
Cubetree: Organization of and Bulk Incremental Updates on the

Data Cube

Nick Roussopoulos

Department of Computer Science

and

Institute of Advanced Computer Studies

University of Maryland

nick@cs.umd.edu

Yannis Kotidis

Department of Computer Science

University of Maryland

kotidis@cs.umd.edu

Mema Roussopoulos

Department of Computer Science

Stanford University

mema@cs.stanford.edu

Abstract

The data cube is an aggregate operator which has been
shown to be very powerful for On Line Analytical Processing
(OLAP) in the context of data warehousing. It is, however,
very expensive to compute, access, and maintain. In this
paper we de�ne the \cubetree" as a storage abstraction of
the cube and realize it using packed R-trees for most e�-
cient cube queries. We then reduce the problem of creation
and maintenance of the cube to sorting and bulk incremen-
tal merge-packing of cubetrees. This merge-pack has been
implemented to use separate storage for writing the updated
cubetrees, therefore allowing cube queries to continue even
during maintenance. Finally, we characterize the size of the
delta increment for achieving good bulk update schedules
for the cube. The paper includes experiments with various
data sets measuring query and bulk update performance.

1 Introduction

On Line Analytical Processing (OLAP) and data mining
are recently receiving considerable attention in the context
of data warehousing. Businesses and organizations believe
that OLAP is critical in decision making. The data cube
[GBLP96] and the urry of papers generated in less than
a year from its publication is an indisputable testimony to
that e�ect.

In technical terms, the cube is a redundant multidimen-
sional projection of a relation. It computes all possible
groupby SQL operators and aggregates their results into a
N-dimensional space for answering OLAP queries. These
aggregates are then stored in derived summary tables or
multidimensional arrays whose size can be estimated using
mathematical tools [SDNR96]. Because these aggregates are
typically very large, indexing, which adds to their redun-
dancy, is necessary to speed up queries on them.

There is direct tradeo� between redundancy and perfor-
mance and a rather typical optimization strategy is for a
given amount of storage, �nd the best selection of summary
tables and indexes which maximizes query performance [Rou82,
GHRU97]. However, another, and yet even more important

optimization seems to be that of clustering of the storage
maintaining the aggregates. Because of the high-dimensionality
space, data clustering within these redundant structures has
far more impact on the performance of the queries than their
individual sizes. For example, a collection of B-trees on ag-
gregate summary tables, not only waste a lot of storage,
but also perform badly on a multidimensional range queries.
Thus, an \optimal selection" from a menu of inadequate
structures may not be even close to optimal after all.

The last, but perhaps the most critical issue in data
warehouse environments, is the time to generate and/or re-
fresh these aggregate projections. Typically, the mere size
of the raw and derived data does not permit frequent re-
computation. Optimization techniques proposed in [HRU96,
AAD+96] deal only with the initial computation of the cube
and capitalize on the reduction of repetitive intra-cube com-
putation, but have not been adapted for incremental refresh
of the cube. Creating a new cube every time an update in-
crement is obtained is not only wasteful, but, may require a
maintenance window that leaves no time for OLAP.

In the �rst part of this paper, we de�ne the cubetree
as a storage abstraction of the cube and argue for a com-
pact representation for it using packed R-trees [RL85]. We
then project the cubetree into reduced dimensionality cube-
trees which decrease storage and signi�cantly improve query
overall performance. We develop algorithms for allocating
each cube query to the projected cubetree that gives good
clustering and for selecting good sort order within each cu-
betree. Several experiments with query measurements are
presented.

In the second part of the paper, we argue that mainte-
nance of the cube should be considered as a bulk incremental
update operation and that record-at-a-time updates or full
re-computation are not viable solutions. We then reduce
the incremental refresh problem to sorting the update in-
crement and merge-packing the cubetrees. Rewriting the
cubetrees into fresh storage permits the use of the old cube-
trees during maintenance and, thus, eliminates query down
time. Then, based on the rewrite cost, we show how to ob-
tain good refresh schedules for amortizing maintenance cost.
Experiments and time measurements are provided for two
data sets as they grow to realistic data warehouse sizes.

2 Cubetree: An Extended Datacube Model

Consider the relation R(A,B,C,Q) where A,B, and C are the
grouping attributes that we would like to compute the cube
for the measure attribute Q. We represent the grouping at-
tributes A,B, and C on the three axes of AxBxC and then

1

map each tuple T(a,b,c,q) of R using the values a,b,c for
coordinates and the value q as the content of the data point
T(a,b,c), see Figure 1. We now project all the data points
on all subspaces of AxBxC and aggregate their content1.
A projection on a subspace SK with dimension K <= N ,
where N is the number of grouping attributes, represents
the groupby of all those attributes that correspond to SK .
The aggregate values of SK are stored in the intersection
points between SK and the orthogonal (N-K)-d hyperplanes
that correspond to the remaining dimensions not included in
SK. For example, the projection planes P1,P2,... parallel to
plane BxC shown in Figure 2, correspond to groupby(A) and
their aggregated values are stored in the content of their in-
tersection point with axis A. Figure 3 shows the projections
that correspond to the groupby(A,B) as lines perpendicular
to the AxB plane and the content of their intersection with
AxB stores the aggregated values of all data points lying on
these lines.

A

C

B

O

(3,0,0)

(4,0,0)

(5,0,0)
(6,0,0)

(7,0,0)

P1

P2

P3

P4

P5

P6

Figure 2: groupby(A) projections

A

C

B

Figure 3: groupby(A,B) projections

The original relation can be similarly projected to the
origin O(0,0,...,0) with its content storing the value that
corresponds to an aggregate obtained by no grouping at

1We assume that each domain of R has been extended to include
a special value on which we do the projections. Furthermore, the
content of each projection can hold a collection of values computed
by multiple aggregate functions such as sum, count, average, etc.
discussed in [GBLP96].

all- groupby(none). We call this the Extended Datacube
Model, (EDM) because it permits us to visualize the rela-
tion data and its cube in a unifying representation. In EDM,
we map cube and relational queries into multi-dimensional
range queries and, therefore, draw from a rich knowledge
of indexing and query processing techniques. For example,
a query to �nd all the groupby(A) values for A between 3
and 6 would be formulated as a range query [(3; 0; 0) < A <

(6; 0; 0)] shown by the bold-dashed line SQ in Figure 4. If
now we would like to �nd out the percent contribution of
C=9 to these groupby(A) values, we obtain the intersection
points of line C=9 with planes P1, P2, etc. and the content
of them is divided by the corresponding aggregates on A.

We now proceed to realize the EDM. Clearly, any or a
combination of relational, 1-dimensional or multi-dimensional
storage structures can be used to realize the EDM. For ex-
ample, the whole EDM can be realized by just a conventional
relational storage with no indexing capability for the cube.
Another possibility, would be to realize EDM by an R-tree,
[Gut84], or a combination of relational structures, R-trees
and B-trees [BM72]. Since most of the indexing techniques
are hierarchical, without loss of generality, we assume that
the EDM is a tree-like (forest-like) structure that we refer
to as the cubetree of R. Clearly, the performance and the
amortized maintenance cost of the underlying structures of
a cubetree have to be evaluated under queries and updates.
We will show that query performance mainly depends on the
clustering of the data and projection points of EDM. This
is the subject of the next subsection.

2.1 Packed R-trees for Improving Datacube Clustering

Random record-at-a-time insertions are not only very slow
because of the continuous reorganization of the space but
also destroy data clustering in all multidimensional indexing
schemes. Packed R-trees, introduced in [RL85], avoid these
problems by

� sorting �rst the objects in some desirable order

� bulk loading the R-tree from the sorted �le and packing
the nodes to capacity

This sort-pack method achieves excellent clustering and sig-
ni�cantly reduces the overlap and dead space (i.e. space
that contains no data points). This space reduction has an
even more signi�cant performance improvement when com-
pared to the normally obtained R-trees. The sorting keys,
i.e., primary, secondary, etc., used in sort-pack can be cho-
sen from LowX, LowY, or LowX & LowY, etc., or from
values computed by space �lling curves such as Hilbert or
Peano [KF93]. The selected order determines the bias of the
clustering. For example, in some cases, space �lling curves
achieve good clustering for the relation data points, but de-
stroy cube range queries because they scatter all the projec-
tion points. Therefore, we will only consider sorts based on
LowX & LowY, etc., but not space �lling curves.

A single N-dimensional packed R-tree used for the rep-
resentation of the cube can only provide \good" clustering
for half of the 2N � 1 groupbys. This is true because when
packing the R-tree, the points of each groupby that does
not contain the least signi�cant sorting key would have its
values interleaved with points of groupbys that do contain
that attribute.

To illustrate how performance is a�ected by order, we
computed the full cube of a sample relation with 3 grouping
attributes A,B and C, and 2 million tuples. We synthesized

2

A

C

B

(0,b,c,q)
(a,0,c,q)

(a,0,0,q)

(a,b,0,q)

O(0,0,0,q)

(0,0,c,q)

(o,b,0,q)

T(a,b,c,q)

Figure 1: Extended Datacube Model: A tuple T(a,b,c,q) and its groupby projections

A

C

B

O

(3,0,0)

(4,0,0)

(5,0,0)
(6,0,0)

(0,0,9)

SQ

P1

P2

P3

P4

Figure 4: Querying the Cube

the relation to have a fully symmetric cube by having exactly
the same distinct values for the attributes. The points were
sort-packed in an R-tree using the order A!B!C , A as
the primary key, B the secondary, etc. Then we generated
two sets of 200 random queries each. The �rst set contains
2-d range queries for testing clustering of the points that
correspond to the AB, AC and AB groupbys. The second
set contains 1-d range queries for testing clustering of points
of A, B, and C groupbys. Table 1 shows the performance
of each groupby on a cubetree packed as a single R-tree.
The slow-down ratio column denotes the ratio of the time
spent for this groupby over the minimum time obtained by
any groupby on equal number of dimensions. For example,
range queries on AB performed 5.52 times slower than BC

while those on AC were only 1.32. As can be seen, the
obtained clustering is good for only half of the groupbys.

The degradation is due to the strong interleaving be-
tween the points of these groupbys with the rest of the points
stored in the leaves of the R-tree. The A!B!C sort order
places points of AC, BC and C clustered along at least one
dimension, C. For example for a given value of attribute B,
all groupby(BC) projections are stored in adjacent positions.
On the contrary the points of groupby(A) are totally dis-

groupby absolute-time slow-down ratio

AB 3.81 5.52
AC 0.91 1.32
BC 0.69 1

A 2.56 125
B 0.98 9.8
C 0.10 1

Table 1: Retrieval times in secs for the full cube for a 32MB
fully symmetric relation

persed in the sense that for every pair of consecutive points
(a1; 0; 0) and (a2; 0; 0) of that groupby, all points of AB, AC
and ABC that have A = a1 are interleaved between them.
We will refer to such groupbys as dispersed groupbys.

De�nition 1 A groupby g is dispersed with respect to a
given sort order, if no adjacent points belonging to this groupby,
can be found in the sorted list of all projections.

3

Given this de�nition we can formalize the 50% law as
follows: For any given sort order of the attributes, a packed
R-tree will have 50% of the groupbys dispersed.

2.2 The Dataless and the Reduced Cubetrees

In this subsection we now seek to improve the 50% law and
obtain good performance for more groupby queries.

In [HRU96] the cube operator was de�ned as a lattice in
the attribute space, shown in Figure 6. Every node in the
lattice represents a groupby some attributes. Consider now
the EDM cubetree minus the relation data points. We call
this tree the dataless cubetree of R and it corresponds to just
the aggregated cube values. Since all groupby projections
are included, it can answer all cube aggregate queries as the
original cubetree. In this dataless cubetree all the space be-
tween the axes, planes, hyperplanes is empty and only N
of these (N-1)-d hyperplanes hold the projection (groupby)
points of the cubetree. Packing the dataless cubetree results
in a better clustering than that of the full cubetree because
the relation data points are not interleaved with the pro-
jection points. Note that for the dataless case the 50% law
is modi�ed to: the number of dispersed groupbys is 50%
minus 1.

We now observe that, although better than the full cu-
betree, the dataless cubetree still covers the dead space be-
tween the axes. Since each of these N hyperplanes is perpen-
dicular to every other one, we can independently sort-pack
the projection points in N distinct R-trees, one for each of
the (N-1)-d hyperplanes. We call these N (N-1)-d cubetrees
the reduced cubetrees and we will refer to them by the name
of their corresponding nodes in the cube lattice. For exam-
ple, for the space AxBxC, the planes AB, AC and BC are
sort-packed into three distinct reduced cubetrees.

AllocateLattice:

set Gi = g1;i; i = 1 : : :N
for level l = 2 to n
for each groupby g at level l
�nd Gi j Gi compatible with g

and complement(Gi)=min
if found
set Gi Gi [fgg
update complement(Gi)

else
assign g to any of Gi that
includes all the attributes of g

Figure 5: AllocateLattice: Partitions the cube lattice into
N reduced cubetrees

This mapping to lower dimension decreases the total
storage requirements (i.e. the total storage of the reduced
cubetrees is less than that of the dataless cubetree), and
improves clustering. It also has a signi�cant improvement
on the query performance and will be demonstrated in the
forthcoming experiments.

Having reduced the dimensionality, we then need to de-
cide which of the reduced cubetrees will be used in answering
each groupby query. Some notation is needed here. Let L
denote the cube lattice and gi;j the j

th node of level i. We
de�ne the complement g of a groupby g for a given attribute
space as the set of grouping attributes that do not appear
in that groupby. For example in AxBxC, AB = C and A =

BC. The complement of a set of groupbys fg1; g2 : : : ; gmg is
the union of the complements of each groupby that appears

in the set. For example, in AxBxCxDxF , fAB;BFg =
CDF [ACD = ACDF . Two groupbys are said to be
compatible if each of them is not a subset of the comple-
ment of the other. For example, in AxBxCxDxF , ABD
and DF are compatible because ABD 6� DF = ABC and
DF 6� ABD = CF . A groupby is compatible with a set of
groupbys if it is not a subset of the complement of that set2.
For instance, in AxBxC, AC is not compatible with the set

fAB;BCg because fAB;BCg = AC.
It is not hard to see that if a set of groupbys are compat-

ible, there exists a sort order that guarantees no dispersed
groupbys. This is because these groupbys will have at least
one common attribute and, therefore, any order that has as
the least signi�cant key that attribute will guarantee that
none of them will be dispersed. This means that some de-
gree of clustering for each of the groupbys is feasible when
sort-packing them in a cubetree. fABC;BC;AC;Cg is an
example of such a set. We saw that there exist sort orders
that o�er good clustering among at least one dimension for
both AC and BC, see Table 1. On the other hand, in a non-
compatible set like fABC;AB;AC;BCg any possible order
will favor at most two of AB, AC and BC.

We now return to the problem of answering groupby
queries using the reduced cubetrees. Let Gj =g1;j, j=1,...,N
be the N sets containing the groupbys of the �rst level re-
alized by a separate cubetree. We would like to allocate
the remaining nodes of L into these sets in such a way that
all groupby members of each set are compatible with each
other. This partitioning problem does not always succeed.
This is simply because the number of nodes in the lattice
is growing exponentially with the number of dimensions N,
2N � 1, whereas the number of reduced cubetrees we map

L is N. Note that there are N2N�N�1 candidate allocations
of L into N sets. Even though a good allocation has to be
obtained once and for all, an exhaustive search for N=8 has
to examine 8247 di�erent possibilities. Therefore, exhaustive
search is not an option.

For the purpose of this research, we developed a simple
greedy algorithm that works well for realistic values of N, up
to 20. The algorithm AllocateLattice shown in Figure 5
allocates the nodes of the lattice to the N reduced cubetrees
in such a way that

� avoids dispersed groupbys

� balances the number of nodes allocated to the cube-
trees (query load balancing)

The �rst goal is achieved by allocating a node to a set
only if the groupby is compatible with that set. At every
step of the algorithm, there can be more than one candidate
sets. In these cases, the algorithm assigns the node to that
set whose complement has the smaller number of attributes
(minimum complement rule). As more and more groupbys
are allocated to a set, this set's complement gets bigger and
bigger forbidding more and more non-compatible nodes to
be included. The minimum complement rule delays the dis-
covery of non-compatible sets and balances the sets. If no
set with compatible groupbys is found, the algorithm simply
assigns the groupby to the �rst cubetree that includes all the
attributes of the groupby. We refer to such an allocation as
false allocation.

2The groupby(none) is de�ned compatible to any set.

4

ABC

C B A

BC AC AB

Level 0

Level 3

Level 2

Level 1

none

Figure 6: The Datacube Lattice

Table 2 shows the output of the algorithm for 4 and
5 grouping attributes. Notice that in the �rst case the algo-
rithm returns an all compatible partitioning, i.e with no false
allocations. For �ve grouping attributes the algorithm fails
to �nd a compatible set for groupby C. An alternative par-
titioning, with no false allocations, was manually obtained
and is shown in the same table.

groupby partitions

AllocateLattice fBCD,CD,Dg,fACD,AD,AC,Ag,
output (4) fABD,BD,AB,Bg,fABC,BC,Cg

fBCDE,CDE,DE,CE,E,Cg,
fACDE,ADE,ACE,AE,AD,AC,Ag,

AllocateLattice fABDE,BDE,ABE,ABD,AB,Bg,
output (5) fABCE,BCE,ABC,BE,BCg

fABCD,BCD,ACD,CD,BD,Dg
fBCDE,CDE,DE,CE,BE,Eg,
fACDE,ADE,ACE,AE,AD,Ag,

Compatible fABDE,BDE,ABE,ABD,AB,Bg,
solution (5) fABCE,BCE,ABC,BC,AC,Cg,

fABCD,BCD,ACD,CD,BD,Dg

Table 2: Groupby partitions for 4 and 5 grouping attributes

A false allocation means that the values of this particular
groupby will be interleaved with points from the rest of the
set, thus this groupby will be dispersed. We saw that from
the dataless cubetree 50% of the groupbys will be dispersed.
The false allocations measures exactly the same clustering
degree. Table 3 shows the number of dispersed groupbys
for the dataless and reduced cubetrees. The numbers of the
third column are derived from the algorithm.

dispersed groupbys

N dataless reduced
3 2 0
4 6 0
5 14 1
6 30 1
7 62 3
8 126 3

Table 3: False allocations in the dataless vs reduced cube-
trees

The last step in organizing the cubetrees is to �nd a good
sort order within each one of them. Consider for example

the case of a 2-d space AxB. If we sort in the order B!A,
i.e. using B as the primary key and A as the secondary
one, packing will cluster the A-axis values in consecutive
leaves in the packed R-tree thus providing faster response
for groupby(A) queries than those for groupby(B). There-
fore, based on some cardinality and weight factors from the
application, we can select the better order.

However, the selection of the sort order is less obvious
when dealing with more dimensions. Consider again the
AxBxC case and the ABC, AC, AB and A groupbys. If we
want to favor groupby(A) points, we would push back A in
the sort order. This will cluster values of A in consecutive
leaf nodes. Then, we have to decide between B!C!A and
C!B!A. In B!C!A, the AC plane is split in slices along
the A axis that are packed together while the points of AB
are also sliced along the same direction but they are not as
packed as before because they are interleaved with points
from ABC as shown in Figure 7.

It follows, that a framework is needed in order to analyze
such cases. Given a set of groupbys G to be supported by
a single cubetree, we need an algorithm for getting a good
sort-pack order. The following parameters characterize this
problem:

� the cardinality (or at least an approximation [SDNR96])
of each g 2 G, denoted as card(g)

� the probability that a query will use each g 2 G, de-
noted as prob(g)

Given these parameters, the following algorithm will se-
lect a good sort-pack order:

SelectSortOrder:

reset a counter for each attribute appearing in G
for every groupby g 2 G
for every grouping attribute in g
increase the corresponding counter by the value :
w1*card(g)+w2*prob(g)

sort counters from lower values to higher

Figure 8: Sort order selection for a set of groupbys

The weight constants w1 and w2 can be tuned by an ad-
ministrator to emphasize either the cardinalities or the prob-
abilities of the groupbys. With the given cardinalities of each
attribute shown in Table 4 and for w2 equal to 0, the algo-
rithm computes the counters shown in the rightmost column
and determines the order B!C!A for fABC;AB;AC;Ag.

5

abab...ab abcabc...abcacacacacacac.........acaaaaaaaa........a abab...ab abcabc...abc

B=C=0 B=0 A*B*C=0A*B=0
C=0

A*B=0
C=0

A*B*C=0 A*B*C=0

A AC AB & ABC

abcabc...abc

Figure 7: Groupby placement on the leaves of the Packed R-tree

attribute distinct values counter

A 100 1280100
B 50 1255000
C 250 1275000

Table 4: Selecting the sort-pack order within a cubetree:
B!C!A

2.3 Performance Tests of the Cubetrees on Range Queries

In order to validate our performance expectations, we imple-
mented the cubetrees and the bulk incremental update al-
gorithms on top of an R-tree query engine and its libraries3.
We then performed several experiments with di�erent datasets
and sizes. All tests in this section and next were run on
a single 21064/275MHz Alpha processor of an Alphaserver
2100A under Digital Unix 3.2. All experiments assume that
all range queries on the cube must be supported.

The �rst dataset we used is inspired from the decision-
support benchmark TPC-D [Gra93]. For our experiments,
a subset of the attributes of the TPC-D schema was used.
This dataset models a business warehouse with three group-
ing attributes customer, supplier, and part. The measure
attribute sales is aggregated using the sum function. Each
tuple of the relation is 20 bytes and the distinct values for
customer, supplier and part are respectively 100,000,10,000,
and 200,000. In order to make the dataset more realistic,
we imposed to each attribute the 80-20 Self-Similar distri-
bution (h = 0:2) described in [GSE+94]. We incremen-
tally computed the cube for 6 di�erent sizes of this dataset:
32,64,96,128,160 and 800MB.

For packing the cube into a dataless cubetree, we used
the sort order obtained by the SelectSortOrder algorithm
assuming equal query probabilities for all groupbys. Then
the reduced cubetrees (supplier,part), (customer,part) and
(customer,supplier) were selected and the groupbys were al-
located to the appropriate one using the AllocateLattice

algorithm. Finally, the order for each of the reduced cu-
betrees was obtained, by the SelectSortOrder algorithm.
The result of these algorithms are shown in Table 5.

A total of 600 random range queries (100 per groupby)
was generated. For each attribute, a random point was cho-
sen and then a range query was constructed starting from
that point and covering up to 5% of the attribute space.

For each groupby all 100 range queries were run in a
batch mode. To make the comparison objective, we main-
tained the cubetrees of all data set sizes, i.e. 1 dataless and
3 reduced for each data set, for a total of 2.4GB of cube-
trees, and we ran the queries in a cyclic way so that each
groupby batch starts a cold tree. This minimizes the e�ects
of OS bu�ering.

3The software was provided to us courtesy of ACT Inc.

Organization Sets and groupby allocation Obtained Sort Order

Dataless f(customer,supplier,part) supplier! customer! part
Cubetree (supplier,part) (customer,part)

(customer,supplier) (part)
(supplier) (customer)g

Reduced f(supplier,part) (part)g supplier! part
Cubetrees f(customer,part) (customer)g part! customer

f(customer,supplier)(supplier)g customer! supplier

Table 5: Sets of groupbys and sorting order for the dataless
and reduced cubetrees

Figure 9 depicts the average response time per query for
relation size ranging from 32 up to 160MB. The response
time of the dataless cubetree ranges between .4 and 1.4 sec-
onds but for the reduced cubetrees all range queries averaged
below .38 of a second. The output of each query varied in
size, depending on the cardinalities of the groupbys, the re-
lation size and the actual query, but on the average 1536
tuples were returned over all queries.

While the performance of both cubetrees is impressive,
the reduced cubetrees outperform the dataless one by an or-
der of magnitude. This comes as a result of the dimensional-
ity reduction and the much better clustering obtained. Be-
cause of the 50% law, we expected that the dataless cubetree
will provide good clustering for four out of the six groupbys.
Having the points packed in supplier ! customer ! part

order causes groupby(supplier) and groupby(customer) to
be dispersed. This can be observed in Figure 10 which de-
picts the total time for all 100 range queries and every com-
bination of grouping attributes for the 128MB relation. As
can be seen, the reduced cubetrees behave much better in
all cases, but exceptionally better for the groupby(supplier)
for which the respective total times are 171.51 and 0.43 sec-
onds for all 100 range queries. This huge di�erence is ex-
plained by the order customer ! supplier chosen for the
reduced cubetree (customer,supplier) which packs together
in its leftmost leaves all the aggregate values for supplier.

Note that in addition to the time performance improve-
ment, the total storage is reduced from 220MB for the data-
less to 183MB for all three reduced cubetrees, a 17% savings.

In order to test how the reduced cubetrees scale up with
larger input sizes, we computed the cube also for 800MB of
data for the same TPC-D-like relation. Figure 11 shows the
total time of the 100 range queries on the reduced cubetrees
for two sizes of the relation, 128MB and 800MB. We point
out again that even for the 800MB size, most of the queries
average less than one second. It can also be observed that
the single groupbys are totally una�ected by the input size.
This is due to the fact that the projection points on the axes
are already saturated even at the 128MB, and, therefore, the
number of points returned by the one attribute groupbys are
exactly the same4, see Figure 12. On the other hand, range
queries for groupbys on two attributes took longer for the

4This number is proportional to the distinct values of the attribute.

6

0

0.2

0.4

0.6

0.8 1

1.2

1.4

1.6

40
60

80
100

120
140

160

Average time in secs per query

relation size in M
B

S
ingle C

ubetree
N

 C
ubetrees

F
ig
u
re

9
:
A
v
era

g
e
q
u
ery

resp
o
n
se

tim
e
fo
r
d
a
ta
less

a
n
d
red

u
ced

cu
b
etrees

A
B

A
C

B
C

A
B

C

G
roupby

0 20 40 60 80

100

120

140

160

180

Total time in secs for 100 queries

R
educed cubetrees

D
ataless cubetree

F
ig
u
re

1
0
:
T
o
ta
l
T
im

e
fo
r
1
0
0
q
u
eries

fo
r
d
a
ta
-

less
a
n
d
red

u
ced

cu
b
etrees:

rela
tio

n
size

1
2
8
M
B
,

A
co
rresp

o
n
d
s
to

cu
sto

m
er,

B
to

su
p
p
lier

a
n
d
C

to
p
a
rt

A
B

A
C

B
C

A
B

C

G
ro

u
p

b
y

0 5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

Total time in secs for 100 queries

1
2

8
M

B

8
0

0
M

B

F
ig
u
re

1
1
:
S
ca
la
b
ility

o
f
red

u
ced

cu
b
etrees:

T
o
-

ta
l
tim

e
fo
r
1
0
0
ra
n
g
e
q
u
eries

a
n
d
rela

tio
n
sizes

1
2
8
&
8
0
0
M
B

A
B

A
C

B
C

A
B

C

G
roupby

0

100,000

200,000

300,000

400,000

500,000

600,000

Tuples returned for all 100 queries

128M
B

800M
B

F
ig
u
re

1
2
:
T
u
p
les

retu
rn
ed

p
er

g
ro
u
p
b
y
in

th
e

sca
la
b
ility

test

8
0
0
M
B
d
a
ta
set

b
eca

u
se

th
eir

co
rresp

o
n
d
in
g
p
la
n
es

w
ere

n
o
t

sa
tu
ra
ted

a
t
1
2
8
M
B
a
n
d
,
th
erefo

re,
a
lo
t
m
o
re

p
o
in
ts

w
ere

retu
rn
ed

w
h
en

th
e
size

b
eca

m
e
8
0
0
M
B
.

In
o
rd
er

to
see

h
o
w
th
e
cu
b
etrees

b
eh
av
e
in

fo
u
r
d
im
en
-

sio
n
s,
w
e
g
en
era

ted
a
1
8
0
M
B
d
a
ta
set

co
n
ta
in
in
g
u
n
ifo
rm

ly
d
istrib

u
ted

va
lu
es

fo
r
fo
u
r
g
ro
u
p
in
g
a
ttrib

u
tes:

s
t
a
t
e
(d
is-

tin
ct

v
a
lu
es

5
0
),
a
g
e
n
c
y
(1
0
0
),
d
a
t
e
(3
6
5
),
a
n
d
s
u
p
p
l
ie
r

(1
0
0
0
)
a
n
d
a
�
fth

m
ea
su
re

a
ttrib

u
te

q
u
a
n
t
it
y
.
W
e
th
en

g
en
era

ted
a
seco

n
d
set

o
f
q
u
eries,

cov
erin

g
u
p
to

2
0
%

o
f
th
e

to
ta
l
ra
n
g
e
fo
r
ea
ch

d
im

en
sio

n
.
F
ig
u
re

1
3
sh
o
w
s
th
e
to
ta
l

tim
e
ta
k
en

fo
r
a
ll
1
0
0
q
u
eries

fo
r
ea
ch

o
f
th
e
fo
u
rteen

g
ro
u
p
-

b
y
s.

T
h
e
red

u
c
ed

cu
b
etrees

o
u
tp
erfo

rm
ed

th
e
d
a
ta
less

b
y

a
fa
cto

r
o
f
tw
o
h
a
v
in
g
a
n
a
v
era

g
e
resp

o
n
se

tim
e
o
f
.1

sec-
o
n
d
s.

T
h
e
a
v
era

g
e
n
u
m
b
er

o
f
tu
p
les

retu
rn
ed

b
y
a
q
u
ery

in
th
ese

ex
p
e
rim

en
ts

w
a
s
4
6
8
.
T
h
e
in
d
ex

sizes
w
ere

fo
r
th
e

d
a
ta
less

4
7
2
M
B

a
n
d
fo
r
th
e
red

u
ced

cu
b
etrees

3
8
8
M
B
,
a
n

1
8
%

sa
v
in
g
s.

T
h
e
co
n
clu

sio
n
th
a
t
ca
n
b
e
d
raw

n
fro

m
th
ese

ex
p
eri-

m
en
ts
is
th
a
t
th
e
d
a
ta
less

cu
b
etree

ca
n
b
e
e�

cien
t
o
n
so
m
e

o
f
th
e
g
ro
u
p
b
y
s
w
h
ile

th
e
red

u
ced

ca
n
b
e
ev
en

m
o
re

e�
-

cien
t
o
n
m
a
n
y
m
o
re.

F
u
rth

erm
o
re,

red
u
ced

cu
b
etrees

sca
le

u
p
q
u
ite

n
icely

w
ith

th
e
size

o
f
th
e
d
a
ta
set.

3
B
u
lk

U
p
d
a
tin

g
th
e
C
u
b
e
tre

e
s

P
erh

a
p
s
th
e
m
o
st

critica
l
issu

e
in

d
a
ta

w
a
reh

o
u
se

en
v
iro

n
-

m
en
ts
is
th
e
tim

e
to

g
en
era

te
a
n
d
/
o
r
refresh

its
d
eriv

ed
d
a
ta

fro
m

th
e
raw

d
a
ta
.
T
h
e
m
ere

size
o
f
th
em

d
o
es

n
o
t
p
erm

it
freq

u
en
t
re-co

m
p
u
ta
tio

n
.
C
rea

tin
g
a
n
ew

cu
b
e
ev
ery

tim
e

a
n
u
p
d
a
te

in
crem

en
t
is
o
b
ta
in
ed

is
n
o
t
o
n
ly

w
a
stefu

l
b
u
t,
it

m
ay

req
u
ire

a
w
in
d
o
w
th
a
t
leav

es
n
o
tim

e
fo
r
O
L
A
P
.
T
h
is
is

esp
ecia

lly
critica

l
b
eca

u
se

th
e
o
�
-lin

e
w
in
d
o
w
fo
r
co
m
p
u
tin

g
th
e
cu
b
e
a
n
d
its

in
d
ex
es

h
a
s
sh
ra
n
k
d
u
e
to

th
e
in
tern

a
tio

n
a
l

o
p
era

tio
n
s
o
f
th
e
o
rg
a
n
iza

tio
n
s.
R
eg
a
rd
less

to
w
h
a
t
m
eth

o
d

is
em

p
lo
y
ed

to
rea

lize
th
e
cu
b
etree,

crea
tio

n
a
n
d
m
a
in
te-

n
a
n
ce

h
av
e
to

b
e
co
n
sid

ered
a
s
bu
lk
in
crem

en
ta
l
o
pera

tio
n
s.

T
h
is
in
clu

d
es
th
e
crea

tio
n
a
n
d
m
a
in
ten

a
n
ce

o
f
a
ll
su
p
p
o
rtin

g
in
d
ex
es.

T
w
o
p
o
stu

la
tes

a
re

m
a
d
e:

7

A
B

C
A

B
D

A
C

D
B

C
D

A
B

A
C

A
D

B
C

B
D

C
D

A
B

C
D

G
ro

u
p

b
y

0

1
0

2
0

3
0

4
0

5
0

6
0

Total time in secs for 100 queries

R
e

d
u

c
e

d
 c

u
b

e
tre

e
s

D
a

ta
le

s
s
 c

u
b

e
tre

e

F
ig
u
re

1
3
:
Q
u
eries

resp
o
n
se

tim
e
fo
r
th
e
4
d
im

en
sio

n
a
l
cu
b
e

�
reco

rd
-lev

el
g
ra
n
u
la
rity

o
p
era

tio
n
s
o
n
th
e
cu
b
e
a
n
d
its

in
d
ex
in
g
a
re

to
o
ex
p
en
siv

e
a
n
d
d
estroy

a
n
y
g
o
o
d
clu

s-
te
rin

g
th
a
t
m
ay

o
th
erw

ise
b
e
o
b
ta
in
ed
.

�
b
u
lk

in
crem

en
ta
l
u
p
d
a
te

is
th
e
o
n
ly

v
ia
b
le

so
lu
tio

n
;

reg
a
rd
less

o
f
th
e
sto

ra
g
e
stru

ctu
res

o
f
th
e
cu
b
etree,

crea
tio

n
w
o
u
ld

a
t
lea

st
req

u
ire

o
n
e
o
r
m
o
re

so
rts

o
f

th
e
d
a
ta
.

A
t
th
e
fa
stest

rep
o
rted

so
rt

ra
te

o
f
1
G
B

p
er

m
in
u
te

o
n
th
e
a
lp
h
a
so
rt

m
a
ch
in
e
[N
B
C
+
9
4
],
re-

co
m
p
u
ta
tio

n
o
f
th
e
cu
b
e
fo
r
a
d
a
ta

co
llectio

n
ra
te

o
f

1
0
G
B
a
d
a
y
w
o
u
ld

req
u
ire

ro
u
g
h
ly

o
n
e
d
ay

to
so
rt

4
m
o
n
th

d
a
ta

co
llectio

n
.

T
h
e
p
ro
p
o
sed

bu
lk

in
crem

en
ta
l
u
pd
a
te

co
m
p
u
ta
tio

n
is

sp
lit

in
to

a
so
rt

p
h
a
se

w
h
ere

a
n
u
p
d
a
te

in
crem

en
t
d
R
fro

m
o
f
th
e
rela

tio
n
R

is
so
rted

,
a
n
d
a
m
erge-pa

ck
p
h
a
se

w
h
ere

th
e
o
ld

cu
b
etree

is
p
a
ck
ed

to
g
eth

er
w
ith

th
e
u
p
d
a
tes:

c
u
be
tr
e
e
(R
[
d
R
)
=
m
e
r
g
e
�
p
a
c
k
(c
u
be
tr
e
e(R

);
s
o
r
t�
p
a
c
k
(d
R
))

S
o
rtin

g
co
u
ld

b
e
th
e
d
o
m
in
a
n
t
co
st

fa
cto

r
in

th
e
a
b
ov
e

in
crem

en
ta
l
co
m
p
u
ta
tio

n
,
b
u
t
it
ca
n
b
e
p
a
ra
llelized

a
n
d
/
o
r

co
n
�
n
ed

to
a
q
u
a
n
tity

th
a
t
ca
n
b
e
co
n
tro

lled
b
y
a
p
p
ro
p
ria

te
sch

ed
u
les

fo
r
refresh

in
g
th
e
cu
b
e.

N
o
te
th
a
t
d
R
co
n
ta
in
s
a
n
y

co
m
b
in
a
tio

n
o
f
rela

tio
n
in
sertio

n
s,
d
eletio

n
s,
a
n
d
u
p
d
a
tes.

F
o
r
th
e
cu
b
e,
th
ey

a
re

a
ll
eq
u
iva

len
t
b
eca

u
se

th
ey

a
ll
co
rre-

sp
o
n
d
to

a
w
rite

o
f
a
ll
p
ro
jectio

n
p
o
in
ts

w
ith

th
eir

co
n
ten

t
a
d
ju
sted

b
y
a
p
p
ro
p
ria

te
a
rith

m
etic

ex
p
ressio

n
s.

W
e
im

p
lem

en
ted

th
e
b
u
lk
in
crem

en
ta
l
u
p
d
a
te
a
s
d
ep
icted

in
F
ig
u
re

1
4
.
F
o
r
ea
ch

red
u
ced

cu
b
etree,

a
b
u
�
er

is
m
a
in
-

ta
in
ed

in
m
a
in

m
em

o
ry

to
h
o
ld

ev
ery

p
ro
jectio

n
a
ssig

n
ed

to
th
a
t
cu
b
etree

fro
m

th
e
A
llo
ca
teL

a
ttice

a
lg
o
rith

m
.
T
h
e

in
p
u
t
�
le
co
n
ta
in
in
g
th
e
in
co
m
in
g
u
p
d
a
tes

d
R

is
p
ro
cessed

a
n
d
fo
r
e
a
ch

tu
p
le
in

d
R

a
ll
p
o
ssib

le
p
ro
jectio

n
s
a
re

g
en
er-

a
ted

a
n
d
sto

red
in

th
e
a
p
p
ro
p
ria

te
b
u
�
ers.

H
a
sh
in
g
is
u
sed

w
ith

in
ea
ch

b
u
�
er

to
k
eep

th
e
ru
n
p
a
rtia

lly
so
rted

to
sp
eed

u
p
so
rtin

g
.
W
h
en
ev
er

a
b
u
�
er

g
ets

fu
ll,

its
co
n
ten

t
is
so
rted

u
sin

g
q
u
ic
kso

rt
a
n
d
is
w
ritten

to
d
isk

fo
r
th
e
m
erg

e.
W
h
en

a
ll
u
p
d
a
tes

fro
m

d
R

h
av
e
b
een

p
ro
cessed

,
th
e
m
erg

e-p
a
ck

p
h
a
se

b
eg
in
s
a
n
d
fo
r
ev
ery

red
u
ced

cu
b
etree

th
e
n
ew

ly
g
en
-

era
ted

ru
n
s
a
re

m
erg

ed
a
n
d
p
a
ck
ed

w
ith

th
e
o
ld

v
ersio

n
o
f

th
a
t
cu
b
etree.

T
h
e
o
ld

cu
b
etree

is
ju
st

a
n
o
th
er

in
p
u
t
ru
n

fo
r
th
e
m
erg

e-p
a
ck

p
h
a
se.

T
h
e
rew

rite
co
st
o
f
m
erg

e-p
a
ck

d
ep
en
d
s
o
n
h
o
w
fa
st
th
e

R
-trees

ca
n
b
e
p
a
ck
ed
.
S
o
m
e
co
d
e
o
p
tim

iza
tio

n
h
a
s
b
een

d
o
n
e
a
n
d
so
m
e
m
o
re

co
u
ld

b
e
d
o
n
e
to

sp
eed

u
p
th
is
p
ro
-

cess.
H
ow

ev
er,

th
e
d
eta

ils
o
f
th
e
im
p
lem

en
ta
tio

n
a
n
d
its

ex
ten

sio
n
s
a
re

b
ey
o
n
d
th
e
sco

p
e
o
f
th
is
p
a
p
er.

3
.1

A
m
o
rtiz

in
g
th
e
c
o
st

o
f
b
u
lk

in
c
re
m
e
n
ta
l
u
p
d
a
te
s

In
th
is
sectio

n
w
e
d
iscu

ss
sch

ed
u
les

fo
r
o
p
tim

izin
g
b
u
lk

in
-

crem
en
ta
l
u
p
d
a
tes

b
y
selectin

g
a
p
p
ro
p
ria

te
sizes

fo
r
d
R
th
a
t

k
eep

s
th
e
m
a
in
ten

a
n
ce

co
st

lo
w
.
T
h
e
fo
llow

in
g
ca
n
b
e
o
b
-

serv
ed
:

�
w
ith

ea
ch

b
u
lk
in
crem

en
ta
l
u
p
d
a
te
itera

tio
n
,
th
e
g
ro
w
th

ra
tes

o
f
th
e
cu
b
etrees

sh
rin

k
a
n
d
,
ev
en
tu
a
lly,

b
eco

m
e

zero
.
A
t
th
a
t
p
o
in
t
th
e
cu
b
e
a
n
d
its

cu
b
etrees

a
re

sa
t-

u
ra
ted

a
n
d
a
ll
p
ro
jectio

n
s
fa
ll
o
n
ex
istin

g
p
ro
jectio

n
p
o
in
ts.

A
fter

sa
tu
ra
tio

n
,
th
e
m
erg

e-p
a
ck

co
st

o
f
rea

d
-

in
g
th
e
o
ld
cu
b
etrees

a
n
d
rew

ritin
g
th
e
n
ew

is
co
n
sta

n
t.

F
o
r
so
m
e
o
f
th
e
d
a
ta
sets

w
ith

rela
tiv

ely
sm

a
ll
ca
rd
i-

n
a
lities,

th
e
sa
tu
ra
tio

n
p
o
in
t
m
a
y
b
e
rea

ch
ed

q
u
ick

ly
a
n
d
th
e
size

o
f
th
e
cu
b
etrees

m
a
y
co
n
trib

u
te

a
sm

a
ll

fra
ctio

n
o
f
th
e
to
ta
l
u
p
d
a
te

co
st.

In
so
m
e
o
th
ers,

th
e

sa
tu
ra
tio

n
p
o
in
t
m
ay

n
ev
er

b
e
rea

ch
ed

a
n
d
th
e
size

o
f

th
e
cu
b
e
m
a
y
co
n
tin

u
e
to

g
row

w
ith

d
eclin

in
g
ra
tes.

�
th
e
va
lu
e
d
istrib

u
tio

n
s
w
ith

in
th
e
d
a
ta
sets

m
a
y
a
�
ect

th
e
sp
eed

fo
r
a
p
p
ro
a
ch
in
g
sa
tu
ra
tio

n
.
F
o
r
ex
a
m
p
le,

if
a
n
in
d
ep
en
d
en
t
8
0
-2
0
d
istrib

u
tio

n
is

o
b
serv

ed
o
n

ea
ch

o
f
th
e
th
ree

a
ttrib

u
tes,

th
e
ra
te

o
f
g
row

th
o
f
th
e

cu
b
e
size

w
o
u
ld

b
e
a
b
o
u
t
h
a
lf
o
f
th
e
co
rresp

o
n
d
in
g

u
n
ifo
rm

d
istrib

u
tio

n
h
av
in
g
th
e
sa
m
e
a
ttrib

u
te

ca
rd
i-

n
a
lities.

T
h
is
is
tru

e
b
eca

u
se

th
e
p
ro
b
a
b
ility

o
f
in
sert-

in
g
n
ew

p
ro
jectio

n
p
o
in
ts

o
u
tsid

e
th
e
sk
ew

ed
a
rea

is
1
-.8
x
.8
x
.8
=
.4
8
8
a
s
o
p
p
o
sed

to
o
n
e.

�
th
e
size

o
f
d
R

ca
n
b
e
ch
o
sen

a
p
p
ro
p
ria

tely
to

co
n
tro

l
th
e
d
u
ra
tio

n
o
f
th
e
so
rt(d

R
)
p
h
a
se.

T
h
is

p
h
a
se

ca
n

a
lso

b
e
sh
o
rten

b
y
p
a
rtitio

n
in
g
d
R
a
n
d
u
tilizin

g
p
a
ra
l-

lel
p
ro
cessin

g
.
In

th
a
t
ca
se,

so
rt(d

R
)
refers

to
so
rtin

g
th
e
la
rg
est

p
a
rtitio

n
.

�
th
e
m
erg

e-p
a
ck

step
ca
n
w
rite

th
e
n
ew

m
erg

ed
cu
b
e-

tree
�
les

in
to

a
n
ew

sto
ra
g
e
a
rea

lea
v
in
g
th
e
o
ld

cu
-

b
etree

ava
ila
b
le
fo
r
q
u
eries

d
u
rin

g
m
a
in
ten

a
n
ce

tim
e,

a
n
d
,
th
u
s
elim

in
a
tin

g
q
u
ery

d
o
w
n
tim

e.

8

Generate
projections

Merge+Pack

qsort New Cubetrees

buffers

1

2

N

Runs

qsort

qsort

SORT MERGE + PACK

Input dR

Figure 14: The Bulk Incremental Update

� after saturation, no restructuring on the cubetrees is
needed and the algorithms can be optimized to further
improve rewrite cost. Similar optimization can be done
to a skewed area that saturates before the rest of the
space.

Under the assumption that updates are continuously re-
ceived and for the read and rewrite overhead of the merge-
pack, an optimal schedule will process the maximum number
of updates dR. In such an optimal schedule of bulk incre-
mental updates, the rate of update absorption

rate =
dR

time(merge-pack) + time(sort(dR))

is maximized. Assuming an nlogn function for the sort and
a linear for the merge-pack5, the above rate is maximized if
time(sort(dR)) = time(merge-pack)log(time(merge-pack).
In practice, these functions depend on the implementation
and have to be interpolated for the various input ranges. In
our implementation, the sort(dR) turns out to be growing
at less than nlogn because it is interleaved with merge-pack
and also because of the pre-sort within the bu�ers.

Before saturation, the growth of the cube size determines
the size of dR. During this time, merge-pack time grows lin-
early with the size of the cubetrees, while the sort increases
very rapidly with respect to dR. After saturation, the time
of merge-pack is constant and, thus can be be determined
once.

Note that there may be reasons for following schedules
that do not necessarily give the optimal rate, but some that
�t better the needs of the application. For example, the
rate of updates may be too low to have a complete merge-
pack's worth of bulk update and an earlier than optimal
maintenance may be needed. This situation can arise when
the cube is very large. Another situation is when the updates
may be bundled in groups from very long batch transactions
which have to be applied atomically regardless whether or
not they conform to the best size of dR.

5This assumption is made because most of the read and rewrite is
for the leaves of the cubetrees.

3.2 Experiments of Bulk Updates on the Reduced Cube-
trees

For testing the bulk incremental update, we extended our
datasets with one whose cube saturates quickly. It is a
home grown synthetic dataset modeling supermarket pur-
chases with parameters borrowed from [AAD+96]. Each
tuple holds three attributes: store id (distinct values 73),
date (16), item id (48510) and the measure attribute amount.

Figure 15(a) shows the time for the sort and merge-pack
phases as new updates are applied in chunks of 80MB each.
Since the input dR is the same at every step, creating and
sorting the projections takes almost constant time. At �rst
merge-pack time increases but as the cube reaches satura-
tion, the rate of increase diminishes. The saturation point
is somewhere near 400MB of input data and can also be vi-
sualized in Figure 15(b) where combined total disk size of
the reduced cubetrees is drawn against the input size. Note
that at saturation, the reduced cubetrees levels are 4,5, and
2 and their combined size is 64MB. Comparing this to the
50MB of the raw data of the cube, it gives a 28% overhead.

From the time measurements, one can easily observe that
for this particular cube the cubetrees can absorb incoming
updates at a rate of 10MB per minute.

The second experiment presented here demonstrates how
the bulk incremental update behaves in datasets that have
not reached their saturation point. We experimented with
the TPC-D-like dataset described in section 2.3. In order
to further delay the cube saturation point, we used Gray's
self-similar distribution with h=0.1. The resulting data is
so skewed that the saturation will not be reached before
terabytes of updates have been processed.

Figure 16(a) shows the time taken by the merge-pack
phase starting with an initial data of 800MB and incremen-
tally updating the cube by processing 160MB of increment
each time up to 2.34GB. In Figure 16(b) we plot the to-
tal number of new projection points inserted in the reduced
cubetrees with every iteration of bulk update. It shows a
steadily declining growth. Based on that, we expect that
the growth of the merge-pack will do the same. At 2.34GB
and the generated value distributions, the size of the cube
stored in raw data summary tables in its most compact form
and with no additional indexing is 424MB. The combined
size for all reduced cubetrees is 547MB, an overhead of 29%.

9

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

200 400 600 800 1000 1200

T
im

e
(m

in
s)

relation size in MB

Create Projections & Sorting
Merge runs & Pack Cubetree

50

52

54

56

58

60

62

64

66

200 400 600 800 1000 1200

C
ub

e
S

iz
e

in
 M

B

relation size in MB

Cubetrees size

(a) Time (b) Storage

Figure 15: Bulk Update Measurements

10

15

20

25

30

800 1000 1200 1400 1600 1800 2000 2200

T
im

e
(m

in
s)

relation size in MB

Merge & Pack time

2

2.1

2.2

2.3

2.4

2.5

2.6

800 1000 1200 1400 1600 1800 2000 2200

P
oi

nt
s

(m
ill

io
ns

)

relation size in MB

New points in cube

(a) Time (b) Cube growth rate

Figure 16: Merge-pack measurements

This is relatively low given the fact that it provides subsec-
ond range queries to the full cube (six groupbys).

This experiment clearly demonstrates that updating a
large cube like this one is a big time IO problem simply
because of its mere size. We are exploring other optimization
techniques that can reduce this problem and we will report
them in the near future.

4 Conclusions

We presented the cubetree as a storage abstraction of the
data cube, and realized it with a collection of well-organized
packed R-trees that achieve a high degree of data clustering
with acceptable space overhead. Our experiments showed
that multi-dimensional range queries on the cube are very
fast. All experiments assumed that the full cube and all
groupby range queries must be supported. Subsetting the
range queries further improves storage and response time.

But the best feature of the cubetree organization is its
ability to do very e�cient bulk incremental updates. We
reduced the cube update problem to sorting and merge-
packing, and thus, obtained a much needed scalable and
industrial strength solution. We believe that this is the �rst
one.

We plan to test scalability in higher dimensions. Al-
though we can not draw conclusions on how the cubetrees
will perform, the obtained results so far are encouraging.

Acknowledgments

We would like to thank Steve Kelley for numerous conver-
sations and suggestions on the implementation. ACT Inc.
courteously provided the R-tree engine code and its software
libraries on which we built and tested the cubetrees.

References

[AAD+96] S. Agrawal, R. Agrawal, P. Deshpande,
A. Gupta, J. Naughton, R. Ramakrishnan, and
S. Sarawagi. On the Computation of Multidi-
mensional Aggregates. In Proc. of VLDB, pages
506{521, Bombay, India, August 1996.

[BM72] R. Bayer and E. McCreight. Organization and
maintenance of large ordered indexes. Acta In-
formatica, 1(3):173{189, 1972.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pi-
ramish. Data cube: A Relational Aggrega-

10

tion Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals. In Proc. of the 12th Int.
Conference on Data Engineering, pages 152{159,
New Orleans, February 1996. IEEE.

[GHRU97] H. Gupta, V. Harinarayan, A. Rajaraman, and
J. Ullman. Index Selection for OLAP. In Pro-
ceedings of the Intl. Conf. on Data Engineering,
pages 208{219, Burmingham, UK, April 1997.

[Gra93] J. Gray. The Benchmark Handbook for Databas
and Transaction Processing Systems- 2nd edi-
tion. Morgan Kaufmann, San Franscisco, 1993.

[GSE+94] J. Gray, P. Sundaresan, S. Englert, K. Ba-
clawski, and P. Weiberger. Quickly generating
billion-record synthetic databases. In Proc. of
the ACM SIGMOD, pages 243{252, Minneapo-
lis, May 1994.

[Gut84] A. Guttman. R-Trees: A Dynamic Index Struc-
ture for Spatial Searching. In SIGMOD 84'. Pro-
ceedings of Annual Meeting, Boston, MA, pages
47{57, 1984.

[HRU96] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing Data Cubes E�ciently. In Proc.
of ACM SIGMOD, pages 205{216, Montreal,
Canada, June 1996.

[KF93] Ibrahim Kamel and Christos Faloutsos. Hilbert
r-tree: an improved r-tree using fractals. Sys-
tems Research Center (SRC) TR-93-19, Univ. of
Maryland, College Park, 1993.

[NBC+94] C. Nyberg, T. Barclay, Z Cvetanovic, J. Gray,
and D. Lomet. AlphaSort: A RISC Machine
Sort. In Proc. of the ACM SIGMOD, pages 233{
242, Minneapolis, May 1994.

[RL85] N. Roussopoulos and D. Leifker. Direct Spatial
Search on Pictorial Databases Using Packed R-
trees. In Procs. of 1985 ACM SIGMOD Intl.
Conf. on Management of Data, Austin, 1985.

[Rou82] N. Roussopoulos. View indexing in relational
databases. ACM TODS, 7(2):258{290, 1982.

[SDNR96] A. Shukla, P. Deshpande, J. Naughton, and
K. Ramasamy. Storage estimation for multidi-
mensional aggregates in the presense of hierar-
chies. In Proc. of VLDB, pages 522{531, Bom-
bay, India, August 1996.

11

