, we will have reached at least95%
of the graph nodes. We have proven in Proposition 1 that we
need a minimum of3∗N messages to reach95% of a graph’s
nodes using naive flooding. So

∑H+1

i=1
f(i) ≥ 3 ∗N (3) If we

replace functionf from (1) in the above formula:

H+1∑

i=1

f(i) =

H+1∑

i=1

[n(i − 1) ∗ (d − 1)] =

= (d − 1)
H+1∑

i=1

n(i − 1) = (d − 1)
H∑

i=0

n(i)

This combined with (1) and (2) gives:

(d − 1) ∗ r ∗ N ≥ 3 ∗ N ⇒ r ≥
3

d − 1

Thus the required result.

According to Proposition 2, in order to flood an entire
randomly constructed network that employs 1-hop replication,
one need only reach3/(d− 1) of the peers. The rest, last hop
peers are reached using 1-hop replication. In todays Gnutella,
where the average degree is30, one would need to reach
10% of the peers before employing 1-hop replication. This
translates to a big saving in the number of messages. However,
this result does not hold for clustered graphs, since the proof is
based on the preliminary result in Proposition 1 which is only
valid if each peer has equal probability to receive any message.
This is the case only in graphs whose edges are constructed
randomly. We have thus demonstrated that the efficiency of
1-hop replication heavily relies on a random overlay.

The second algorithm whose performance heavily relies
on random overlays is dynamic querying. As we mentioned
before, the number of messages generated on each TTL
increases exponentially. This means that while a flood with a
given TTL may reach a small part of the system peers, a flood
with the TTL increased by one may well reach all the peers,
with a possible forbidding amount of messages. Dynamic
querying [10] tries to imbue flooding with a finer granularity,
regarding its extent of reach. It relies on the assumption tha
a user will be more than happy with enough results to its
query, instead of every result present in the system. The main
idea is not to flood all of one peer’s neighbors at the same
time. Instead, the peer that initiates the flood sends the query
message sequentially to each neighbour, with increasing TTL,
until enough results have been obtained or have run out of
neighbours. Again, for this scheme to be efficient, it is required
that when forwarding a flood message, the receiving peer has a
low probability of having received that same message before,
which only is the case in random graphs and not graphs with
high degree of clustering. Otherwise, if all of the initiator’s
peers shared many neighbors, the flood would reach the same
peers again and again. On a clustered graph, the number of
new peers contacted on each flood hop is greatly reduced.
This is because in clustered graphs, neighbouring peers share
common neighbours which leads to peers receiving the same
message more than once even on the second hop. This leads to
duplicate, redundant messages from early on in the flood. This
only happens during the last hops in random graphs. The above
are illustrated in Figure 2, where one can see the difference

5

in duplicate messages distribution between a clustered (small-
world) and a random graph. In Figure 3 one can see that with
the same number of messages, a larger portion of the random
graph is reached. In these figures, we constructed a graph
of 80000 nodes with an average degree of13. The behavior
illustrated in those two figures however is the same for any
number of nodes or average degree and is only dependant on
the degree of clustering of the graph.

Both the aforementioned mechanisms are critical for the
scalability of unstructured P2P systems and for this reason
we believe that any modifications and new proposals for those
systems have to prove they only positively affect their behavior
or do not affect it at all.

0.0+e

2.0+e-3

4.0+e-3

6.0+e-3

8.0+e-3

1.0+e-2

1.2+e-2

0 50 100 150 200 250 300 350 400

P
ro

ba
bi

lit
y

Latency - time units

Distribution of direct latencies

Fig. 4: Distribution of direct latencies between all pairs of peers

IV. ITA D ESIGN

This section contains a detailed description of the parts that
comprise the design of our ITA algorithm. We then present a
discussion and analysis of the advantages which arise from it.

A. Overlay construction

The ultimate objective of the bootstrapping algorithm is to
create for each peer a number of randomly selectedshort
connections tocloser (but not the closest) peers and the
same number of randomly selectedlong connections todistant
peers. The definition of the “short” and ”long” connections
is based on parameterα ≤ 1 which constitutes the basic
and most fundamental parameter of the algorithm. LetN
be the total number of peers in the networks. Each peerA
that bootstraps to the network selects its “short” connections
randomly among itsα∗N closer (latency wise) peers, while it
selects its “long” connections randomly among the(1−α)∗N
more distant (latency wise) peers.

To implement this method, each peerA calculates a (latency
related) threshold valuex directly related to parameterα.
Given the value of parameterα ≤ 1, each peerA that
bootstraps to the network approximates a threshold valuex
so that the number of peers whose latency toA is less than
x is α ∗ N . In other words, ifC is the set of all peersP
for which it holds thatlatency(A, P) ≤ x, peerA calculates
its threshold valuex so that|C| = α ∗ N . Since the latency
from each peer to all other peers cannot be measured, the
calculation of the threshold valuex is approximated by having
each peerA make latency measurements to30/α randomly

selected peers. A proof is provided in Proposition 3 below,
which shows that this number of latency samples leads to a
good threshold approximation.

Proposition 3: Each peer needs30/α latency measure-
ments to other peers in order to approximate thresholdx such
that |C| = α ∗ N for given α ≤ 1, with accuracy95%.

Proof: A peer belongs toC with probabilityα. To obtain
a good threshold approximation, we will select a peer in C
that is among the 0.1*—C— peers whose latency is closer to
the threshold value. The number of peers which are closer to
the threshold according to our choice is0.1∗α∗|C| = α′∗|C|.
The probability that a single randomly selected peer belongs
to that space isα′ = 0.1∗α. The probability that neither one of
n randomly selected peers belong to that space is(1−α′)n ≃
e−α′

∗n. To approximate the threshold with accuracy95% we
need,

e−α′
∗n <= 0.05 ⇒ ln(−α′ ∗ n) ≤ ln(0.05) ⇒

−α′ ∗ n ≤ −3 ⇒ n ≥ 3/α′ ⇒ n ≥ 30/α

So each peer needs30/α latency measurement samples to
approximate the threshold.

During the sampling measurements, peerA can connect
randomly to begin its operation without having to wait for
the end of the sampling procedure.

In addition, the Vivaldi coordinate system [7] can be used
to facilitate and speed-up the bootstrapping process. Vivaldi
is a P2P network coordinate system which can assign a
3-dimensional coordinate to a host. The Euclidian distance
between two Vivaldi points (corresponding to two hosts)
is an approximation of their latency. Thus, each message
broadcast by any peer can contain its Vivaldi coordinates.
A bootstrapping peer A can monitor incoming traffic, collect
30/α Vivaldi coordinates and thus compute the threshold value
x. Ultrapeers today are reached by at least fifty query messages
per second, making the threshold calulation this way a matter
of seconds.

It should also be noted that, unless the structure and capacity
of the network changes significantly, the threshold value
remains unchanged, and so does not need to be recalculated
each time the peer joins the overlay. After a threshold value
has been obtained, peer A connects to2/α neighbors in the
following fashion:

• It connects randomly to1/α peers, all of which belong to
C (i.e.: any peers with a latency lower than the threshold
value). These links are calledshort links.

• It also connects randomly to1/α other peers, whichdo
not belong toC. These are calledlong links.

To illustrate, let’s assume that parameterα is set to 0.1.
This means thatC contains approximately0.1 ∗ N nodes of
all the nodes (peers) in the system. Note that the set C is,
of course, different for each peer. Each peerA will create
1/α = 10 short links randomly selected among the 10% closer
to A peers (i.e. among the peers inA′s C set), and the same
number of long links randomly selected from the 90% further
peers. The number of sample measurements required for the

6

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

-600 -400 -200 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

Coordinate values

X coordinate

Vivaldi values
Approximating distribution

(a) x coordinate

-0.002
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

-600 -400 -200 0 200 400 600 800

P
ro

ba
bi

lit
y

Coordinate values

Y coordinate

Vivaldi values
Approximating distribution

(b) y coordinate

-0.002
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020

-600 -400 -200 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

Coordinate values

Z coordinate

Vivaldi values
Approximating distribution

(c) z coordinate

Fig. 5: Actual values and approximation distribution for the threecoordinates

calculation of the threshold, in this case, is30/α = 300. Not
only it take a few seconds to perform this number of RTT
measurements, it only takes place once, and not every time a
peer (re-)connects in the system.

B. Search algorithm

Search is conducted in the following fashion:

• The Initiator peer floods its long links withTTL = 1.
• Each of the peers that receives the flood over a long

link (and the Initiator peer) initiates a flood with a given
TTL = ttl (system parameter) over their short links only.

The long link peers which initiate the localized floods (over
their short links) use 1-hop replication as well as dynamic
querying the same fashion it is used in Gnutella today. Since
short links are randomly connected the efficiency of dynamic
querying and 1-hop replication is guaranteed. Alternatively,
Dynamic Querying can be used on the long links level by
sequenatialy sending a new flood with increasing TTL, to each
long link neighbour.

C. Analysis

The constructed graph, in conjunction with the described
search method, has the following advantages:

• Both the long link-based, system-wide graph and the
short link-based, local graphs are random, since each peer
selects peers (outside and inside C respectively) randomly
for neighbors (i.e. each peer, for instance, in C has the
same probability of becoming a short link peer of the
same peerA). This enables both 1-hop replication and
dynamic querying to operate as if they were executed on
a random graph.

• Since any peer in C can serve as short link (instead of
opting for the closest ones), the bootstrapping procedure
is very fast and lightweight. The same holds for the
long links. As a result each peer need only set up
its neighbors once, regardless of arrivals and departures
elsewhere in the overlay, makingITA as little affected
by churn as Gnutella (i.e. a peer only needs to act when
a neighbor leaves the system by simply replacing it
with another one, as in Gnutella). This simplicity helps
preserve almost intact the unstructured nature and the

simplicity of construction of the overlay. What is more,
if we tried to connect to the closest possible peers, this
would require each peer to be on the constant lookout for
some closer peer connecting (anywhere) to the network.
This constant probing would increase both the traffic in
the network and the computational load of the system. In
addition, the threshold value is only affected by changes
in the structure of the underlying IP network (which are
not very frequent) and not by changes in the P2P overlay,
which are rather frequent. So the value is calculated only
once and not each time the peer (re-)joins the network.

• (1 − α) ∗ N peers (furthest away at the IP layer) are
excluded from becoming short links, which means the
proposed system is quite aware of the underlying physical
network topology. Increased awareness in the form of a
very smallα (i.e. trying to connect to the closest possible
peers) would help us gain little but lose much, since the
small size of the local neighborhoods would lead to high
clustering.

• Finally, all local clusters/neighbourhoods have the same
size, enabling the use of a single, system-wideTTL = ttl
for flooding the short links.

We have conducted experiments using three distinct values
for α, namely 0.1, 0.05 and 0.033. These values correspond
to a number of 10, 20 and 30 long and the same number
of short links. The above discussion justifies the reason for
not using smaller values. Values in this range are sufficient
for excluding most of the peers from the local “neigborhood”
set C of each peer, while being at the same time large
enough to allow large enough neighborhoods for quick and
simple bootstrapping procedure (i.e. being able to quickly
locate short-link neighbors). The value ofα also dictates the
number of the long links, since there areN/|C| = 1/α
“neighborhoods”. In addition, the use of1/α long links is due
to the fact that the use of long links should only take place
on the first hop, to avoid extra delays in the flood process.
Finally, it is important to note that there is no 1-hop replication
between peers connected by long links, so there is no index
information exchange. Thus, the maintenance overhead for the
additional1/α long links very low.

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0+e 3.0+e5 6.0+e5 9.0+e5 1.2+e6

C
ov

er
ag

e
-

(d
eg

re
e

10
)

Nr. of messages

Gnutella
ITA

Hsiao

(a) Average degree = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0+e 3.0+e5 6.0+e5 9.0+e5 1.2+e6 1.5+e6 1.8+e6

C
ov

er
ag

e
-

(d
eg

re
e

20
)

Nr. of messages

Gnutella
ITA

Hsiao

(b) Average degree = 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0+e 3.0+e56.0+e59.0+e51.2+e61.5+e61.8+e62.1+e62.4+e62.7+e63.0+e63.3+e63.6+e63.9+e6

C
ov

er
ag

e
-

(d
eg

re
e

30
)

Nr. of messages

Gnutella
ITA

Hsiao

(c) Average degree = 30

Fig. 6: Flood reach for given number of messages.

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
un

its
 -

 (
de

gr
ee

 1
0)

Coverage

Gnutella
ITA

Hsiao

(a) Average degree = 10

200

300

400

500

600

700

800

900

1000

1100

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
un

its
 -

 (
de

gr
ee

 2
0)

Coverage

Gnutella
ITA

Hsiao

(b) Average degree = 20

200

300

400

500

600

700

800

900

1000

1100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
un

its
 -

 (
de

gr
ee

 3
0)

Coverage

Gnutella
ITA

Hsiao

(c) Average degree = 30

Fig. 7: Time required by a flood versus the percentage of nodes reached.

0.0+e

5.0+e5

1.0+e6

1.5+e6

2.0+e6

2.5+e6

3.0+e6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
r.

 o
f I

P
 m

es
sa

ge
s

-
(d

eg
re

e
10

)

Coverage

Gnutella
ITA

(a) Average degree = 10

0.0+e

5.0+e5

1.0+e6

1.5+e6

2.0+e6

2.5+e6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
r.

 o
f I

P
 m

es
sa

ge
s

-
(d

eg
re

e
20

)

Coverage

Gnutella
ITA

(b) Average degree = 20

0.0+e

5.0+e5

1.0+e6

1.5+e6

2.0+e6

2.5+e6

3.0+e6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
r.

 o
f I

P
 m

es
sa

ge
s

-
(d

eg
re

e
30

)

Coverage

Gnutella
ITA

(c) Average degree = 30

Fig. 9: IP messages generated by a flood versus the percentage of nodes reached. Router-level

0.0+e

2.0+e-1

4.0+e-1

6.0+e-1

8.0+e-1

1.0+e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ed

uc
tio

n

Coverage

Ratio of messages reduction

(a) Average degree = 10

0.0+e

2.0+e-1

4.0+e-1

6.0+e-1

8.0+e-1

1.0+e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ed

uc
tio

n

Coverage

Ratio of messages reduction

(b) Average degree = 20

0.0+e

2.0+e-1

4.0+e-1

6.0+e-1

8.0+e-1

1.0+e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ed

uc
tio

n

Coverage

Ratio of messages reduction

(c) Average degree = 30

Fig. 10: Ratio of IP message reduction. Router-level

8

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
op

 d
is

ta
nc

e

Neighbourhood size

Fig. 8: Diameter (in hops) of different neighborhood sizes

D. Duplicate messages experiments

V. EXPERIMENTAL RESULTS

In order to verify the arguments made in the previous sec-
tion, we performed several experiments comparing our system
with Gnutella, at its peak usage population (approximately2
million users) [4]. We performed the comparison with Gnutella
0.6, which employs a 2-tier architecture [11], focusing on the
Ultrapeer layer where flooding occurs. The metrics upon which
our comparison was based were selected to capture the design
goals ofITA, namely to satisfy users by allowing them to get
the same number of search query results faster by reducing
query response time, and to satisfy ISPs by reducing the load
imposed on their routers.

We also compared our system latency-wise with the most
recent algorithm we could find in the literature, proposed in
[12] by Hsiao et al. Each peer in the proposed algorithm also
samples the network, in a different function, to locate peers
with lower latency in order to connect to. That number of
samples is however relative to the natural logarithm of the
total number of peers in the system. In our algorithm, the
number of samples is constant, regardless of the size of the
network.

We simulated a network of 200,000 peers, which is a real-
istic number for the size of the Ultrapeer overlay in Gnutella
according to LimeWire [3], the company that developed the
most popular Gnutella client today. We also used three average
degree values for the overlay, namely 30 (which is the average
number of connections in a Gnutella Ultrapeer today), 20
and 10. These three numbers correspond to the number of
connections per peer in the Gnutella simulations and the
number of short and long links in the simulations of theITA
algorithm. Note that since the long links are only used during
the first hop of flooding, whereas the short links are used
during the second and the remaining hops, the outbound degree
during any flood hop is the same both in Gnutella andITA,
even though our algorithm uses double the number of links
(short and long). We performed a large number of floods, in
each experiment, with varying TTL values, resulting in a range
of the ratio of the peers reached by the flood. For each TTL
value we performed 100 floods and averaged the results. We
compareITA and Gnutella using three different metrics. The
first metric is the latency of the connections of the peers, which

affects the duration of a flood. We measure the average time
it takes for a flood to complete, for differentTTL values. The
second metric is the number of IP messages generated during
a single flood. We measure the average number of IP messages
generated during floods of increasingTTLs. Finally, the last
metric is the standard deviation of the message load imposed
on the routers that comprise the IP layer of the Internet. We
argue that a reduction in the total number of IP messages
in the whole network is of little use if there exist a small
number of bottleneck routers whose traffic load remains the
same as before. As we mentioned above, the key goals of
the ITA algorithm is to benefitboth the P2P applicationand
other applications sharing the same medium, the Internet. First
though, we prove that the injection of topology awareness in
the overlay construction has not affected the “randomness”of
the system.

The comparison with the algorithm proposed in [12] is made
in terms of latency and the degree each algorithm affects the
“randomness” of the system. In the context of that algorithm,
we used aγ value of 2, the same value used in the paper for
degrees around 15 or more.

The random nature of the constructed overlay is indicated
by the extent of the reach of a flood for given number of
messages. This is because on a clustered graph, as shown
in Figures 2 and 3, duplicate messages appear even from
the second hop of the flood. Since duplicate messages, by
definition, arrive at a peer which has already received another
flood message, they do not add to the reach of the entire flood.
Figures 6(a), 6(b) and 6(c) show the similarity between the
Gnutella overlay (random graph), the overlay constructed by
ITA an the algorithm of Hsiao et al, with respect to flooding.
The close fit of ITA and Hsiao et al. curves with the Gnutella
curve on the two graphs shows that the flood reach is the same
in all three graphs using the same number of messages. This
means thatITA (and Hsiao et al.) can provide reduced latency
and reduced router load benefits (see below) without affecting
1-hop replication, dynamic querying, and the self-* properties
on which Gnutella-like systems depend for their performance.
It should be noted here that latencies between neighbours in
this experiment were modeled the same way as in the Latency
experiments described next.

A. Latency experiments

In order to model the 200,000 by 200,000 latencies between
our simulation peers, we obtained approx. 1000 real-world
Vivaldi coordinates. Those 3D coordinates were produced by
the Vivaldi project experiments on PlanetLab [7]. We then
calculated a distribution which best fits the values observed
in those coordinates and we generated 200,000 Vivaldi coor-
dinates using this distribution, thus being able to model the
latency between any pair of the 200,000 peers. Figures 5(a),
5(b), 5(c) show the values of the original Vivaldi coordinates
as well as the distributions generated from our approximation
distribution. The close fit is an assurance that our randomly
generated coordinates closely reflect real-world Vivaldi co-
ordinates. Given the 200,000 x 200,000 latency matrix we

9

generated, Figure 4 shows the distribution of the latency for
an optimal full mesh graph where each peer has a direct
overlay connection to each other peer. The figure shows that
the average latency between any two peers is 90 time units.

Figures 7(a), 7(b) and 7(c) provide the experiment results
for the first metric. They show the time it takes to flood the
network, for given node coverage. We can see that for any
desired coverage, the time it takes for our system to reach
that number of peers is, on average, at most half the time
for Gnutella flooding. Note that the measured time reflects
the time from the beginning of the flood until even the last
message generated by that particular flood expires. On the
other hand, even though the Hsiao et al. algorithm does reduce
the time for a flood, compared to Gnutella, it still requires more
time than ITA.

There are two reasons for measuring flood duration rather
than average response time for a search query. First, a reduc-
tion by half in flood duration implies a similar reduction in
average query response time. What is more important however,
is the fact that it is common for a flood to still be active and
being propagated in the network, even though no new results
are (and are going to be) provided to the user, so minimizing
flood duration when possible is important. Given a constant
rate by which new queries enter the network, by measuring
the time it takes for a single flood to complete to the last
message, we show thatITA doubles the exit rate of floods
from the network. This means that ITA doesn’t only reduce the
number of IP messages per flood and divide traffic load more
evenly among routers (as we will show in the next section),
but also reduces the build-up of queues in the router buffers.

B. IP layer experiments

In this section we focus on the impact theITA algorithm
has on the IP layer. In order to perform simulations including
the IP layer we obtained the latest trace of the router-level
topology of the Internet from CAIDA [1]. This trace was
publicly released in 2010 and it contais a much larger number
of routers than the previous one. This trace initially contained
approximately 33 million routers. However, we decided to
remove the 1-degree routers (leaf routers) for two reasons.The
first is the fact that performing simulations with this number
of routers was time (and probably memory) prohibiting. In
addition, the existance of leaf routers in the IP topology would
not add to the accuracy of the simulation results. By pruning
those routers, we ended up with the much more managable
dataset of 1.2 million routers. This dataset, in addition to
making simulations feasible, still retains the structure of the
Internet intact. In addition, it still is about six times larger than
the previous CAIDA dataset and hundrends times larger than
most of the router graphs used in similar simulations in the
literature we have described.

In order to be more thorough in the evaluation of our
algorithm, we also performed the same number of experi-
ments at the AS layer. We also obtained an AS-level graph
from CAIDA. This dataset contained approximately 30.000
Autonomous Systems. By obtaining the number of subnets

for each AS from the Internet Assigned Numbers Authority
(IANA) [2], we were able to extract an AS population dis-
tribution, which we used to assign peers to each AS in our
simulation.

In the IP layer experiments, both on the router and AS level,
we used again 200,000 peers, each of which was randomly
assigned to a router in the router-level graph, or AS in the
AS-level graph. Since the CAIDA datasets do not contain
latencies, we approximated the latencies with the number of
IP hops between any two peers. Thus, each peer tries to form
short links with those other peers whose routers are close to
its own at the IP layer. Again, we do that by obtaining the
α ∗ 100% of all routers which are closest to our own router.
Long links are again formed randomly, as are short links in
a given neighborhood. Some measurements on the formed
overlay show that the average number of routers in a Gnutella
direct link between two peers is 6.9. In contrast, the same
number forITA’s long links is 7 and for the short links it
is 5.5. As we shall see below, we can expect a reduction of
messages on the order of 15% to 25% (≃ (7− 5.5)/7). Given
the percentage of the routers which can be reached for a single
TTL value, which is shown in Figure 8, the average values
we mentioned make a lot of sense. This figure shows the ratio
of all peers that can be reached for a given hop distance. This
shows that the vast majority of routers need to traverse a chain
of at least 3 hops before they start encountering more than one
per hop routers. This means that 4 is, more or less, a minimum
value for a short link, imposing a lower bound on the reduction
of IP messages that we can accomplish.

After running the simulations, which included performing
several floods from random peers, with severalTTL values,
we obtained the following results on the router level: Figures
9(a), 9(b) and 9(c) illustrate the reduction in the number of
IP messages for floods of various lengths. As one can see,
the expected reduction that is observed is in the range of 15%
to 25%. Figures 10(a), 10(b) and 10(c) show the reduction
of the IP messages generated by ITA, compared to Gnutella.
They show that, on average, 20% of the Gnutella IP messages,
on the router graph experiments, are absent from the ITA
experiments. Figures 13(a), 13(b) and 13(c) display the results
of the similar experiments, albeit conducted in the AS level.
The similarity of the results provide a good argument for their
consistency.

Another important metric for the efficiency of any topology-
aware overlay construction algorithm is the traffic load distri-
bution across the routers in the system. ANy reduction in the
total number of IP messages is of little use if the number
of messages forwarded by a small number of (possibly core)
routers remains unchanged. For this reason, we plotted the
standard deviation in the traffic load of all routers, again
for floods of different sizes. Figures 11(a), 11(b) and 11(c)
show thatITA reduces the standard deviation approximately
by 40% to 50% on the router level graph. Similarly, figures
12(a), 12(b) and 12(c) show the relative reduction in the
standard deviation of router loads. This means that there is
a reduction in the effect of bottle-necks in the network. The

10

 0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d
de

vi
at

io
n

-
(d

eg
re

e
10

)

Coverage

Gnutella
ITA

(a) Average degree = 10

 0

 500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d
de

vi
at

io
n

-
(d

eg
re

e
20

)

Coverage

Gnutella
ITA

(b) Average degree = 20

 0

 500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d
de

vi
at

io
n

-
(d

eg
re

e
30

)

Coverage

Gnutella
ITA

(c) Average degree = 30

Fig. 11: Standard deviation of router traffic loads versus the percentage of nodes reached. Router-level

(a) Average degree = 10 (b) Average degree = 20 (c) Average degree = 30

Fig. 12: Ratio of standard deviation reduction. Router-level

0.0+e

2.0+e5

4.0+e5

6.0+e5

8.0+e5

1.0+e6

1.2+e6

1.4+e6

1.6+e6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
r.

 o
f I

P
 m

es
sa

ge
s

-
(d

eg
re

e
10

)

Coverage

Gnutella
ITA

(a) Average degree = 10

0.0+e

2.0+e5

4.0+e5

6.0+e5

8.0+e5

1.0+e6

1.2+e6

1.4+e6

1.6+e6

1.8+e6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
r.

 o
f I

P
 m

es
sa

ge
s

-
(d

eg
re

e
20

)

Coverage

Gnutella
ITA

(b) Average degree = 20

0.0+e

5.0+e5

1.0+e6

1.5+e6

2.0+e6

2.5+e6

3.0+e6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
r.

 o
f I

P
 m

es
sa

ge
s

-
(d

eg
re

e
30

)

Coverage

Gnutella
ITA

(c) Average degree = 30

Fig. 13: IP messages generated by a flood versus the percentage of nodes reached. AS-level

0.0+e

5.0+e3

1.0+e4

1.5+e4

2.0+e4

2.5+e4

3.0+e4

3.5+e4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d
de

vi
at

io
n

-
(d

eg
re

e
10

)

Coverage

Gnutella
ITA

(a) Average degree = 10

0.0+e

5.0+e3

1.0+e4

1.5+e4

2.0+e4

2.5+e4

3.0+e4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d
de

vi
at

io
n

-
(d

eg
re

e
20

)

Coverage

Gnutella
ITA

(b) Average degree = 20

0.0+e

5.0+e2

1.0+e3

1.5+e3

2.0+e3

2.5+e3

3.0+e3

3.5+e3

4.0+e3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d
de

vi
at

io
n

-
(d

eg
re

e
30

)

Coverage

Gnutella
ITA

(c) Average degree = 30

Fig. 14: Standard deviation of router traffic loads versus the percentage of nodes reached. AS-level

11

same experimental results on the AS level are presented in
figures 14(a), 14(b) and 14(c). Finally, we measured the traffic
load for the most heavily used router, whichITA also cuts
down by half.

VI. CONCLUSIONS

We presentedITA algorithm, a novel approach for injecting
topology awareness into unstructured Gnutella-like P2P sys-
tems, while maintaining the self-* properties of the overlay
topologies that are highly desirable in these systems.ITA
reduces to half the time required for a search query to achieve
a particular network coverage compared to the latest version
of the widely deployed Gnutella. Moreover,ITA reduces the
number of IP messages generated during a search query flood
by as much as 25%, which is a significant reduction for ISPs
who care about the load imposed on their routers and its effect
on the performance of other applications. Finally, there isan
additional reduction by approximately by half on the standard
deviation of router loads.

REFERENCES

[1] Cooperative association for internet data analysis,
http://www.caida.org/home.

[2] The internet assigned numbers authority (iana), http://www.iana.org/.
[3] Limewire inc, http://www.limewire.com.
[4] E. Bangeman. Study: Bittorrent sees big growth, limewire still nr.1 p2p

app. ars technica, 2008.
[5] M. M. C. Gkantsidis and A. Saberi. Hybrid search schemes for

unstructured peer-to-peer networks.INFOCOM, 2005.
[6] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Proximity neighbor

selection in tree-based structured peer-to-peer overlays. Technical Report
MSR-TR-2003-52, Harvard, 2003.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized
network coordinate system.SIGCOMM, 2004.

[8] A. Dufour and L. Trajković. Improving gnutella networkperfor-
mance using synthetic coordinates. InQShine ’06: Proceedings of
the 3rd international conference on Quality of service in heterogeneous
wired/wireless networks, page 31, New York, NY, USA, 2006. ACM.

[9] V. C. P. Felber and E. Biersack. Efficient search in unstructured peer-to-
peer networks.Proc. 16th ACM Symposium on Parallelism in Algorithms
and Architectures, 2004.

[10] A. Fisk. Gnutella ultrapeer query routing, v. 0.1. 2003.
[11] T. G. D. Forum. Gnutella 0.6 protocol specification.
[12] H.-C. Hsiao, H. Liao, and C.-C. Huang. Resolving the topology

mismatch problem in unstructured peer-to-peer networks.IEEE Trans-
actions on Parallel and Distributed Systems, 20:1668–1681, 2009.

[13] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local
search mechanism for peer-to-peer networks.Proceedings of the 11th
international conference on Information and knowledge management,
(CIKM02), page 300307, 2002.

[14] B. Krishnamurthy and J. Wang. Topology modeling via cluster graphs.
SIGCOMM Internet Measurement Workshop, 2001.

[15] N. Laoutaris, G. Smaragdakis, A. Bestavros, and J. Byers. Implications
of selfish neighbor selection in overlay networks.IEEE INFOCOM,
2007.

[16] Z. Li and P. Mohapatra. Impact of topology on overlay routing service.
IEEE INFOCOM, 2004.

[17] Y. Liu, H. Zhang, W. Gong, and D. F. Towsley. On the interaction
between overlay routing and underlay routing.IEEE INFOCOM, 2005.

[18] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric.IPTPS02, 2002.

[19] V. Padmanabhan and L. Subramanian. An investigation ofgeographic
mapping techniques for internet hosts.ACM SIGCOMM, 2001.

[20] H. Papadakis, P. Fragopoulou, M. Dikaiakos, A. Labrinidis, and
E. Markatos. Divide et impera: Partitioning unstructured peer-to-peer
systems to improve resource location.Achievements in European Re-
search on Grid Systems CoreGRID Integration Workshop 2006 (Selected
Papers), 2007.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
scalable content-addressable network. InSIGCOMM ’01: Proceedings
of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 161–172, New York, NY,
USA, 2001. ACM.

[22] C. Rohrs. Query routing for the gnutella network. 2001.
[23] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware),
pages 329–350, 2001.

[24] S. Saroiu, K. P.Gummadi, R. J. Dunn, S. D. Gribble, and H.M. Levy.
An analysis of internet content delivery systems.5th Symposium on
Operating Systems Design and Implementation, 2002.

[25] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.
ACM SIGCOMM Internet Measurement Workshop, 2002.

[26] G. Smaragdakis, N. Laoutaris, A. Bestavros, J. W. Byers, and M. Rous-
sopoulos. Egoist: Overlay routing using selfish neighbor selection.
BUCS-TR-2007-013, 2007.

[27] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location
using interest-based locality in peer-to-peer systems.INFOCOM, 2003.

[28] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internetapplications.
Proceedings of the 2001 ACM SIGCOMM Conference, pages 149–160,
2001.

[29] L. Yunhao, X. Li, L. Xiaomei, N. L. M., and Z. Xiaodong. Location
awareness in unstructured peer-to-peer systems.Parallel and Distributed
Systems, IEEE Transactions on, 16(2):163–174, 2005.

[30] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location androuting. Technical
Report UCB/CSD-01-1141, UC Berkeley, 2001.

