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Abstract— A foundational issue underlying many overlay net-
work applications ranging from routing to peer-to-peer file
sharing is that of the network formation, i.e., folding new arrivals
into an existing overlay, and re-wiring to cope with changing
network conditions. Previous work has considered the problem
from two perspectives: devising practical heuristics for the case of
cooperative peers, and performing game theoretic analysis for the
case of selfish peers. In our work, we unify the aforementioned
thrusts by defining and studying the Selfish Neighbor Selection
(SNS) game and its application to overlay routing. At the heart of
SNS stands the restriction that peers are allowed up to a certain
number of neighbors. This makes SNS substantially different
from existing network formation games that impose no bounds
on peer degrees. Having bounded degrees has important practical
consequences as it permits the creation of overlay structures that
require O(n) instead of O(n2) link monitoring overhead.

We show that a node’s “best response” wiring strategy amounts
to solving a k-median problem on asymmetric distance. Best
response wirings have substantial practical utility as they permit
selfish nodes to reap substantial performance benefits when
connecting to overlays of non-selfish nodes. A more intricate
consequence is that even non-selfish nodes can benefit from
the existence of some selfish nodes since the latter, via their
local optimizations, create a highly optimized backbone, upon
which even simple heuristic wirings yield good performance. To
capitalize on the above properties we design, build and deploy,
EGOIST, an SNS-inspired prototype overlay routing system for
PlanetLab. We demonstrate that EGOIST outperforms existing
heuristic overlays on a variety of performance metrics, including
delay, available bandwidth, and node utilization, while it remains
competitive with an optimal, but unscalable full-mesh overlay.

Index Terms— Overlay networks, overlay routing, selfish
neighbor selection, network formation.

I. I NTRODUCTION

Motivation: Overlay networks [3] are used for a variety
of popular applications including routing [4], content distri-
bution [5], [6], peer-to-peer (P2P) file sharing [7], [8] and
streaming [9], [10], [11], data-center applications [12],and on-
line multi-player games [13]. A foundational issue underlying
many such overlay network applications is that of connectivity
management. Connectivity management is called upon when
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having to wire a newcomer into the existing mesh of nodes
(bootstrapping), or when having to rewire the links between
overlay nodes to deal with churn and changing network con-
ditions. Connectivity management is particularly challenging
for overlay networks because overlays often consist of nodes
that are distributed across multiple administrative domains, in
which auditing or enforcing global behavior can be difficultor
impossible. As such, these nodes may act selfishly and deviate
from the default protocol, by utilizing knowledge they have
about the network, to maximize the benefit they receive from
it. Selfish behavior has been reported in studies relating to
selfish (source) routing [14] and free riding [15] in P2P file-
sharing networks. Selfish behavior also has many implications
for connectivity management. In particular, it creates addi-
tional incentives for nodes to rewire, not only for operational
purposes (bootstrapping and substituting nodes that went off-
line), but also for seizing opportunities to incrementallymax-
imize the local connection quality to the overlay. While much
attention has been paid to the harmful downsides of selfish
behavior in different settings [14], [16], [17], the impactof
adopting selfish connectivity management techniques in real
overlay networks has been an open problem [18].
Selfish Neighbor Selection:In a typical overlay network, a
node must select a fixed number (k) of immediate overlay
neighbors for routing traffic. Previous work has considered
this problem from two perspectives: (1) Devisingpractical
heuristicsfor specific applications in real deployments, such as
bootstrapping by choosing thek closest links (e.g., in terms of
TTL or IP prefix distance), or by choosingk random links in a
P2P file-sharing system. Notice here that DHTs like Chord [8]
solve a different problem. They route queries, not data traffic.
The latter is left to a separate subsystem [19] that typically
opens a direct connection to the target host. (2) Providing
abstractions of the underlying fundamental neighbor selection
problem that are analytically tractable, especially via game-
theoretic analysis [20], [21], [22]. To date, however, the bulk
of the work and main results in this area have centered on
strategic games where edges are undirected, access costs are
based on hop-counts, and nodes have potentially unbounded
degrees [20], [23], [21], [24], [22]. While this existing body of
work is extremely helpful for laying a theoretical foundation
and for building intuition, it is not clear how or whether the
guidance provided by this prior work generalizes to situations
of practical interest, in which underlying assumptions in these
prior studies are not satisfied. Another aspect not considered in
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previous work is the consideration of settings in which some
or even most players do not play optimally – a setting which
we believe to be typical. Interesting questions along these
lines include an assessment of the advantage to a player from
employing an optimizing strategy, when most other players
do not, or more broadly, whether employing an optimizing
strategy by a relatively small number of players could be
enough to achieve global efficiency.
Paper Scope and Contributions:In this paper, we formulate
and answer such questions using a combination of modeling,
analysis, and extensive simulations using synthetic and real
datasets. Our starting point is the definition of a network
creation game that is better suited for settings of P2P and
overlay routing applications – settings that necessitate the
relaxation and/or modification of some of the central modeling
assumptions of prior work. In that regard, the central aspects
of our model are bounded degree, directed edges, non-uniform
preference vectors, and representative distance functions.

Our first technical contribution within this model is to
express a node’s “best response” wiring strategy as ak-median
problem on asymmetric distance [25], and use this observation
to obtain pure Nash equilibria through iterative best response
walks via local search. We then experimentally investigatethe
properties of stable wirings using link weights obtained from
PlanetLab and the AS-level topologies maps. Here, we find
that selfish nodes can reap substantial performance benefits
when connecting to overlay networks composed of non-selfish
nodes. On the other hand, in overlays that are dominated by
selfish nodes, the resulting stable wirings are already so highly
optimized that even non-selfish newcomers can extract near-
optimal performance through heuristic wiring strategies.

Motivated by the above positive results, we design, im-
plement, and deploy EGOIST, a prototype overlay routing
network built around best response wiring strategies. EGOIST
serves as a building block for the construction of efficient and
scalable overlay applications consisting of (potentially) selfish
nodes. We first demonstrate through real measurements on
PlanetLab that overlay routing atop EGOIST is significantly
more efficient than systems utilizing common heuristic neigh-
bor selection strategies under multiple performance metrics,
including delay, system load and available bandwidth. Second,
we demonstrate that the performance of EGOIST approaches
that of a (theoretically-optimal) full-mesh topology, while
achieving superior scalability, requiring link announcements
proportional tonk compared ton2 for a full mesh topology.
Our experimental results show that EGOIST remains highly
effective under significant churn and incurs minimal overhead.
Our evaluation includes among others, a case study in which
EGOIST is used for routing the traffic generated by an online
multi-player P2P game.

II. OVERLAY NETWORK MODEL AND DEFINITIONS

Previous work on overlay network creation [20], [23], [21],
[24], [22] has focused on physical telecommunication net-
works and primarily the Internet. Overlay networks are sub-
stantially different [26], [27] which prompts us to consider the
following overlay network model.

A. Overlay Network Model

We start by relaxing and modifying some of the central
modeling assumptions of previous work. In that regard, the
central aspects of our model are:
Bounded Degree: Most protocols used for implementing
overlay routing or content sharing impose hard constraintson
the maximum number of overlay neighbors. For example, in
popular versions of BitTorrent a client may select up to 50
nodes from a neighbors’ list provided by theTracker of a
particular torrent file [28]. In overlay routing systems [29],
the number of immediate nodes has to be kept small so as
to reduce the monitoring and reporting overhead imposed by
the link-state routing protocol implemented at the overlay
layer. Hard constraints on the number of first hop neighbors
are also imposed in most P2P systems to address scalability
issues, up-link fragmentation, and CPU consumption due to
contention [30]. Motivated by these systems, we explicitly
model such hard constraints on node degrees. Notice that in
the prior studies cited above, node degrees wereimplicitly
bounded(as opposed toexplicitly constrained) by virtue of
the trade-off between the additional cost of setting up more
links and the decreased communication distance achieved
through the addition of new links. We also note that some
of these earlier network creation games were proposed in the
context of physical communication networks [20], [23]. In
such networks, the cost of acquiring a link is instrumental
to the design and operation of a critical infrastructure. Such
concerns do not apply in the case of overlay networks such as
those we consider in this paper.
Directed Edges:Another important consideration in the set-
tings we envision for our work relates to link directionality.
Prior models have generally assumed bi-directional (undi-
rected) links [20], [23], [21], [24], [22]. This is an acceptable
assumption that fits naturally with the unbounded node degree
assumption for models that target physical telecommunication
networks because actual wire-line communication links areal-
most exclusively bidirectional. In overlay settings we consider,
this assumption needs to be relaxed since the fact that node
v forwards traffic or requests to nodeu does not mean that
nodeu may also forward traffic or requests tov. Undirected
links are created by the establishment of two directed links.
Non-uniform preference vectors: In our model, we supply
each node with a vector that captures its local preference for
all other destinations. In overlay routing such preferencemay
capture the percentage of locally generated traffic that a node
routes to each destination, and then the aggregation of all
preference vectors would amount to a origin/destination traffic
matrix. In P2P overlays such preference may amount to spec-
ulations from the local node about the quality of, or interest
in, the content held by other nodes. Other considerations may
also include subjective criteria such as the perceived capacity
of the node, its geographic location, or its availability profile.

B. Definitions

Let V = {v1, v2, . . . , vn} denote a set of nodes. As-
sociated with nodevi is a preference vectorpi =
{pi1, pi2, . . . , pii−1, pii+1, . . . , pin}, where pij ∈ [0, 1] de-
notes the preference ofvi for vj , i 6= j:

∑n
j=1,j 6=i pij =

1. Node vi establishes awiring si = {vi1 , vi2 , . . . , viki
}
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by creating links toki other nodes (we will use the terms
link, wire, and edge interchangeably). Edges aredirected
and weighted, thus e = (vi, vj) can only be crossed in the
direction from vi to vj , and has costdij (dji 6= dij in the
general case). LetS = {s1, s2, . . . , sn} denote aglobal wiring
between the nodes ofV and letdS(vi, vj) denote the cost of
a shortest directed path betweenvi and vj over this global
wiring; dS(vi, vj) = M ≫ n if there’s no directed path
connecting the two nodes. If the links are also annotated,
then M ≫ maxi,j dij . For the overlay networks discussed
here, the above definition of cost amounts to the incurred
end-to-end delay when performing shortest-path routing along
the overlay topologyS, whose direct links have weights that
capture the delay of crossing the underlying IP layer path that
goes from the one end of the overlay link to the other. Let
Ci(S) denote the cost ofvi under the global wiringS, defined
as the weighted (by preference) summation of its distances to
all other nodes,i.e., Ci(S) =

∑n
j=1,j 6=i pij · dS(vi, vj).

Definition 1: (The SNS Game) The selfish neighbor selec-
tion game is defined by the tuple〈V, {Si}, {Ci}〉, where:

• V is the set ofn players, which in this case are the nodes.
• {Si} is the set of strategies available to the individual

players.Si is the set of strategies available tovi. Strate-
gies correspond to wirings and, thus, playervi has

(

n−1
ki

)

possible strategiessi ∈ Si.
• {Ci} is the set of cost functions for the individual players.

The cost of playervi under an outcomeS, which in this
case is a global wiring, isCi(S).

The above definition amounts to a local connection [17],
non-cooperative, non-zero sum,n-player game [31]. Let
S−i = S − {si} denote theresidual wiring obtained from
S by taking awayvi’s outgoing links.

Definition 2: (Best Response) Given a residual wiringS−i,
a best response for nodevi is a wiring si ∈ Si such that
Ci(S−i + {si}) ≤ Ci(S−i + {s′i}), ∀s′i 6= si.

Definition 3: (Stable Wiring) A global wiringS is stable iff
it is composed of individual wirings that are best responses.

Therefore stable wirings are pure Nash equilibria of the
SNS game,i.e., they have the property that no node can re-
wire unilaterally and reduce its cost. Fundamentally different
is the work on Selfish Routing [14], [16], in which the network
topology is part of the input to the game, and selfish source
routing is the outcome. In a way, this is the inverse of our
work, in which network-based (shortest-path) routing is an
input of the game, and topology is the outcome.

III. D ERIVING STABLE WIRINGS

A wiring for a nodevi can be defined usingn − 1 binary
unknownsYl, 1 ≤ l ≤ n, l 6= i: Yl = 1 iff vi wires tovl, and
0 otherwise. Define also the binary unknownsXlj : Xlj = 1
iff vi hasvl as a first-hop neighbor on a shortest path tovj . A
best response forvi under residual wiringS−i can be obtained
by solving the following Integer Linear Program (ILP):
Minimize:

Ci(S−i, X) =

n
X

j=1,j 6=i

pij

n
X

l=1,l6=i

Xlj · (dil + dS−i(vl, vj)) (1)

Subject to:
n

X

l=1,l6=i

Xlj = 1, ∀j 6= i and
n

X

l=1,l6=i

Yl = ki andXlj ≤ Yl, ∀l, j 6= i,

(2)

wheredil is the cost of a wire fromvi to vl, anddS−i
(vl, vj)

is the cost of a shortest path fromvl to vj over the wiringS−i.
For the special case where the link costs are identical the best
response of a node is the solution of thek-median problem
on asymmetric distance as we show in the next section. For
general link costs, as we showed in the ILP formulation, the
link cost of a node to connect to other nodes has to be taken
into account.

A. Connections between the SNS game and Facility Location

When all the wires have the same unitary weight, then the
distancesdS are essentially “hop counts”, in which case
there is an interesting relationship between finding a node’s
best response wiring and solving ak-median problem on
asymmetric distance[25], [32]. The latter is defined as follows:

Definition 4: (Asymmetrick-median) Given a set of nodes
V ′, weight’s wj , ∀vj ∈ V ′, and an asymmetric distance
function dS′ (meaning that in generaldS′(v, u) 6= dS′(u, v)),
select up tok nodes to act as medians so as to minimize
C(V ′, k, w), defined as follows:

C(V ′, k, w) =
X

∀vj∈V ′

wj · dS′(vj , m(vj)),

wherem(vj) is the median that is closest tovj .
Proposition 1: The best response of nodevi to S−i under

uniform link weights (dij = 1,∀i, j ∈ V ) can be obtained by
solving an asymmetrick-median problem, in which:

1) V ′ = V − {vi}
2) k = ki

3) wj = pij , vj ∈ V ′

4) dS′(u,w) = dS−i
(w, u), u,w ∈ V ′,

Proof: Let si denotevi’s response toS−i. The resulting
cost will be:

Ci(S−i + {si}) =
X

vj∈V ′

pijdS−i+{si}(vi, vj)

=
X

vj∈V ′

pij(dS−i+{si}(vi, m(vj)) + dS−i+{si}(m(vj), vj))

=
X

vj∈V ′

pijdS−i+{si}(vi, m(vj)) +
X

vj∈V ′

pijdS−i+{si}(m(vj), vj)

=
X

vj∈V ′

pij +
X

vj∈V ′

pijdS−i+{si}(m(vj), vj)

=
X

vj∈V ′

wj +
X

vj∈V ′

wjdS−i(m(vj), vj)

= c +
X

vj∈V ′

wjdS′(vj , m(vj))

(3)
wherec is a constant andm(vj) is vi’s next-hop neighbor on
a shortest path tovj under the global wiringS−i + {si}. The
transition from the third to the fourth line of Equation (3) relies
on the fact that all distances to first hop neighbors are equal
to 1 under hop-count distance. Obtaining the best response
requires minimizingCi(S−i + {si}). Equation (3) shows that
this is equivalent to minimizing

∑

vj∈V ′ wjdS′(vj ,m(vj)),
which is exactly the objective function of the above mentioned
asymmetrick-median problem.

Proposition 1 suggests thatvi’s best response is to wire to
the ki medians of a distance function obtained by reversing
the end-to-end distances of the residual wiringS−i. Since
even the metric version ofk-median is NP-hard [32], so is



4

(a) (b) (c) (d)
 0.8

 0.6
 0.4

 0.2

 0.9

 0.6
 0.4

 0

 15
 20
 25
 30
 35
 40
 45

C(S)

n=15 nodes

STABLE (ILP)
UTOPIANC(S)

β
α

 0.8
 0.6

 0.4
 0.2

 0.9

 0.6
 0.4

 0

 40
 60
 80

 100
 120
 140
 160
 180

C(S)

n=50 nodes

STABLE (ILP)
UTOPIANC(S)

β
α

 0.8
 0.6

 0.4
 0.2

 0.9

 0.6
 0.4

 0

 15
 20
 25
 30
 35
 40
 45

C(S)

n=15 nodes

C(S)

STABLE (ILP)
STABLE (ǫ-ILP)

STABLE (LS)
STABLE (ǫ-LS)

β
α

 0.8
 0.6

 0.4
 0.2

 0.9

 0.6
 0.4

 0

 1
 1.5

 2
 2.5

 3
 3.5

Average Path Length

n=15 nodes

Average Path Length

β
α

Fig. 1. (a) Comparison of the social costC(S) of stable wirings to the cost of a socially optimal (utopian) solution for n = 15. Stable wirings obtained
using exact best (b) same as (a) withn = 50. (c) Comparison of the social cost of stable wirings obtainedby using exact (ILP) and approximate (LS) best
response withρ = 1 and correspondingǫ = 5% versions. (d) Average path length for the stable graph obtained by using exact (ILP) best response.

its asymmetric version, and through Proposition 1 the best
response of the SNS game as well. For the metric version
of the k-median there exist several algorithms that provide
constant-factor approximations (in a polynomial number of
iterations) of an exact solution [33], [34], [35], [36]. These
guarantees do not hold for the asymmetric case. For the
asymmetrick-median, Lin and Vitter [37] have given a bi-
criterion approximation that blows up the number of used
medians by anO(log n) multiplicative factor to provide a cost
that exceeds the optimal one by an additive factor. Archer [25]
has shown that this is the best attainable approximation for
this problem unlessNP ⊆ DTIME(nO(log log n)). Despite
this negative result, simple heuristics likeρ-swapping local
search [35] perform typically very well as we will show later.

B. Stable Wirings through Iterative Best Response

We obtain stable wirings through a simple iterative best
response method in which nodes apply iteratively their best
response until no unilateral improvement can be obtained. In
Section IV we present synthetic results based on hop-count
distance. We take advantage of the connections established
through Proposition 1, and we employ exact (ILP) and approx-
imate (ρ-swapping local search [35]) solutions for the directed
k-median in order to obtain best responses. In Section V
employ the ILP formulation of Section III in order to obtain
best responses in several real topologies.

IV. PERFORMANCEEVALUATION OF STABLE WIRINGS

In this section we assume that establishing a direct overlay
link between any two nodes incurs unit cost and, therefore,
the cost between any pair of nodes equals the number of hops
along any shortest, directed path that connects these nodesat
the overlay layer. Our goal is to evaluate the performance of
stable wirings with respect to two key scaling parameters.

The first parameter,α ∈ [0, 1], reflects the skew in the
popularity of different destinations. The space of possible
combinations of pair-wise preference is large. To quantify
the effect of preference profile on stable wiring performance
we assume that a homogeneous preference profile. We will
relax this assumption by using passive and active network
measurements in Sections V and VII respectively. The pop-
ularity of the ith most popular node isqi = Λ/iα, where
Λ = (

∑n
k=1

1
kα )−1. We construct the preference vectorpi of

nodevi by settingpij = qj/(1 − qi),∀vj ∈ V : vj 6= vi.
The second parameter,β ∈ [0, 1], determines thelink density

of a regular graph, which relates to the fanout (out-degree)of
each node as follows:k =

⌈

nβ
⌉

.

For a given pair(α, β) we obtain the corresponding stable
wiring by using the iterative best response method of Sec-
tion III-B, where the best response amounts to a solution of
a directedk-median problem. Here, it is worthwhile to notice
that different node orderings in the iterative best response
search may lead to different stable wirings.We have found
that different stable wirings perform approximately the same.
We also observed that the stable wirings obtained for the same
value ofβ have similar structure for different values ofα [38].

A. Social Cost of Stable Wirings

To study the quality of stable wirings, we compare their
social cost with that of socially optimal wirings. LetS∗

denote a socially optimal (SO) wiring,i.e., a global wiring
that minimizes thesocial costC(S) =

∑

∀vi∈V Ci(S). Let
SU,i denote theutopian wiring for vi, i.e., the global wiring
that minimizesCi(S) over all possible global wiringsS (this
should not be confused with a best responsesi that minimizes
Ci(S−i +{si}) granted a particular residual wiringS−i). Due
to lack of space, we show how we obtain a lower bound of
the social cost of the above mentioned utopian wiring in [38].

As can be seen for the examples depicted in Figure 1 (a)
and (b), which are representative of a much larger set of
simulations we conducted [38], the gap between the stable
solution and the utopian solution is small, and this result holds
across a wide range of settings forα and β, and for various
values ofn for which simulation was tractable. In terms of
absolute values, the social cost decreases with both the skew
in popularity and link density. In particular, a highly-skewed
popularity profile ensures that shorter paths to the most popular
destinations are realized, whereas higher link densities reduces
the average length of shortest paths, and thus the social cost as
well. Turning our attention on the structure of stable wirings,
we found that popular nodes have high in-degree, but non-
popular nodes may also have high in-degree in order to provide
good global connectivity to the rest of the nodes [38].

Since computing exact best response wirings is NP-hard,
even under hop-count distance, we turn toapproximate best
responsesand correspondingapproximately stable wirings.
For this purpose, we used theρ-swapping Local Search
(LS) heuristics, where each node can replace up toρ of its
neighbors [35], to solve thek-median problem which yields
the best response wiring by virtue of Proposition 1. We also
consideredǫ-stable versions of the problem in which nodes
do not re-wire unless they can reduce their current cost byat
least a multiplicative factorǫ (we combinedǫ-stability with
both exact (ILP) and approximate (LS) best responses). As
evident from Figure 1 (c), we found thatǫ-stable wirings have
similar social costs [38].
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To summarize, stable wirings have performance close to the
socially optimal wirings. Moreover, approximate best response
wirings can be computed fast with LS andǫ approximations.
On a computational note, in the presence of non-uniform
preference profile stable graphs were found within a small
number of iterations. Due to lack of space we provide more
details on the convergence speed and the structure of stable
wirings in [38]. In support to our results, we note that in
a recent work [39], it has been established analytically that
provably existent stable wirings are guaranteed to perform
approximately as well as socially optimal solutions under
uniform node popularity. A similar conclusion is reached in
the next section (albeit experimentally) for the case of non-
uniform popularity. We also find that the average path length
slowly increases withα for a givenβ (see Figure 1 (d)).

B. Constraining the In-degree: A Doubly Constrained Overlay

We next examine the effects of constraining the maximum in-
degree of nodes so that they never have more thanν incoming
links, while maintaining also the constraint on the out-degree.
We can enforce this constraint by including in the definitionof
Ci(S) a large penalty for connecting to nodes that have more
than ν − 1 incoming links. We can define a scaling factorγ
for the in-degree as done previously withβ for the out-degree.

In Figure 2, we fix the out-degree scaling parameter toβ =
0.2, and present the social cost for different values of the in-
degree scaling parameterγ. Low values ofγ increase the social
cost under skewed popularity profiles, as in these cases, the
highly-popular nodes quickly reach their maximum in-degree
and thus, many nodes have to reach them indirectly through
multi-hop paths. Note that without in-degree constraints most
nodes would access them in a single hop by establishing a
direct overlay link to them. Whenγ is low, e.g., γ = 0.2, the
resulting graph looks much like aν-regular graph. With large
values ofγ, i.e., γ approaching 1, the in-degree constraints
become too loose and, thus, the corresponding stable graphs
become similar to their unconstrained counterparts.

V. BEST RESPONSE VS. HEURISTICS INM IXED OVERLAYS

In this section we take a closer look at the performance
benefits from employing best response instead of heuristic
wiring strategies. We also depart from simplistic unit-distance,
the homogeneous preference profile, and the assumption that
all nodes apply the same wiring strategy. With regards to the
preference profile, we let it derive directly from the pair-wise
distance of nodes. We do this by settingpij = 1 in Equation 1.

A. Description and Design Methodology

In Section III, we defined the best response strategy for a
node entering a given network. Now, we consider three other

natural alternatives. LetdX
ij denote the cost associated with

creating a direct overlay link between nodesvi andvj under
a model X for end-to-end IP layer distances. We say that
a “newcomer” nodevi employs ak-Closestwiring strategy
under the modelX when it establishes a wiringsi such that
dX

ij ≤ dX
ij′ for all vj ∈ si, vj′ 6∈ si. We say that a newcomer

nodevi employs ak-Randomwiring strategy when it chooses
a wiring si uniformly at random from the space of all valid
wirings of cardinality ki. A newcomer nodevi employs a
k-Regular wiring strategy if it follows a pre-defined wiring
pattern, based on node identifiers (IDs), like every other node
in the network. Unless otherwise noted, the common wiring
pattern is the one described in Chord [8].

To substantiate the benefits of best response, we consider
the initial graph awaiting a “newcomer” upon its arrival. We
assume that this initial graph has resulted from having its
constituent nodes apply a specific wiring strategy.1 We refer
to an instance of ann node graph for which each of then
nodes employed ak-Closest strategy as ak-Closestgraph, and
attribute similar meanings to ak-Randomgraph, ak-Regular
graph and aBest Response (BR) graph.

B. Description of the Datasets

In this section we describe the IP-layer end-to-end distance
modelsX from which we obtain thedX

ij ’s that are used as
weights for direct overlay links between nodesvi and vj .
Overlay nodes that do not have a direct link communicate
through a shortest-path on the overlay topology. The following
three datasets are used:
BRITE: The first dataset is synthetically generated from the
BRITE topology generator [40] following a Barabási-Albert
model [41] with N=1000 nodes and incremental growth pa-
rameterµ=2. The nodes were placed on the plane according to
a heavy tail model that creates high density clusters. Basedon
the observation that the delay between two nodes in high speed
networks is highly correlated to their physical distance [42],
we assigned weights on the links at the physical layer by
calculating the pairwise Euclidean distance.
PlanetLab: PlanetLab is an overlay testbed network of ap-
proximately700 nodes in more than300 academic, industrial,
and government sites around the world. We used a publicly
available dataset2 containing delays obtained usingpings
between all pairs of PlanetLab sites (inter-site delays aremore
representative than inter-node delays for overlay applications).
AS-level map: As a third dataset, we use the relation-based
AS topology map of the Internet.3 It includes 12779 unique
ASes, of which 1076 are peers (joined by at least one peer-peer
link), and the remaining 11703 are customers. These ASes are
connected through 26387 directed and 1336 undirected links.

C. Comparison of Different Graphs

Using as input the weighted graphs from our three datasets,
we obtained the social costs resulting from applying the
various wiring strategies under consideration, for different

1 To guarantee connectivity, nodes that participate in ak-Random or ak-
Closest graph, donate one link in order to create a ring. We note that a ring
is a feature common to many other overlays, such as the Chord DHT [8].

2 http://ping.ececs.uc.edu/ping
3 http://www.cc.gatech.edu/∼mihail/ASdata.html
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BRITE 1.44 3.61 1.53 1.52 2.31 1.84 1.38 1.50 2.07 1.28 1.11 1.46 1.09 1.03 1.16
PlanetLab 2.23 3.84 1.48 1.75 2.74 1.23 1.37 2.10 1.13 1.09 1.41 1.16 1.04 1.18 1.06
AS-level 2.04 4.78 1.90 1.83 2.86 1.61 1.58 2.37 1.39 1.24 1.10 1.23 1.12 1.12 1.16

TABLE I

SOCIAL COST RATIOS BETWEEN HEURISTIC WIRING STRATEGIES ANDBEST RESPONSE.

values ofβ. The BR graph (resulting from having all nodes
apply the best response wiring strategy) was by far the most
optimized wiring, thus providing a lower-bound for the simpler
k-Random andk-Closest strategies. Table I summarizes our
results by providing the ratios of the social costs of the
heuristic wiring strategies (k-Random,k-Regular,k-Closest)
to that of the BR wiring. These results suggest that the
premium provided by BR is highest for lower link densities
(i.e., whenβ is small). This is an intuitive result since in denser
graphs, there is less of an opportunity for optimization.

The results in this section give us a baseline for the
efficiency of the wirings that result from the adoption by all
nodes in the graph of the same strategy. This sets up the stage
for our next set of questions: Given such an initial wiring, what
is the marginal utility to a newcomer from executing each one
of the three wiring strategies under consideration?

D. The Value of Best Response

Given an initial wiring created by havingn overlay nodes
follow one of our four wiring strategies, we quantify the
benefit to a “newcomer” from choosing its neighbors using one
of the four neighbor selection strategies. Twelve possibilities
exist for applying strategy S1 over a wiring obtained using S2,
where S1 and S2 could bek-Random,k-Closest,k-Regular
or BR. We usec(w) to denote the cost of a newcomer using
wiring strategyw on a pre-existing graph.

In the results presented below, we setn = 50 and evaluate
the performance for200 newcomers on the BRITE and AS
dataset and100 newcomers for the PlanetLab dataset (which
is smaller). Our main results are shown in Figure 3, where each
column corresponds to an underlying graph model, and each
row corresponds to a strategy employed by then newcomers.
Within each plot, we vary the link densityβ along the x-axis,
and plot the cost ratio of the newcomer for a given strategy
versus the cost of the newcomer if it were to use BR.
Connecting to a k-Random Graph: The plots in the top
row of Figure 3 show the case in which the firstn arrivals use
k-Random, and thus the underlying graph is poorly optimized.

With such an initial graph, thek-Random wiring is a poor
choice for the newcomer, as it could lead to significantly
higher costs. This performance gap closes, as one would
expect, whenβ (and thereforek) becomes large. In fact this
trend holds in all cases because finding a closer approximation
to BR is easier when each node has more links — and therefore
ample opportunity to make good connections, even when using
simple strategies. The performance ofk-Regular wiring is
similar to thek-Random one, as IDs are randomly assigned.

Using thek-Closest wiring, on the other hand, turns out to
be a very reasonable choice, as it achieves a cost comparableto
that achieved by BR (typically within 15% low link densities).

This finding suggests that in poorly optimized random graphs,
simply connecting to your nearby neighbors (at low cost), is
a good rule of thumb, especially when edge density is high.
Connecting to ak-Regular Graph: The plots in the second
row of Figure 3 show the case in which the firstn arrivals
usek-Regular, and thus the underlying graph is a structured
one, where each node follows the same wiring pattern. Here
we see again that a BR wiring pays off. The performance
of k-Closest andk-Random improve as the graph becomes
denser.k-Regular turns out to be a the worst choice (the range
on values of newcomer’s cost ratio is now higher). because
structured graphs seem to eliminate the number of shortcuts.
Connecting to ak-Closest Graph: The plots in the third row
of Figure 3 show the case in which the firstn arrivals usek-
Closest, and thus the underlying graph consists mostly of local
edges with few shortcuts. Here we see that it is considerably
more important for newcomers to behave strategically. For
example, on the BRITE topology, usingk-Closest is a poor
choice that perpetuates the lack of shortcuts in the underlying
graph to the point that even usingk-Random ork-Closest turns
out to be a better choice. In the other topologies,k-Closest,k-
Random, andk-Regular are comparable, and the improvement
in quality relative to BR asβ increases is much more modest.

The above suggest that althoughit pays to “cheat”, and
e.g., ping the possible neighbors and connect to thek-Closest
ones, instead ofk random ones as as the other nodes do, if the
other nodes also cheat, then a new node may actually be better
of by sticking to the protocol and getting neighbors randomly.
Connecting to a Stable Graph: Finally, the plots in the
bottom row of Figure 3 show the case in which the firstn
arrivals use BR, and thus the underlying graph ends up being
highly optimized, prior to the arrival of newcomers. In this
case, the graph is so much optimized for the newcomer that
any reasonable strategy might well have good performance.
Surprisingly, while thek-Closest strategy does indeed per-
form well for the newcomer across the three topologies, the
alternative strategies ofk-Random andk-Regular do not. This
seemingly odd result could be explained by noting that given
the very low overall costs between nodes in the optimized
initial graph, the cost to the newcomer from selecting its own
neighbors plays an important role.
General Observation: In conclusion, we find common trends
across the three topologies with respect to strategic neighbor
selection behavior. At the two extremes where the other play-
ers are playing completely at random or completely selfishly
(top and bottom rows, respectively), the underlying graphsare
either too poorly constructed, or too well constructed, foran
uninformed newcomer to be at a significant disadvantage. In
either of these two situations, the myopic strategy ofk-Closest
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Fig. 3. The cost ratio between heuristic wirings and BR wiring for a newcomer node that connects to a pre-existing network of n nodes that was wired
usingk-Random,k-Regular,k-Closest, or BR. We present the 25-, 50-, 75-quartiles for the aforementioned ratios using three different data sets.

is generally competitive to BR, especially under stable graphs.
Picking links at random in these situations however, is unlikely
to work well, unless the graph is already dense (largeβ).

But in the middle regime, in which all the other players
adopt k-Closest the newcomer must be much more careful.
Here, there is much to be gained by the optimal shortcuts
selected in BR, which neitherk-Closest nork-Random typi-
cally selects. Our experimental results suggest thatk-Closest
is one of the worse the possible strategies considered for the
newcomer to adopt in this situation. Strikingly, our results
advocate that thek-Regular is actually the worst of the possible
strategies considered for the newcomer. Structured overlays
seem to reduce to the minimum the number of shortcuts. Due
to lack of space we provide a larger set of experiments in [38].

VI. T HE EGOIST OVERLAY ROUTING SYSTEM

The previous results have shown that no simple heuristic
strategy can keep up with the performance of best response

across the entire range of considered scenarios. What is not
clear, however, is whether it is practical to build overlays
to support best response and how to incorporate additional
metrics other than delay,e.g., bandwidth. It is also unclear
what is the average performance gain when SNS wiring
strategies are used in highly dynamic environments, whether
such overlays are robust against churn, and whether they scale.
We address the questions mentioned above by describing the
design and implementation of EGOIST: an SNS-inspired pro-
totype overlay routing network. EGOIST serves as a building
block for the distributed construction of efficient and resilient
overlays where both individual and social performance is close
to optimal.

A. Basic Design

EGOIST is a distributed system that allows the creation and
maintenance of an overlay network, in which every node
selects and continuously updates itsk overlay neighbors in
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a selfish manner—namely to minimize its (weighted) sum of
distances to all destinations under shortest-path routing. For
ease of presentation, we will assume thatdelay is used to
reflect the cost of a path, noting that other metrics – which
we will discuss later in the Section and which are incorporated
in EGOIST’s implementation – could well be used to account
for cost, including bandwidth and node utilization.

In EGOIST, anewcomeroverlay nodevi connects to the
system by querying abootstrapnode, from which it receives a
list of potentialoverlay neighbors. The newcomer connects to
at least one of these nodes, enabling it to participate in thelink-
state routing protocol running at the overlay layer. As a result,
after some time,vi obtains the full residual graphG−i of the
overlay. By running all-pairs shortest path algorithm4 on G−i,
the newcomer is able to obtain the pair-wise distance (delay)
function dG−i

. In addition to this information, the newcomer
estimatesdij , the weight of a potential direct overlay link
from itself to nodevj , for all vj ∈ V−i. Using the values
of dij and dG−i

, the newcomer connects toG−i using one
of of the wiring strategies discussed in Section V. In our
implementation, each node acts as a server that listens to all
the messages of the link state protocol and propagates them
only to its immediate neighbors. In order to reduce the traffic
in the system, each node propagates only unique messages by
dropping messages that have been received more than once
or have been superseded. There are also two threads, one for
estimatingdij , and one responsible for estimating the new
wiring and propagating the wiring to the immediate neighbors.
In order to minimize the load in the system, a node propagates
its wiring to its immediate neighbors only if this changes.

B. Dealing with Churn

EGOIST’s BR neighbor selection strategy assumes that ex-
isting nodes never leave the overlay. Therefore, even in an
extreme case in which some nodes are reachable through only
a unique path, a node can count on this path always being
in place (re-wirings by other nodes will not tear it down
as this would also disconnect them [39]). Overlay routing
networks (e.g., RON [4]) are not inherently prone to churn
to the extent that file-sharing P2P networks [43], [44] are.
Nonetheless, nodes may occasionally go down, or network
problems may cause transient disconnections until successive
re-wirings establish new paths. One could re-formulate the
BR objective function used by a node to take into account
the churning behavior of other nodes. This, however, requires
modeling of the churn characteristics of various nodes in an
overlay, which is not feasible in large networks [27].

In EGOIST, we follow a different approach reminiscent of
how k-Random andk-Closest strategies ensure overlay con-
nectivity. We introduce a hybrid wiring strategy (HybridBR),
in which each node usesk1 of its k links to selfishly opti-
mize its performance using BR, and “donates” the remaining
k2 = k − k1 links to the system to be used for assuring
basic connectivity under churn. We call this wiring “hybrid”
because, in effect, two wiring strategies are in play – a selfish
BR strategy that aims to maximize local performance and a

4 Given than the graph is sparse, we used the most efficient implementation
of Dijkstra algorithm using Fibonacci heap that requiresO(|E|+|V | log |V |)
amortized time, where|E| is the number of edges in the graph.

selfless strategy that aims to maintain global connectivityby
providing redundant routes.

There are several ways in which a system can use thek2

donated links of each node to build a connectivity backbone.
Young et al. [45] proposed the use ofk Minimum Spanning
Trees (k-MST). Usingk-MST (a centralized construction) to
maintain connectivity is problematic, as it must always be
updated (due to churn and to changes in edge weights over
time), not to mention the overhead and complexities involved
in establishing(k2/2)-MSTs. To avoid these complexities,
EGOIST uses a simpler solution that formsk2/2 bidirectional
cycles. Fork2 = 2, it allows for the creation of a single
bidirectional cycle. For higherk2, the system decidesk2/2
offsetsand then each node connects to the nodes taken by
adding (modulon) its id to each offset. Ifk2 is small (e.g.,
2) then the nodes will need to monitor (e.g., ping) the
backbone links closely so as to quickly identify and restore
disconnections. With higherk2 the monitoring can be more
relaxed due to the existence of alternative routes through other
cycles. Computing BR usingk1 links grantedthe existence of
the k2 links can be achieved by restricting the set candidate
candidate immediate neighbors for swapping.

We have implemented HybridBR in EGOIST. As hinted
above, donated links are monitored aggressively so as to
recover promptly from any disconnections in the connectivity
backbone through the use of frequent heartbeat signaling. On
the other hand, the monitoring and upkeep of the remaining
BR links could be done lazily, namely by measuring link
costs, and recomputing BR wirings at a pace that is convenient
to the node—a pace that reduces probing and computational
overheads without risking global connectivity.

To differentiate between these two types of link monitoring
strategies (aggressive versus lazy), in EGOIST we allow re-
wiring of a dropped link to be performed in one of two
different modes:immediateanddelayed. In immediate mode,
re-wiring is done as soon as it is determined that the link is
dropped, whereas in delayed mode re-wiring is only performed
(if necessary) at the presetwiring epochT . Unless otherwise
specified, we assume a delayed re-wiring mode is in use.

C. Cost Metrics

As alluded earlier, the choice of an appropriate “cost” of
traversing a link depends largely on the application at hand.
In EGOIST we consider the following metrics:
Link and Path Delays: Delays are natural cost metrics for
many applications, including real-time ones. To obtain the
delay cost metric, a node needs to obtain estimates for its
own delay to potential neighbors, and for the delay between
pairs of overlay nodes already in the network. In EGOIST, we
estimate directed (one-way) link delays using two different
methods: an active method based onping, and a passive
method using thepyxida virtual coordinate system [19].
Usingping, one-way delay is estimated to be one half of the
measuredping round-trip-times (RTT) averaged over enough
samples. Clearly, a node is able to measure such a value for all
of its direct (overlay) neighbors, and is also able to relay such
information to any other nodes through the overlay link-state
routing protocol. To estimate the distance to nodes that were
configured not to reply toping, we used application layer
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ping. Usingpyxida, delay estimates are available through
a simple query to thepyxida system. Usingping produces
more accurate estimates, but subjects the overlay to added
load, whereas usingpyxida produces less accurate estimates,
but consumes much less bandwidth.
Node Load: For many overlay applications, it may be the
case that the primary determinant of the cost of a path is the
performance of the nodes along that path—e.g., if traversal
of nodes along the path incur significant overhead due to
(say) context switching and frequent crossing of user/kernel
spaces. Thus, in EGOIST, we allow the use of a variation
of the delay metric in which all outgoing links from a node
are assigned the same cost, which is set to be equal to the
measured load of the node. When applicable, the estimation
of such a metric is straightforward as it requires only local
measurements. In EGOIST, we did this by querying the
CPU load of the local PlanetLab node, and computing an
exponentially-weighted moving average of that load calculated
over a given interval (taken to be1 minute in our experiments
querying theloadavg reports).
Available Bandwidth: Another important cost metric, es-
pecially for content delivery applications, is the available
bandwidth on overlay links. Different available bandwidth
estimation tools have been proposed in the literature [46].
In EGOIST, we usedpathChirp [47], a light-weight, fast
and accurate tool, which fits well with PlanetLab-specific
constraints, namely: it does not impose a high load on Plan-
etLab nodes since it does not require the transmission of long
sequences of packet trains, and it does not exceed the max-
burst limits of Planetlab.pathChirp is an end-to-end active
probing tool, which requires the installation of sender and
receiver pathChirp functionality in each EGOIST node.
The available bandwidth between a pair of nodesv, u ∈ V−i

is given by: AvailBW (v, u) = maxp∈P (v,u) AvailBW (p),
where the available bandwidth for a pathp is given by:
AvailBW (p) = mine∈p AvailBW (e), and P (v, u) denotes
the set of paths that connectsv to u. Thus, findingP ∗(v, u)
that maximizes the available bandwidth betweenv and u,
and the bottleneck edge, is a “Maximum Bottleneck Band-
width” [48] problem which can be solved using a simple
modification of Dijkstra’s algorithm.

VII. PERFORMANCEEVALUATION OF EGOIST

In this section, we present performance results obtained
through measurement of EGOIST. These results allow us to
make comparisons between the neighbor selection strategies
described in Section V for the various cost metrics described
above. At first, we present our results assuming that there is
no node churn. Results showing the impact of node churn on
EGOIST performance are presented in Section VII-B.
Experimental Setting: We deployed EGOIST onn=50 Plan-
etLab nodes (30 in North America, 11 in Europe, 7 in
Asia, 1 in South America, and 1 in Oceania) and collected
performance statistics for more than a year. Each of these
nodes is configured to recompute its wiring every wiring
epochT=60 seconds. EGOIST nodes are not synchronized,
thus on average a re-wiring by some EGOIST node occurs
everyT/n=1.2 seconds. Whether a node ends up re-wiring or
not depends on the neighbor selection strategy. Fork-Random

and k-Regular strategies, and since our baseline experiments
do not feature any node churn, it follows that these strategies
will not exhibit any re-wiring. Fork-Closest, re-wiring would
only be the result of dynamic changes in PlanetLab that result
in changes to the cost metric in use. For BR, a node may
re-wire due to changes in PlanetLab conditions, but may also
re-wire simply as a result of another node’s re-wiring.

To be able to compare the impact of neighbor selection
on the quality of the resulting overlay, throughout this paper
we use therouting cost(for an individual node or averaged
over all nodes) as the main performance metric. For each
experiment, an individual cost metric is calculated for every
one of then=50 nodes in the system. The individual cost
metric for a node reflects the cost of routing from that node
to all other 49 nodes in the system, assuming a uniform
routing preference over all destinations (the preference vector
depends on the value of the metric that is used). For each
experiment we report the mean of alln=50 individual costs,
as well as the95th-percentile confidence interval. To facilitate
comparisons between various neighbor selection strategies,
we often report thenormalized routing cost(and the95th-
percentile confidence interval), which is the ratio of the cost
achievable using a given strategy to that achievable using BR.
Control Variables: In our first set of experiments, our aim is
to identify for the three metrics of interest the payoff (if any)
from adopting a selfish neighbor selection strategy,i.e., using
a BR strategy in EGOIST. This payoff will depend on many
variables. While some of these variables arenot within our
control (e.g., the dynamic nature of the Internet as reflected
by variability in observed PlanetLab conditions), others are
within our control,e.g., n, T , and the various settings for our
active measurement techniques.

One control variable that is particularly important is the
number of direct neighbors,k, that an EGOIST node is
allowed to have. In many ways,k puts a premium on the
significance of making a judicious choice of neighbors. For
small values ofk, choosing the right set of neighbors has the
potential of making a bigger impact on performance, when
compared to the impact for larger values ofk.

In order to neutralize the effect of extrinsic variables that
are not within our control, experiments reporting on different
neighbor selection strategies were conductedconcurrently. To
do so, we deploy concurrent EGOIST agents on each of
the n=50 PlanetLab nodes we use in our experiments, with
each agent using a different selection strategy. In effect,each
experiment compares the performance of asetof concurrently
deployed EGOIST overlay networks, each resulting from the
use of a particular neighbor selection strategy.
Overview of Performance Results:Before presenting specific
performance results, we make two broad observations: first,in
all of our experiments, using a BR strategy in EGOIST con-
sistently yields the best performance. While such an outcome
was anticipated by virtue of findings reported in the previous
Section V-D for a static setting, the results we present here
are significant because they underscore the payoff in areal
deployment, where the modeling assumptions made in prior
work do not hold. Second, in all of our experiments, with the
exception of BR, no single neighbor selection strategy was
consistently better than all others across all metrics. While the
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Fig. 4. Normalized individual costs and 95th-percentile confidence intervals with respect to BR cost, under different metrics, of various neighbor selection
strategies in a 50-node EGOIST overlay.

performance of a given strategy may approach that of BR for
one metric while dominating all other strategies, such strategy
dominance does not hold across all the metrics.
Results for Delay Metric: Figures 4 (a) and (b) show the
performance of the various neighbor selection strategies in
EGOIST normalized with respect to that achievable using
BR when the metric of interest is the overlay path delay
over a range of values fork (using ping and pyxida).
These results show that BR outperforms all the other wiring
strategies, especially whenk is small. Fork=2, the average
delay experienced by an individual node could be anywhere
between 200% and 400%higher than that achievable using
BR. The performance advantage of BR in terms of routing
delay stands, even for a moderate number of neighbors. For
example, fork=5, BR cuts the routing delay almost by half.

These results confirm the superiority of BR relative to
other strategies, but do not give us a feel for how close is
the performance of EGOIST using BR wiring to the “best
possible” performance. To do so, we note that by allowing
nodes to connect to all other nodes in the overlay, we would
be creating a complete overlay graph withO(n2) overlay links,
obviating the need for a neighbor selection strategy. Clearly,
the performance of routing over such a rich overlay network
gives us anupper boundon the achievable performance,
and a lower bound on the delay metric. Thus, to provide a
point of reference for the performance numbers we presented
above, in Figure 4 (a) we also show the performance achieved
by deploying EGOIST and settingk=n-1. Here we should
note that this lower bound on delay is what a system such
as RON [4] would yield, given that routing in RON is
done over shortest paths established over a full mesh, and
assuming that any of theO(n2) overlay links could be used
for routing. These results show that using BR in EGOIST

yields a performance that is quite competitive with RON’s
lower bound. As expected, the difference is most pronounced
for the smallestk we considered—namely, the lowest delay
achievable using 49 overlay links per node is only 30% lower
than that achievable using BR with 2 overlay links per node.
BR is almost indistinguishable from the lower bound for
slightly larger values ofk (e.g., k=4).

With respect to the other heuristics, the results in Figures4
(a) and (b) show thatk-Closest outperformsk-Random whenk
is small, but thatk-Random ends up outperformingk-Closest
for slightly larger values ofk. This can be explained by noting
that k-Random ends up creating graphs with much smaller
diameters than the grid-like graphs resulting from the use of
k-Closest, especially ask gets larger. In all experiments,k-
Regular performed the worst. In [38] we also show that BR
wiring strategy is robust to cheating.
Results for Node Load: Figure 4 (c) shows the results we
obtained using the node load metric, where the path cost is the
sum of the loads of all nodes in the path. These results show
clear delineations, with BR delivering the best performance
over all values ofk, k-Random delivering the second-best
performance, andk-Closest delivering the worst performance
as it fails to predict anything beyond the immediate neighbor,
especially in light of the high load variance in PlanetLab.
Results for Available Bandwidth: Figure 4 (d) shows the
results we obtained using available bandwidth as the cost
metric. Recall that, here, the objective is to get the highest pos-
sibleaggregatebandwidth to all destinations (again, assuming
a uniform preference for all destinations) – thus, larger is
better. These results show trends that are quite similar to those
obtained for the delay metric, with BR outperforming all other
strategies—delivering a two-fold to four-fold improvement
over the other strategies, over a wide range of values ofk.
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Fig. 5. Number of re-wirings in EGOIST.

A. Measurement and Re-wiring Overheads

In this section we show experimentally that EGOIST intro-
duces a small amount of overhead for maintaining the overlay.
Link-State Protocol Load: The overhead (in terms of ad-
ditional injected traffic) imposed by the link-state protocol
is also low. Each node broadcasts a packet with its ID, its
neighbors’ IDs and the cost of the established links to itsk
neighbors everyTa < T . The header and padding of the link-
state protocol messages require a total of192 bits, and the
payload per neighbor requires32 bits. Thus, the overhead in
terms of injected traffic on the overlay is≈ (192+32k)/Ta bps
per node. In our experiments we setTa=20 secs. The above can
be seen as an upper limit, as only unique link state messages
forwarded in the overlay (as mentioned in Section VI-A).
In our implementation, no node spent more than 1 Kbps to
maintain the network.
Re-wirings Overhead: Figure 5 shows the total number of
re-wirings per (one minute) epoch for the entire overlay over
time. The results suggest that the re-wiring rate decreasesfast
as EGOIST reaches a “steady state” and that the re-wiring
rate is minimal for small values ofk. Here we note that ask
increases the re-wiring rate increases, but the improvement
(in terms of routing cost) is marginal, as a small number
of outgoing links is sufficient to significantly decrease the
cost. This is evident in Figure 6 (a). Finally, we also note
that the re-wiring rate can significantly be decreased (with
marginal impact on routing cost) by requiring that re-wiring
be performed only if connecting to the “new” set of neighbors
would improve the local cost to the node by more than a given
thresholdǫ. We refer to this modified version of BR as BR(ǫ).
Figure 6 (b) confirms this by showing the number of re-wirings
and resulting performance whenǫ = 10%. We also measured
the memory and CPU consumption usingtime of Unix. Our
experimental results show that both the CPU and memory
consumption is close to 0%, and the bandwidth consumption
per node is negligible [38]. It is worth mentioning that the
in-degree was quite uniform in all our experiments, thus no
node allocated significantly more CPU power, memory, or
bandwidth than any other in the overlay.

B. Effect of Churn

In the original SNS formulation,the graphs resulting from the
SNS-game as well as from the empirical wiring strategies were
guaranteed to be connected, so they could be compared in
terms of average or maximum distance. Node churn, however,
can lead to disconnected graphs, therefore we have to use

(a)

(b)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2  3  4  5  6  7  8

 50

 40

 30

 20

 10

 1

N
or

m
al

iz
ed

 C
os

t

T
ot

al
 n

um
be

r 
of

 r
e-

w
iri

ng
s 

pe
r 

ep
oc

h

k

Metric: Delay (via ping)
BR cost/cost full mesh

BR re-wirings

 1

 1.2

 1.4

 1.6

 1.8

 2

 2  3  4  5  6  7  8

 6

 4

 2

 1

 0.1

N
or

m
al

iz
ed

 C
os

t

T
ot

al
 n

um
be

r 
of

 r
e-

w
iri

ng
s 

pe
r 

ep
oc

h

k

Metric: Delay (via ping)
BR(0.1) cost/full mesh cost

BR(0.1) re-wirings

Fig. 6. Trade-off between performance and number of re-wirings in EGOIST.

a different metric. For that purpose, we choose theefficiency
metric [49], where the efficiencyǫij between nodei andj (j 6=
i) is inversely proportional to the shortest communication
distancedij when i and j are connected. The efficiencyǫi

of a nodei defined as:ǫi = 1/(n − 1)
∑

j 6=i ǫij . The less is
the cost to reach a node in the network, the higher is the value
of node efficiency. If there is no path in the graph between
node i and j then ǫij = 0, thus a disconnected graph yields
reduction node efficiency.

To evaluate the efficiency of nodes in EGOIST overlays
under churn, we allow each of then=50 nodes in the overlays
to exhibit ON and OFF periods. During its ON periods, a
node “joins” the overlay, performs re-wiring according to
the chosen strategy, and fully participates in the link-state
routing protocol. During its OFF periods, a node simply drops
out from any activity related to the overlay. The ON/OFF
periods we use in our experiments are derived from real data
sets of the churn observed for PlanetLab nodes [43], with
adjustments to the timescale to control the intensity of churn.
In addition to evaluating the efficiency of various neighbor
selection strategies we have considered so far, we also evaluate
the efficiency of HybridBR, which allows a node to donate
k2=2 of its links to ensure connectivity (i.e., boost the overlay
efficiency) while using BR for the remaining links.

Figure 7 (a) shows the achievable efficiency of the various
neighbor selection strategies when churn is present. As before,
the efficiency of the various strategies is normalized with
respect to that achievable using BR, and is shown as a function
of k. As with all the metrics we considered so far, BR
outperforms all other strategies (including HybridBR), but as
EGOIST nodes are allowed to have more neighbors (i.e., as
k increases), the efficiency of the HybridBR approaches that
of BR, with the efficiency ofk-Closest decisively better than
k-Random andk-Regular.

The above results imply that under the level of churn in
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these experiments, it is not justifiable for BR to donate two
of its links simply to ensure connectivity, especially whenk
is small. Notice that BR overlays that get disconnected due
to churn will naturally heal as soon as any of its active nodes
decides to re-wire. This is so because the (infinite) cost of
reaching the disconnected nodes will act as an incentive for
nodes to choose disconnected nodes as direct neighbors, thus
reconnecting the overlay. As noted earlier, re-wiring occurs
every T/n units of time on average, which implies that the
vulnerability of BR to disconnections due to churn is highest
for smaller overlays and if re-wiring is done infrequently.Our
results also showed that adding or removing a node from the
overlay does not increase the number of re-wires in the system.
Under moderate churn, and random selection of a node to add
or delete, the number of re-wirings in the system are similar
to those reported in Section VII-A.

Our last question then is whether at much higher churn
rates, it is the case that the use of HybridBR would be
justified. To answer this question, we changed the timescale
of the ON/OFF churn processes to emulate more frequent
joins and leaves. Figure 7 (b) shows the results by plotting
the efficiency metric for the various strategies as a function
of the churn rate (on the x-axis), which we define (as in
[43]) to be the sum of the fraction of the overlay network
nodes that changed state (ON/OFF), normalized by timeT ,

i.e., Churn = 1/T
X

events i

|Ui−1 ⊖ Ui|

max{|Ui−1|, |Ui|}
, whereUi is the

new set of nodes in the overlay following an eventi that
alters the membership in the set of nodes that participate inthe
overlay, and⊖ is the symmetric set difference. Thus, a churn
rate of 0.01 implies that, on average, 1% of the nodes join or
leave the overlay per second. For an overlay of sizen=50, this
translates to a join or leave event every two seconds.

As expected, when churn rate increases significantly to the

point where the average time between churn events approaches
T/n, the efficiency of HybridBR eventually surpasses that of
BR. The results also suggest that under such conditions, the
efficiency of bothk-Random andk-Regular fall dramatically,
whereas that ofk-Closest remains level with that of BR.

VIII. A PPLICATIONS AND ARTIFACTS

EGOIST is a general purpose overlay routing system that can
be used by applications to supplement traditional IP routing.
To demonstrate its potential value we consider the case of real-
time applications with hard end-to-end requirements and the
case of online multi-player P2P games.
Real-time Applications: In many real-time application,e.g.,
voice conference, a selfish node would strive to minimize the
maximum delay to all the other nodes in the overlay. Given a
residual wiring the best response of a node, henceforth called
min-max BR, is such that the maximum delay to any other
node in the network is minimized. Figure 8 (a) shows the
performance of various neighbor selection strategies in the
50-node EGOIST overlay when normalized with respect to
that achieved by min-max BR. The maximum delay to an
individual node is anywhere between 50% and 350% (in low
link density overlays) higher than that achieved by min-max
BR.

In other real-time applications,e.g., transactions that re-
quire consistency among distributed databases, hard quality-
of-service requirements must be satisfied. The estimation of a
minimum out-degree that is needed to satisfy the application
requirements is hard to be estimated a-priori by the system
designer especially in a highly dynamic environment. A selfish
node would strive to satisfy the application requirement while
keeping its out-degree as small as possible. The best response
of a node, henceforth called variable-degree BR, can be
materialized by a local search heuristic where each node
can swap or incrementally add or drop out-going wirings.
We consider a real-time application where each node has to
communicate with any other node in less than 125 msecs.
We run the application over the 50-node EGOIST overlay
where initially each node selects uniformly at random five
other nodes as neighbors and we setTa=5 seconds. Figure 8
(b) shows the maximum delay in the overlay over time. Within
35 seconds the application requirement is satisfied. It is worth
mentioning that out of the 50 nodes 35 nodes have out-degree
2, 12 nodes have out-degree 3, and three out-degree 5. This
counts up to only 121 links compared to 250 links established
initially. Multiple establishments or drops of wirings maylead
to faster convergence time but it might be unfair for some of
the nodes as we show in a larger set of experiments in [38].
Multi-player P2P Games: We obtained from [13] a trace
containing the movements of 100 players (AI bots) partic-
ipating in a game of Quake III. In Quake III, players are
located in a virtual 3D world and interact frequently as they
come into contact to fight each other by by sending event
updates (packets). We distributed the 100 players among our
25 EGOIST nodes on PlanetLab and used the EGOIST overlay
to deliver the updates. We setk=2 and mapped theL3 distance
of players i and j in the virtual world into the preference
weight pij that defines the preference that the local EGOIST
node ofi has for sending messages to the local EGOIST node
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Fig. 9. Comparison of update latencies for various
neighbor selection strategies.

of j. We replayed the trace, that involved more than108, 000
events, and compared the update latencies when sent over
EGOIST and over heuristic wiring strategies. The cumulative
distribution function of update latencies is illustrated in Fig. 9.
Both the median (∼65 msecs) and the95th-percentile update
latency over EGOIST is less than half of the corresponding
latencies overk-Random andk-Regular, and less than two-
thirds of those overk-Closest. Experimentally, it has been
shown that update latency higher than200 msecs may effect
the quality of user’s experience [13]. More than 90% of
packets sent over EGOIST were delivered earlier than 200
msecs and only 60-70% under the other topologies.
Artifacts: Variations of EGOIST may significantly improve
the performance of popular applications, including multi-path
routing and content search. In multi-path bulk transfers a
selfish node would strive to maximize the set of disjoints
paths to the destination that maximize its up-link capacity. In
multi-path routing for time-sensitive applications,e.g., Voice-
over-IP, a selfish node would strive to maximize the set of
disjoints paths that minimize the loss rate. In the content
search context,e.g., scoped flooding, a selfish node would
strive to maximize the number of similar-profile nodes to
query. All the abovementioned best responses are easily im-
plementable in EGOIST. We implemented them and evaluated
their performance against heuristic wirings. In all the cases
the performance of best response was way higher, especially
for large values of out-degree. In [38] we provide a detailed
presentation of all our experimental results.

Our EGOIST prototype is currently deployed on PlanetLab.
A live demonstration of the overlay routing topology main-
tained by EGOIST and the source code can be accessed from
the project web site athttp://csr.bu.edu/sns/.

IX. RELATED WORK

Selfish neighbor selection for overlay networks was first
mentioned by Feigenbaum and Shenker [18]. Fabrikant et
al. [20] studied an unconstrained undirected version of the
game in which nodes can buy as many links as they want at
a fixed per link priceα. Chun et al. [23] studied experimental
an extended version of the problem in which links prices
need not be the same. The work by Rocha et al. [24] was
in the same spirit. Corbo and Parkes [21] studied bilateral
network formation games. Demaine et al. [22] proved tighter
bounds on the price of anarchy [50] in the aforementioned
games. In practice, however, important constraints on node

degrees, not captured by these models, lead to richer games
with substantively and fundamentally different outcomes.Only
recently Laoutaris et. al [39] studied the fractional bounded
budget connection games and Kintali et al. [51] studied the
complexity of Nash equilibria in such games.

Bindal et al. [28] proposed a locality-enhanced version of
BitTorrent in which onlym out of the totalk neighbors of
a BitTorrent node are allowed to belong to a different ISP.
Although the capacitated selection of neighbors is a central
aspect of this work, their treatment is fundamentally different
from ours in several regards: (i) there’s no contention between
selfish peers, (ii) the minimization objective is on inter-AS
traffic therefore only two levels of communication distance
are modeled, intra and inter-AS (we use finer topological
information that includes exact inter-peer distances), and (iii)
their “reachability” constraint amounts to asking for a similar
level of data availability as the original one under the standard
random neighbor selection mechanism of BitTorrent (we have
fundamentally different reachability constraints, expressed as
general preference functions over the potential overlay neigh-
bors). Smaragdakis et al. [52] proposed neighbor selection
strategies to create optimized graphs for n-way broadcast
applications. Another recent work on neighbor selection is
from Godfrey et al. [43]. It aimed at selecting neighbors in
a way that minimizes the effects of node churn (appearance
of new nodes, graceful leaves and sudden malfunctions), but
unlike our work, it did not focus on the impact of competing
selfish nodes. Aggarwal et al. [53] evaluated ISP-assisted
neighbor selection strategies in P2P systems. The effect of
selfishly constructed overlays to traffic engineering in the
native layer was studied in [54].

X. CONCLUSION

Our work has started with a study of selfish neighbor selection
under strictly enforced neighbor budgets and has come up with
a series of findings with substantial practical value for real
overlay networks. First, we have shown that a best response
(i.e., selfish) selection of neighbors leads to the construction of
overlays with much better performance than those constructed
by simple random and myopic heuristics. The reason is that
by being selfish, nodes embark on a distributed optimization
of the overlay that turns out to be beneficial for all. Secondly,
we have demonstrated through the design, implementation, and
deployment of EGOIST, that it is indeed feasible to apply our
best response wiring in practice and that the obtained benefits
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are actually much larger under dynamic environments where
the simple heuristics lag even more. Finally, we have used our
EGOIST prototype for achieving real-time requirements and
carrying the traffic generated by an online multi-player P2P
game and have verified all our above observations.
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