
Notes On The Design Of An Internet Adversary

David S. H. Rosenthal1, Petros Maniatis2, Mema Roussopoulos3, TJ Giuli4,
and Mary Baker5

1 Stanford University Libraries, Stanford, CA,
2 Intel Research, Berkeley, CA,

3 Computer Science, Harvard University, Cambridge, MA,
4 Computer Science Department, Stanford University, Stanford, CA,

5 HP Labs, Palo Alto, CA

Abstract. The design of the defenses Internet systems can deploy against
attack, especially adaptive and resilient defenses, must start from a real-
istic model of the threat. This requires an assessment of the capabilities
of the adversary. The design typically evolves through a process of sim-
ulating both the system and the adversary. This requires the design and
implementation of a simulated adversary based on the capability assess-
ment. Consensus on the capabilities of a suitable adversary is not evident.
Part of the recent redesign of the protocol used by peers in the LOCKSS
digital preservation system included a conservative assessment of the ad-
versary’s capabilities. We present our assessment and the implications
we drew from it as a step towards a reusable adversary specification.

1 Introduction

The LOCKSS6 (Lots Of Copies Keep Stuff Safe) program has developed and
deployed test versions of a system for preserving access to academic journals
published on the Web. The fundamental problem for any digital preservation
system is that it must be affordable for the long term. To reduce the cost of
ownership, the LOCKSS system uses generic PC hardware, open source software,
and peer-to-peer technology. It is packaged as a “network appliance,” a single-
function box that can be connected to the Internet, configured and left alone
to do its job with minimal monitoring or administration. The system has been
under test at about 50 libraries worldwide since 2000.

Like other Internet hosts, these appliances are continually subject to attack.
Although measures [31] have been taken to render the operating system platform
resistant to attack, its compromise must be anticipated. The appliances cooper-
ate with each other to detect and repair damage in a peer-to-peer network. The
first version [32] of this protocol turned out to be vulnerable to various attacks.
We recently redesigned the protocol [24] to make it more resistant to attack.

The redesign needed as input an assessment of the capabilities and strategies
of the potential adversaries, but we were unable to find this information off-the-
shelf. We present our assessment, and the implications we drew from it, as a
contribution to an eventual reusable adversary specification.

6 LOCKSS is a trademark of Stanford University.



2

2 Adversary Assessment

Military intelligence seeks to develop so-called “appreciations” of a potential ad-
versary’s “capabilities” (what the adversary could do) and “intentions” (what the
adversary is expected to attempt with the capabilities) as a basis for planning [5].
Similarly, plans and techniques for defending distributed systems exposed to the
Internet need an appreciation of the capabilities and intentions of the adversary
they may encounter when deployed.

Our assessment identified the following probable adversary capabilities:

– Unlimited Power
– Unlimited Identities
– Conspiracy
– Eavesdropping and Spoofing
– Exploiting Common Vulnerabilities
– Uncovering Secrets

2.1 Unlimited Power

Techniques [35] have been described by which a worm could compromise a large
proportion of vulnerable Internet hosts in a short time. In practice, even much
less sophisticated techniques [26] have proven capable of compromising large
numbers of hosts quickly, despite widespread knowledge of both the vulnerabil-
ities themselves and their cures for six months prior to the attack [19]. Further:

– Experience with Code Red [27] shows that at least 1/3 of the compromised
hosts remain compromised a month after the start of the attack. Two years
after the attack a pool of 20,000 infected hosts was still available [13].

– Experience with Slapper [28] shows that 1/3 of vulnerable hosts were still
vulnerable 3 months after the vulnerability was announced and 1 month
after the start of the attack.

– Experience with a BIND vulnerability [4] shows that a significant proportion
of professionally maintained systems are still vulnerable two months after the
vulnerability was made public.

– Advertisements are rumored to be appearing that invite spam senders to
rent access to a network of 450K compromised hosts they can use to disguise
the origin of e-mails.

So far, these networks of compromised hosts have been used to mount crude
but effective [18] network-level denial of service attacks. However, it would be a
simple matter for the payload of such a worm to be an application-level attack
targeted at a particular victim system. If the worm were based on a vulnerability
as widespread (350K+ hosts) as the ones Code Red [27] or Blaster (385K+
hosts) [13] exploited, the attacker could expect on the order of 10K machine-
years of computation to be available for the attack on the victim system (30%
of systems compromised for 1 month, 10% for 3 months). This is, for example,
about 35 times the effort used to win the RSA DES Challenge III in 1999 [9].



3

There is a practical difficulty for the adversary hoping to use these pools
of compromised hosts as a resource for attacking a given system. Many other
adversaries with other targets are in competition for the resource, which is not
infinite although it may be large. This difficulty, however, is not a comfort to
the designer of system defenses, whose worst-case analysis must assume that all
available resources may be used for a single-minded attack against his system.

2.2 Unlimited Identities

Given the relative ease by which an adversary can compromise and control a large
number of hosts across the Internet, we must assume that the adversary can pose
as an unlimited number of identities, e.g., IP addresses. The adversary can either
directly use the compromised host’s IP address or make the compromised host
spoof other IP addresses on the same subnet. Even if ingress filtering [7] were
turned on in all routers across the Internet, the cost for a host to spoof an IP
address on the same subnet is negligible.

There is a practical difficulty for the adversary in that he can only steal
identities on subnets in which he maintains a presence, either legitimately or
through compromise. This difficulty is not a comfort to the designer of system
defenses who must assume that the adversary can have a presence in thousands
of subnets spread across the Internet.

The assessment above is not unique to IP addresses. Email addresses, identity
certificates, DNS domains are just as easy for an adversary to hoard or spoof
or both. Techniques for making this more difficult or time-consuming for an
adversary include client puzzles and reverse Turing tests [20], but the adversaries
are adapting to them. For example, it is now rumored that reverse Turing tests
can be forwarded to a service run by porn sites, which exploit their customers
to solve them and return their responses.

2.3 Conspiracy

The Fizzer worm uses IRC [11] to communicate with a central control site. It
would be possible for a worm to use peer-to-peer communication techniques
instead, avoiding the difficulties the Fizzer worm suffered when its IRC channel
was subverted by its enemies [8].

It has to be assumed, therefore, that all the adversary’s identities mask a
single distributed adversary with instantaneous self-awareness. Any state, such
as messages sent, received, or observed by one identity acting on behalf of the
adversary is immediately made available to all other identities.

In addition, it must be assumed that some apparently benign identities are
conspiring with the adversary. Anything known to these “spies,” including sup-
posed secrets such as session keys, is known to the adversary.

It is practically difficult for the adversary to distribute information rapidly
and completely among the components of a distributed system with as many
nodes as there are compromised hosts. This difficulty is not a comfort for the



4

designer of system defenses, who must assume that the adversary can succeed
in getting the critical information to the nodes that need it.

2.4 Eavesdropping and Spoofing

A single compromised host on a subnet can eavesdrop on traffic to and from all
hosts on the same subnet. It can also send spoofed messages on behalf of the
co-located hosts, as well as send messages with spoofed source addresses from
anywhere in the Internet to co-located hosts. By doing so it can often abuse
trust relationships mediated by IP addresses. This behavior is very difficult to
detect and prevent when compromised hosts are not regularly monitored and
maintained.

2.5 Common Vulnerabilities

Even if the design of the system’s defenses is perfect, the designer cannot assume
that their implementation is as perfect. It is likely that, at some point, an ex-
ploitable implementation vulnerability will be discovered. A well-designed flash
worm exploiting it can compromise the vast majority of the vulnerable hosts in
a very short time.

In different contexts including traditional Byzantine Fault Tolerance [3], Dis-
tributed Hash Tables [2] and sampled voting [24] it has been shown that systems
with more than about 1/3 faulty or malign peers cannot survive for long. Given
this, even in fault-tolerant systems, peers need to be assigned at random one
of at least four independent implementations if the system is to survive the
discovery of an implementation vulnerability. Rodrigues et al. [30] describe a
framework within which independent implementations can be accommodated in
a fault-tolerant system.

It is important to note that even a perfectly designed and implemented sys-
tem cannot avoid vulnerabilities brought about by human operators who are
coerced to misbehave. An invulnerable computer system, though unimaginably
hard to build, is certainly easier to imagine than an incorruptible human.

2.6 Uncovering Secrets

Most systems rely on secret-based encryption systems to preserve system in-
tegrity. The assumption is that the adversary does not know and cannot in a
timely fashion obtain any of the secrets.

This is not a robust assumption. A recent survey [29] purported to show that
the vast majority of commuters at a London station would reveal their passwords
if offered a ball-point pen. The adversary may conspire with an insider, he may
be the beneficiary of lax security by insiders such as poor password choice [12],
he may steal authentication tokens, and, given the resources we assume, he may
even use brute-force techniques to break the encryption.

System designers should not treat encryption as a panacea [33]. An individual
analysis is needed of the consequences of compromise of each key in the system,
if only to assess the precautions appropriate for its protection.



5

3 Intentions

We have presented an assessment of some of the putative adversary’s capabili-
ties. We must now assess his possible intentions. What might the adversary be
intending to achieve by exploiting these capabilities?

Our initial attempt classifies possible adversary intentions into five classes:
Stealth, Nuisance, Attrition, Thief, and Spy.

3.1 Stealth

The Stealth adversary’s goal is to damage the system by affecting its state.
A necessary sub-goal is to avoid detection before the damage is complete, for
example to dodge an intrusion detection system.

3.2 Nuisance

The Nuisance adversary’s goal is to discredit the system by continually raising
intrusion alarms. There is no intention to cause any actual damage to the system
or prevent it from functioning. An attack from the Nuisance adversary might,
for example, be intended to get the victim’s system administrators to disable or
ignore the intrusion alarms as a prelude to other forms of attack.

3.3 Attrition

The Attrition adversary’s goal is to prevent the system from functioning for
long enough to inflict damage on the organization it supports. Some forms of
the adversary are referred to as “Denial of Service,” but this has come to mean
a technique rather than a goal.

The Blaster worm was an Attrition attack, attempting to mount a flooding
attack on a Microsoft website from its 385K infected hosts. The MiMail virus is
an Attrition attack against a set of anti-spam services [18].

3.4 Thief

The goal of the Thief adversary is to steal services provided by the system
(possibly over long time periods) or steal valuable information protected by the
system. The Thief is different from the Stealth adversary in that he does not
necessarily want to alter the state of the system, nor does he want to bring the
system down or subvert it. The Thief of services wants unauthorized access to
resources for as long as possible without being detected. The Thief of information
hopes that his intrusion remains undetected for as long as possible.

The Sobig series of viruses [36] is believed to be a Thief who steals ser-
vices from victim machines by using them as a spam-sending network. It is also
thought to be used to mount Attrition attacks on anti-spam services [17].



6

3.5 Spy

The Spy adversary’s goal is to observe as much about the system as possible:
who participates, where users are located, and what transactions take place. The
Spy could be a powerful corporation wanting to harass or prosecute users. The
Spy could also be a government collecting information on the on-line activities
of its citizens.

4 Rules Of Thumb

We summarize these assessments with some conservative “rules of thumb.” The
assumptions underlying them are a worm infecting three times as many hosts as
Code Red, with the bulk of the infection lasting four days, and 10% still infected
after three months. The adversary can:

– exert bursts of computational effort lasting 100 hours and using 1,000,000
hosts,

– sustain computational effort over 100 days using 100,000 hosts,
– masquerade behind 1,000,000 IP addresses,
– eavesdrop on and spoof traffic from 10% of the hosts in the victim system

for 100 days.
– break 100 well-chosen DES keys.

5 Implications

Our adversary is very powerful, posing a number of important implications.
First, it is economically infeasible to test, or even simulate, attacks of this scale.
Assurance that a system does not fail under expected attacks is not likely to be
available or credible. Design should focus on:

– Graceful, or at least survivable, failure.
– Assisting diagnosis, perhaps by using bimodal behaviors [1] to raise alarms.
– Assisting recovery.

Second, the adversary can mount a full-scale attack with no warning. Rate-
limiting techniques [32, 34, 37] are important in slowing the rate of failure enough
to allow for human intervention before failure is total.

Third, the adversary can appear as huge numbers of new peers or clients.
Limiting the rate at which the system accepts new peers or clients using tech-
niques such as “newcomer pays” [10] may help slow the failure.

6 Related Work

Researchers in many different fields have tackled the task of characterizing ma-
licious adversaries. In this section, we outline only a few of the approaches we
have identified in the literature.



7

– Cryptography typically uses game-theoretic analyses to construct sets of
“games” resulting in the adversary behavior observed by benign protocol
participants, and investigate whether those sets contain games with malign
participants.

– Protocol design typically uses exhaustive search of the transitive closure of
the state space of the protocol without explicitly modeling an adversary’s
capabilities or intentions. Finite-state analysis takes the same approach in
an automated fashion, with some notable successes (see, for example, an
automated analysis of authentication protocols [25]).

– Distributed systems theory typically works backwards from a bad state of
the system (e.g., a state in which an exploit has been used to damage the
system) to identify the sequence of events that must have happened to arrive
at that state. The system has to be specified in a suitable formalism (e.g.,
Lamport’s TLA+ [14] or Lynch and Tuttle’s Input/Output Automata [21,
22]), but in some cases it is possible to conduct an invariant analysis without
a full system specification.

– Fault tolerance typically places broad limits on the adversary (e.g., “no more
than 1/3 of the nodes can be malign” in the case of byzantine fault toler-
ance [15]). In other cases, nodes with similar failure modes can be grouped
together into distinct equivalence classes with respect to failures (e.g., in
Malkhi and Reiter’s work on quorum systems [23]). These can be loosely
considered an adversary model.

Previous work on defending systems against attack classifies adversaries as
either “computationally bounded or unbounded” and considers the time interval
over which the adversary collects or modifies state [6]. Although the pool of
vulnerable machines on which an adversary can draw is in fact limited, it is large
enough and the repair rates low enough that the adversary may be considered
effectively unbounded in effort and time.

RFC3607 [16] describes how a worm payload can be used for cryptanalysis,
and identifies the first such payload observed in the wild.

7 Conclusion

We have presented what we believe is a conservative assessment of the putative
adversary the designers of defenses for an Internet system must take into account.
This adversary is based on reasonable extrapolations from the observed behavior
of worms exploiting vulnerabilities in applications and systems that are widely
deployed on the Internet, and on the assumption that the payload of such worms
might be targeted at the system under consideration. We believe that discussion
of this and alternative adversary assessments leading to some consensus as a
basis for future designs would be valuable.

Our adversary is powerful enough to pose design, implementation and test-
ing problems well beyond those current technology can solve. It appears that
designing systems to survive attacks of this magnitude unimpaired is unlikely



8

to succeed. Further, even if the design appeared to succeed, testing implementa-
tions to assure that success was manifest in practice is unlikely to be affordable.
A more reasonable goal may be to slow and delay the process of failure under
attack to allow for human intervention.

8 Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. 9907296, however any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

The LOCKSS program is grateful for support from the National Science
Foundation, the Andrew W. Mellon Foundation, Sun Microsystems Laboratories,
and Stanford Libraries.

Vicky Reich has made the LOCKSS program possible.

References

1. Kenneth Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. Bimodal Multicast. ACM Transactions on Computer Systems,
17(2):41–88, 1999.

2. Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S.
Wallach. Secure Routing for Structured Peer-to-Peer Overlay Networks. In Pro-
ceedings of the 5th Usenix Symposium on Operating Systems Design and Imple-
mentation (OSDI 2002), pages 299–314, Boston, MA, USA, December 2002.

3. Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design and Implementation
(OSDI 1999), pages 173–186, New Orleans, LA, USA, February 1999. USENIX
Association.

4. CNN. Men & Mice Research on BIND Security. http://www.cnn.com/2001/TECH/
internet/03/02/lax.on.DNS.idg/index.html.

5. Department of the Army. AR 530-1 Operations Security. Headquarters, Wash-
ington, DC, USA, October 1985. Available at http://www.fas.org/irp/doddir/

army/ar530-1.htm.

6. Roger Dingledine. The Free Haven Project: Design and Deployment of an Anony-
mous Secure Data Haven, Master’s thesis, MIT, Jun 2000.

7. Paul Ferguson and Daniel Senie. Network Ingress Filtering: Defeating Denial of
Service Attacks which employ IP Source Address Spoofing RFC 2267, January
1998.

8. Fizzer Task Force. Press Release 18 May 2003. http://www.irc-unity.org/.

9. Electronic Frontier Foundation. RSA Code-Breaking Contest Again Won by Dis-
tributed.Net and Electronic Frontier Foundation. http://www.eff.org/Privacy/
Crypto_misc/DESCracker/HTML/19990119_deschallenge3.html.

10. Eric J. Friedman and Paul Resnick. The Social Costs of Cheap Pseudonyms.
Journal of Economics and Management Strategy, 10(2):173–199, Summer 2001.

11. Tyrel L. Haveman. About Fizzer. http://www.debugoutput.com/fizzer/about.



9

12. Daniel V. Klein. ”Foiling the cracker”: A survey of, and improvements to, password
security. In Proc. of the USENIX UNIX Security Workshop, pages 5–14, Portland,
OR, USA, August 1990.

13. Brian Krebs. Microsoft gets help from flaw in worm. http://www.washingtonpost.
com/wp-dyn/articles/A589-2003Aug15.html, August 2003.

14. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, July 2002.

15. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems, 4(3):382–
401, July 1982.

16. Marcus Leech. RFC3607: Chinese Lottery Cryptanalysis Revisited: The Inter-
net as a Codebreaking Tool. ftp://ftp.rfc-editor.org/in-notes/rfc3607.txt,
September 2003.

17. John Leyden. Sobig linked to DDoS attacks on anti-spam sites. http://www.

theregister.co.uk/content/56/33059.html, September 2003.
18. Steve Linford. Press Release. http://www.spamhaus.org/news.lasso?article=

13, November 2003.
19. David Litchfield. Unauthenticated Remote Compromise in MS SQL Server 2000.

http://www.nextgenss.com/advisories/mssql-udp.txt, July 2002.
20. Luis von Ahn, Manuel Blum, and John Langford. Telling Humans and Computers

Apart (automatically). Communications of the ACM, 2003. to appear.
21. Nancy Lynch and Mark Tuttle. An Introduction to Input/Output automata. CWI-

Quarterly, 2(3):219–246, September 1989.
22. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, CA,

USA, 1996.
23. Dahlia Malkhi and Michael Reiter. Byzantine Quorum Systems. The Journal of

Distributed Computing, 11(4):203–213, October 1998.
24. Petros Maniatis, Mema Roussopoulos, TJ Giuli, David S. H. Rosenthal, Mary

Baker, and Yanto Muliadi. Preserving Peer Replicas By Rate-Limited Sampled
Voting. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pages 44–59, Bolton Landing, NY, USA, October 2003.

25. John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated Analysis of Crypto-
graphic Protocols Using Murφ. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 141–153, Oakland, CA, USA, 1997.

26. David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
and Nicholas Weaver. The Spread of the Sapphire/Slammer Worm. http://www.

caida.org/outreach/papers/2003/sapphire/.
27. David Moore, Colleen Shannon, and Jeffery Brown. Code-Red: a case study on

the spread and victims of an Internet worm. In Internet Measurement Workshop,
Marseille, France, September 2002.

28. Eric Rescorla. Security Holes... Who cares? In Proceedings of the 12th USENIX
Security Symposium, pages 75–90, Washington, DC, USA, August 2003.

29. Tim Richardson. Give your password to complete strangers? No problem... http:
//www.theregister.co.uk/content/archive/24812.html, April 2002.

30. Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using Abstraction
to Improve Fault Tolerance. In Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles, pages 15–28, Chateau Lake Louise, Banff, AB,
Canada, October 2001.

31. David S. H. Rosenthal. A Digital Preservation Network Appliance Based on
OpenBSD. In Proceedings of BSDcon 2003, San Mateo, CA, USA, September
2003.



10

32. David S. H. Rosenthal and Vicky Reich. Permanent Web Publishing. In Proceedings
of the USENIX Annual Technical Conference, Freenix Track (Freenix 2000), pages
129–140, San Diego, CA, USA, June 2000.

33. David S. H. Rosenthal and Mark Seiden. Is There An Alternative To Long-Term
Secrets? In Workshop on Adaptive Defense of Computer Networks, Santa Fe, NM,
November 2002.

34. Anil Somayaji and Stephanie Forrest. Automated Response Using System-Call
Delays. In Proceedings of 9th Usenix Security Symposium, August 2000.

35. Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the Internet in
Your Spare Time. In Proceedings of the 11th USENIX Security Symposium, pages
149–167, San Francisco, CA, USA, August 2002.

36. Bob Sullivan. Sobig spam-virus still spreading. http://www.msnbc.com/news/

931205.asp?cp1=1, June 2003.
37. Matthew Williamson. Throttling Viruses: Restricting Propagation to Defeat Ma-

licious Mobile Code. In Proceedings of the 18th Annual Computer Security Appli-
cations Conference, Las Vegas, Nevada, USA, December 2002.


