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a b s t r a c t 

We present the D-DEMOS suite of distributed, privacy-preserving, and end-to-end verifiable 

e-voting systems; one completely asynchronous and one with minimal timing assumptions 

but better performance. Their distributed voting operation is human verifiable; a voter can 

vote over the web, using an unsafe web client stack, without sacrificing her privacy, and get 

recorded-as-cast assurance. Additionally, a voter can outsource election auditing to third 

parties, still without sacrificing privacy. We provide a model and security analysis of the 

systems, implement prototypes of the complete systems, measure their performance ex- 

perimentally, demonstrate their ability to handle large-scale elections, and demonstrate the 

performance trade-offs between the two versions. 

Crown Copyright © 2019 Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

nternet voting systems (e.g., Adida, 2008; Chaum, 2001; 
haum et al., 2008; Clarkson et al., 2008; Cramer et al., 1997; 
jøsteen, 2013; Joaquim et al., 2013; Kiayias et al., 2015; Kuty- 

owski and Zagórski, 2010; Zagórski et al., 2013 ) are a powerful 
echnology to improve the election process and thus provide a 
undamental service of e-Government. They have the poten- 
ial to enhance the democratic process by reducing election 
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osts and by increasing voter participation for social groups 
hat face considerable physical barriers and overseas voters. In 

ddition, several internet voting systems ( Adida, 2008; Kiayias 
t al., 2015; Kutylowski and Zagórski, 2010; Zagórski et al.,
013 ) allow voters and auditors to directly verify the integrity 
f the entire election process, providing end-to-end verifiability .
his is a highly desired property that has emerged in the last 
ecade, where voters can be assured that no entities, even the 
lection authorities, have manipulated the election result. De- 
pite their potential, existing internet voting systems suffer 
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from single points of failure, which may result in the com-
promise of voter secrecy, service availability, or integrity of
the result ( Adida, 2008; Benaloh et al., 2013; Chaum, 2001;
Chaum et al., 2008; 2005; Clarkson et al., 2008; Cramer et al.,
1997; Fisher et al., 2006; Gjøsteen, 2013; Joaquim et al., 2013;
Kiayias et al., 2015; Kutylowski and Zagórski, 2010; Zagórski
et al., 2013 ). 

In this paper, we present the design and prototype imple-
mentation of the D-DEMOS suite of distributed, end-to-end
verifiable internet voting systems, with no single point of
failure during the election process (that is, besides setup). We
set out to overcome two major limitations in existing internet
voting systems. The first, is their dependency on centralized
components, which is inherent in non-fault-tolerant systems.
The second is the requirement of distributed voting systems,
for the voter to run special software which processes cryp-
tographic operations on their devices. Overcoming the latter
allows votes to be cast with a greater variety of client devices,
such as feature phones using SMS, or untrusted public web
terminals. Our design is inspired by the novel approach
proposed in Kiayias et al. (2015) , where the voters are used
as a source of randomness to challenge the zero-knowledge
proof protocols ( Feige et al., 1988 ). We use the latter to enable
end-to-end verifiability. 

We design a distributed Vote Collection ( VC ) subsystem that
is able to collect votes from voters and assure them their vote
was recorded as cast, without requiring any cryptographic
operation from the client device. This allows voters to vote via
SMS, a simple console client over a telnet session, or a public
web terminal, while preserving their privacy. At election end
time, VC nodes agree on a single set of votes. We introduce
two versions of D-DEMOS that differ in how they achieve
agreement on the set of cast votes. The D-DEMOS/Async
version is completely asynchronous, while D-DEMOS/IC
makes minimal synchrony assumptions but is more efficient
than the alternative. Once agreement has been achieved, VC
nodes upload the set of cast votes to a second distributed
component, the Bulletin Board ( BB ). This is a replicated service
that publishes its data immediately and makes it available to
the public forever. Finally, our trustees subsystem, comprises
a set of persons entrusted with secret keys which can unlock
information stored in the BB . We share these secret keys
among the trustees , making sure only an honest majority can
uncover information from the BB. Trustees interact with the
BB once the votes are uploaded to the latter, to produce and
publish the final election tally. 

The resulting voting systems are end-to-end verifiable, by
the voters themselves and third-party auditors, while pre-
serving voter privacy. To delegate auditing, a voter provides an
auditor specific information from her ballot. The auditor, in
turn, reads from the distributed BB and verifies the complete
election process, including the correctness of the election
setup by election authorities. Additionally, as the number
of auditors increases, the probability of election fraud going
undetected diminishes exponentially. 

Finally, we implement prototypes of both D-DEMOS voting
system versions. We measure their performance experimen-
tally, under a variety of election settings, demonstrating their
ability to handle thousands of concurrent connections, and
thus manage large-scale elections. We also compare the
two systems and emphasize the trade-offs between them,
regarding security and performance. 

To summarize, we make the following contributions: 

• We present a suite of state-of-the-art, end-to-end verifi-
able, distributed voting systems with no single point of fail-
ure besides setup. 

• Both systems allow voters to verify their vote was tallied-
as-intended without the assistance of special software or
trusted devices, and allow external auditors to verify the
correctness of the election process. Additionally, both sys-
tems allow voters to delegate auditing to a third party au-
ditor, without sacrificing their privacy. 

• We provide a model and a security analysis of D-DEMOS/IC.
• We implement prototypes of the systems, measure their

performance and demonstrate their ability to handle large-
scale elections. Finally, we demonstrate the performance
trade-offs between the two versions of the system. 

Note that, a preliminary version of one of our systems
was used to conduct exit-polls at three voting sites for two
national-level elections and is being adopted for use by the
largest civil union of workers in Greece, consisting of over a
half million members. 

The remainder of this paper is organized as follows.
Section 2 introduces required background knowledge we ref-
erence throughout the paper, while Section 3 presents related
work. Section 4 gives an overview of the system components,
defines the system and threat model, and describes each
system component in detail. Section 5.2 goes over some inter-
esting attack vectors, which help to clarify our design choices.
Section 6 describes our prototype implementations and their
evaluation, and Section 7 concludes the main body of the
paper. Finally, Appendix A provides, for the interested reader,
the full proofs of liveness, safety, privacy and end-to-end
verifiability of both our systems. 

2. Background 

In this section we provide basic background knowledge
required to comprehend the system description in the next
section. This includes some voting systems terminology, a
quick overview of Interactive Consistency, and a series of
cryptographic tools we use to design our systems. These
tools include additively homomorphic commitment schemes
and zero-knowledge proofs, which are used in the System
Description ( Section 4 ), and are needed to understand the
system design. Additionally, we provide details about colli-
sion resistant hash functions, IND-CPA symmetric encryption
schemes, and digital signatures, which we use as building
blocks for our security proofs in Appendix A . 

2.1. Voting systems requirements 

An ideal electronic voting system would address a specific list
of requirements (see Gritzalis, 2002; Internet Policy Institue,
2001; Neumann, 1993 for an extensive description). Our
system addresses the following requirements: 
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• End-to-end verifiability: the voters can verify that their votes 
were counted as they intended and any party can verify 
that the election procedure was executed correctly. 

• Privacy : a party that does not monitor voters during the 
voting phase of the election, cannot extract information 

about the voters’ ballots. In addition, a voter cannot prove 
how she voted to any party that did not monitor her during 
the voting phase of the election 

1 . 
• Fault tolerance: the voting system should be resilient to the 

faulty behavior of up to a number of components or parts,
and be both live and safe. 

.2. Interactive consistency 

nteractive consistency (IC), first introduced and studied by 
ease et al. (1980) , is the problem in which n nodes, where up
o t may be byzantine, each with its own private value, run an 

lgorithm that allows all non-faulty nodes to infer the values 
f each other. In our D-DEMOS/IC system, we use the IC,BC-RBB 
lgorithm from Diamantopoulos et al. (2015) , which achieves 
C using a single synchronous round. This algorithm uses 
wo phases to complete. The synchronous Value Dissemination 
hase comes first, aiming to disperse the values across nodes.
fterwards, an asynchronous Result Consensus Phase starts,
hich results in each honest node holding a vector with every 
onest node’s slot filled with the corresponding value. 

.3. Cryptographic tools 

n this text, we use λ as the cryptographic security parameter 
nd we write negl (λ) to denote that a function is negligible 
n λ, i.e., it is asymptotically smaller than the inverse of any 
olynomial in λ. 

.3.1. Additively homomorphic commitments 
o achieve integrity against a malicious election authority,
-DEMOS utilizes lifted El Gamal (1985) over elliptic curves as 
 non-interactive commitment scheme that achieves the following 
roperties: 

1. Perfectly binding : no adversary can open a commitment 
Com (m ) of m to a value other than m . 

2. Hiding : there exists a constant c < 1 s.t. the probability that 
a commitment Com (m ) to m leaks information about m to 
an adversary running in O (2 λ

c 
) steps is no more than negl (λ) .

3. Additively homomorphic : ∀ m 1 , m 2 , we have that 
Com (m 1 ) · Com (m 2 ) = Com (m 1 + m 2 ) . 

.3.2. Zero-knowledge proofs 
-DEMOS’s security requires the election authority to show 

he correctness of the election setup to the public without 
ompromising privacy. We enable this kind of verification 

ith the use of zero-knowledge proofs. In a zero-knowledge 
roof, the prover is trying to convince the verifier that 
 statement is true, without revealing any information 

bout the statement apart from the fact that it is true 
1 In Kiayias et al. (2015) , this property is referred as receipt- 
reeness . 

(
p  

D  

w

 Quisquater et al., 1990 ). More specifically, we say an interac- 
ive proof system has the honest-verifier zero-knowledge (HVZK) 
roperty if there exists a probabilistic polynomial time simu- 

ator S that, for any given challenge, can output an accepting 
roof transcript that is distributed indistinguishable to the 
eal transcript between an honest prover and an honest 
erifier. Here, we adopt Chaum–Pedersen zero-knowledge 
roofs ( Chaum and Pedersen, 1993 ), which belong in the spe- 
ial class of � protocols (i.e., 3-move public-coin special HVZK 

roofs), allowing the Election Authority to show that the 
ontent inside each commitment is a valid option encoding. 

.3.3. Collision resistant hash functions 
iven the security parameter λ ∈ N , we say that a hash 

unction h : {0, 1} ∗ �→ {0, 1} � ( λ) , where � ( λ) is polynomial in λ, is
 t , ε)- collision resistant if for every adversary A running in time
t most t , the probability of A finding two distinct preimages 
 1 � = m 2 such that h (m 1 ) = h (m 2 ) is less than ε. By the birthday

ttack, for h to be ( t , ε)-collision resistant, we necessitate that
 

2 /2 � ( λ) < ε. In this work, we use SHA-256 as the instantiation
f a (t , t 2 · 2 −256 ) -collision resistant hash function. 

.3.4. IND-CPA symmetric encryption schemes 
e say that a symmetric encryption scheme SE achieves ( t, q ,

)- indistinguishability against chosen plaintext attacks (IND-CPA) ,
f for every adversary A that (i) runs in time at most t , (ii)

akes at most q encryption queries that are pairs of messages 
m 0 , 1 , m 1 , 1 ) , . . . , (m 0 ,q , m 1 ,q ) and (iii) for every encryption query
 m 0,i , m 1,i ), it receives the encryption of m b,i , where b is the
utcome of a coin-flip, it holds that: 

dv IND −CPA 
SE (A ) 

:= 

∣∣ Pr [ A outputs 1 | b = 1] − Pr [ A outputs 1 | b = 0] 
∣∣ < ε, 

here by Adv IND −CPA 
SE (A ) we denote the advantage of A . D- 

EMOS applies AES-128-CBC$ encryption, for which a known 

pper bound is 

dv IND −CPA 
128 −AES −CBC $ (A ) ≤ 2 · Adv PRF 

AES −128 (B) + q 2 · 2 −128 , 

here Adv PRF 
AES −128 (B) is the advantage of an algorithm B that 

uns in time at most t + 129 · q and makes at most q queries to
reak the pseudorandomness of the AES-128 block cipher. A 

afe conjecture is that Adv PRF 
AES −128 (B) ≤ (t + 129 · q + q 2 ) · 2 −128 ,

o in our proofs we assume that AES-128-CBC$ is (t, q, (2 t +
58 · q + 3 q 2 ) · 2 −128 ) -IND-CPA secure. For further details, we
efer the reader to (Bellare and Rogaway, 2005, Chapters 3–5) . 

.3.5. Digital signature schemes 
 digital signature system is said to be secure if it is exis-

entially unforgeable under a chosen-message attack (EUF-CMA) .
oughly speaking, this means that an adversary running 

n polynomial time and adaptively querying signatures for 
polynomially many) messages has no more than negl (λ) 
robability to forge a valid signature for a new message.
-DEMOS/Async utilizes the standard RSA signature scheme,
hich is EUF-CMA secure under the factoring assumption. 
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3. Related work 

3.1. Voting systems 

Several end-to-end verifiable e-voting systems have been
introduced, e.g., the kiosk-based systems ( Benaloh et al.,
2013; Chaum et al., 2008; 2005; Fisher et al., 2006; Moran and
Naor, 2010 ) and the internet voting systems ( Adida, 2008;
Joaquim et al., 2013; Kiayias et al., 2015; Kulyk et al., 2017;
Kutylowski and Zagórski, 2010; Zagórski et al., 2013 ). In all
these works, the Bulletin Board ( BB ) is a single point of failure
and has to be trusted. 

Dini presents a distributed e-voting system, which how-
ever is not end-to-end verifiable ( Dini, 2003 ). In Culnane and
Schneider (2014) , there is a distributed BB implementation,
also handling vote collection, according to the design of the
vVote end-to-end verifiable e-voting system ( Culnane et al.,
2015 ), which in turn is an adaptation of the Prêt à Voter e-
voting system ( Chaum et al., 2005 ). In Culnane and Schneider
(2014) , the proper operation of the BB during ballot casting re-
quires a trusted device for signature verification. In contrast,
our vote collection subsystem is designed so that correct
execution of ballot casting can be “human verifiable”, i.e., by
simply checking the validity of the obtained receipt. Addi-
tionally, our vote collection subsystem in D-DEMOS/Async is
fully asynchronous, always deciding with exactly n − f inputs,
while in Culnane and Schneider (2014) , the system uses
a synchronous approach based on the FloodSet algorithm
from Lynch (1996) to agree on a single version of the state.
In this work, we consider secure ballot distribution as out
of scope. However, this problem can be circumvented with
specialized hardware, such as in Joaquim et al. (2013) . 

DEMOS ( Kiayias et al., 2015 ) is an end-to-end verifiable
e-voting system, which introduces the novel idea of extract-
ing the challenge of the zero-knowledge proof protocols
from the voters’ random choices; we leverage this idea in
our system too. However, DEMOS uses a centralized Election
Authority (EA), which maintains all secrets throughout the
entire election procedure, collects votes, produces the result
and commits to verification data in the BB . Hence, the EA is a
single point of failure, and because it knows the voters’ votes,
it is also a critical privacy vulnerability. In this work, we ad-
dress these issues by introducing distributed components for
vote collection and result tabulation, and we do not assume
any trusted component during election. Additionally, DEMOS
does not provide any recorded-as-cast feedback to the voter,
whereas our system includes such a mechanism. 

In Chondros et al. (2016) , which is a preliminary ver-
sion of this work, we present D-DEMOS/Async only. In this
work, we also present the design of a new system, called
D-DEMOS/IC, its implementation, evaluation and comparison
to D-DEMOS/Async. We highlight the performance gains from
the new IC approach, and also demonstrate its limitations.
Thus, we present a suite of voting systems that provides
implementers more options regarding strict safety or higher
performance. Additionally, in Section 5.2 , we present poten-
tial attacks and the ways our voting systems thwart them,
to give the reader the intuition behind our design choices.
As part of this work, we have completed and written full
rigorous security proofs for both systems, which we include
in Appendix A . In the conference version of this paper, we
provide only a proof sketch for one system (D-DEMOS/Async).

3.2. State machine rplication 

Castro and Liskov (2002) introduce a practical Byzantine Fault
Tolerant replicated state machine protocol. In the last several
years, a number of protocols for Byzantine Fault Tolerant state
machine replication have been introduced to improve per-
formance ( Cowling et al., 2006; Kotla et al., 2007 ), robustness
( Aublin et al., 2013; Clement et al., 2009b ), or both ( Aublin et al.,
2015; Clement et al., 2009a ). Our system does not use the state
machine replication approach to handle vote collection, as it
would be inevitably more costly. Each of our vote collection
nodes can validate a voter’s requests on its own. In addition,
we are able to process multiple different voters’ requests
concurrently, without enforcing the total ordering inherent in
replicated state machines. Finally, we do not wish voters to
use special client-side software to access our system. 

4. System description 

4.1. Problem definition and goals 

We consider an election with a single question and m options ,
for n voters, where voting takes place between a certain begin
and end time (the voting hours ), and each voter may select a
single option . 

Our major goals in designing our voting system are three: 

1) It has to be end-to-end verifiable, so that anyone can verify
the complete election process. Additionally, voters should
be able to outsource auditing to third parties, without
revealing their voting choice. 

2) It has to be fault-tolerant, so that an attack on system
availability and correctness is hard. 

3) Voters should not have to trust the terminals they use to
vote, as such devices may be malicious, while still being
assured their vote was recorded. 

4.2. System overview 

We employ an election setup component in our system,
which we call the Election Authority ( EA ), to alleviate the
voter from employing any cryptographic operations. The EA
initializes all other system components, and then gets imme-
diately destroyed to preserve privacy. The Vote Collection ( VC )
subsystem collects the votes from the voters during election
hours, and assures them their vote was recorded-as-cast . Our
Bulletin Board ( BB ) subsystem, which is a public repository of
all election-related information, is used to hold all ballots,
votes, and the result, either in encrypted or plain form, al-
lowing any party to read from the BB and verify the complete
election process. The VC subsystem uploads all votes to the
BB at election end time. Finally, our design includes trustees ,
who are persons entrusted with managing all actions needed
until result tabulation and publication, including all actions
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Fig. 1 – High-level diagram of component interactions during system initialization. Each subsystem is a distributed system 

of its own, but is depicted as a unified entity in this diagram for brevity. 
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upporting end-to-end verifiability. Trustees hold the keys 
o uncover any information hidden in the BB , and we use 
hreshold cryptography to make sure a malicious minority 
annot uncover any secrets or corrupt the process. 

Our system starts with the EA generating initialization 

ata for every component of our system. The EA encodes 
ach election option, and commits to it using a commitment 
cheme, as described below. It encodes the i th option as � e i , a 
nit vector where the i th element is 1 and the remaining ele- 
ents are 0. The commitment of an option encoding is a vec- 

or of (lifted) ElGamal ciphertexts ( ElGamal, 1985 ) over elliptic 
urve that element-wise encrypts a unit vector. Note that this 
ommitment scheme is also additively homomorphic, i.e., the 
ommitment of e a + e b can be computed by component-wise 
ultiplying the corresponding commitments of e a and e b . The 

A then creates a votecode and a receipt for each option. Sub- 
equently, the EA prepares one ballot for each voter, with two 
unctionally equivalent parts. Each part contains a list of op- 
ions, along with their corresponding vote codes and receipts.

e consider ballot distribution to be outside the scope of this 
aper, but we do assume ballots, after being produced by the 
A , are distributed in a secure manner to each voter; thus 
nly each voter knows the vote codes listed in her ballot. We 
ake sure vote codes are not stored in clear form anywhere 

esides the voter’s ballot. We depict this interaction in Fig. 1 . 
Our VC subsystem collects the votes from the voters 

uring election hours, by accepting up to one vote code from 

ach voter (see Fig. 2 ). The EA initializes each VC node with 

he vote codes and the receipts of the voters’ ballots. However,
t hides the vote codes, using a simple commitment scheme 
ased on symmetric encryption of the plaintext along with a 
andom salt value. This way, each VC node can verify if a vote 
ode is indeed part of a specific ballot, but cannot recover 
ny vote code until the voter actually chooses to disclose it.
dditionally, we secret-share each receipt across all VC nodes 
sing an (N− f, N) -VSS (verifiable secret-sharing) scheme with 

rusted dealer ( Schneier, 1996 ), making sure that a receipt can 

e recovered and posted back to the voter only when a strong 
ajority of VC nodes participates successfully in our voting 

rotocol. 
The voter selects one part of her ballot at random, and 

osts her selected vote code to one of the VC nodes. When she
eceives a receipt, she compares it with the one on her ballot 
orresponding to the selected vote code. If it matches, she is 
ssured her vote was correctly recorded and will be included 

n the election tally. The other part of her ballot, the one not
sed for voting, will be used for auditing purposes. This design 

s essential for verifiability, in the sense that the EA cannot 
redict which part a voter may use, and the unused part will 
etray a malicious EA with 

1 
2 probability per audited ballot. 

Our second distributed subsystem is the BB , which is a 
eplicated service of isolated nodes. Each BB node is initialized 

rom the EA with vote codes and associated option encodings 
n committed form (again, for vote code secrecy), and each 

B node provides public access to its stored information.
t election end time, VC nodes run our Vote Set Consensus 
rotocol, which guarantees all VC nodes agree on a single 
et of voted vote codes. After agreement, each VC node up- 
oads this set to every BB node, which in turn publishes this 
et once it receives the same copy from enough VC nodes 
see Fig. 3 ). 

Our third distributed subsystem is a set of trustees , who 
re persons entrusted with managing all actions needed after 
ote collection, until result tabulation and publication; this in- 
ludes all actions supporting end-to-end verifiability. Secrets 
hat may uncover information in the BB are shared across 
rustees , making sure malicious trustees under a certain thresh- 
ld cannot uncover and disclose sensitive information. We 
se Pedersen’s Verifiable linear Secret Sharing (VSS) ( Pedersen,
991 ) to split the election data among the trustees . In a ( k, n )-
SS, at least k shares are required to reconstruct the original 
ata, and any collection of less than k shares leaks no informa- 
ion about the original data. Moreover, Pedersen’s VSS is addi- 
ively homomorphic, i.e., one can compute the share of a + b
y adding the share of a and the share of b respectively. This
pproach allows trustees to perform homomorphic “addition”
n the option-encodings of cast vote codes, and contribute 
ack a share of the opening of the homomorphic “total”. Once 
nough trustees upload their shares of the “total”, the election 

ally is uncovered and published at each BB node (see Fig. 4 ). 
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Fig. 2 – High-level diagram of component interactions during the voting phase. Message exchanges between VC nodes are 
simplified for this diagram. In this diagram, there are 4 VC nodes, tolerating up to 1 fault. 

Fig. 3 – High-level diagram of component interactions during the vote set consensus phase. 4 VC nodes and 3 BB nodes are 
shown, where each subsystem tolerates 1 fault. “VSC” stands for “Vote Set Consensus”. After agreeing on a single Vote Set 
S , each VC node uploads S to every BB node. Messages are simplified for this diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By the design of the VC, BB and trustee subsystems, and
given that all fault tolerance thresholds are met, our system
adheres to the following contract with the voters: Any honest
voter who receives a valid receipt from a VC node, is assured her
vote will be published on the BB, and thus it will be included in the
election tally . 

To ensure voter privacy, the system cannot reveal the
content inside an option encoding commitment at any point.
However, a malicious EA might put an arbitrary value (say
9000 votes for option 1) inside such a commitment, causing an
incorrect tally result. To prevent this, we utilize the Chaum–
Pedersen zero-knowledge proof ( Chaum and Pedersen, 1993 ),
allowing the EA to show that the content inside each commit-
ment is a valid option encoding, without revealing its actual
content. Namely, the prover uses Sigma OR proof to show that
each ElGamal ciphertext encrypts either 0 or 1, and the sum
of all elements in a vector is 1. Our zero knowledge proof is
organized as follows. First, the EA posts the initial part of the
proofs on the BB . Second, during the election, each voter’s A/B
part choice is viewed as a source of randomness, 0/1, and all
the voters’ choices are collected and used as the challenge
of our zero knowledge proof. Finally, the trustees will jointly
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Fig. 4 – High-level diagram of trustee interactions with the 
BB , towards result tabulation and publication. Trustees are 
more than one, and interact with the BB in any order. The 
BB is a distributed system of its own, but is depicted as a 
unified entity in this diagram for brevity. 

Fig. 5 – High-level diagram of the system auditing. Voters 
send Auditors audit-related data that does not violate the 
voter’s privacy. Auditors in turn read from the BB and verify 

the complete election process. The BB is a distributed 

system of its own, but is depicted as a unified entity in this 
diagram for brevity. 
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roduce the final part of the proofs and post it on the BB 
efore the opening of the tally. Hence, everyone can verify 
hose proofs on the BB . We omit the zero-knowledge proof 
omponents in this paper and refer the interested reader 
o Chaum and Pedersen (1993) for details. 

Our design allows any voter to read information from the 
B , combine it with her private ballot, and verify her ballot 
as included in the tally. Additionally, any third-party auditor 

an read the BB and verify the complete election process (see 
ig. 5 ). As the number of auditors increases, the probability of 
lection fraud going undetected diminishes exponentially. For 
xample, even if only 10 people audit, with each one having 1 

2 
robability of detecting ballot fraud, the probability of ballot 

raud going undetected is only 1 
2 

10 = 0 . 00097 . Thus, even if 
he EA is malicious and, e.g., tries to point all vote codes to a 
pecific option, this faulty setup will be detected because of 
he end-to-end verifiability of the complete system. 
In this paper, we present two different versions of our 
oting system, with different performance and security 
rade-offs. In the first version, called D-DEMOS/IC , Vote Set 
onsensus is realized by an algorithm achieving Interactive 
onsistency, and thus requiring synchronization. The sec- 
nd version, D-DEMOS/Async , uses an asynchronous binary 
onsensus algorithm for Vote Set Consensus, and thus is com- 
letely asynchronous. The performance trade-offs between 

he two are analyzed in Section 6.2 . 

.3. System and threat model 

e assume a fully connected network, where each node can 

each any other node with which it needs to communicate.
he network can drop, delay, duplicate, or deliver messages 
ut of order. However, we assume messages are eventually 
elivered, provided the sender keeps retransmitting them.
or all nodes, we make no assumptions regarding processor 
peeds. 

We assume the EA sets up the election and is destroyed 

pon completion of the setup, as it does not directly interact 
ith the remaining components of the system, thus reducing 

he attack surface of the privacy of the voting system as a 
hole. We also assume initialization data for every system 

omponent is relayed to it via untappable channels. We as- 
ume the adversary does not have the computational power 
o violate the security of any underlying cryptographic prim- 
tives. We place no bound on the number of faulty nodes the 
dversary can coordinate, as long as the number of malicious 
odes of each subsystem is below its corresponding fault 
hreshold. Let N v , N b , and N t be the number of VC nodes, BB
odes, and trustees respectively. The voters are denoted by 
 � , � = 1 , . . . , n . 

For both versions of our system, we assume the clocks 
f VC nodes are synchronized with real world time; this is 
eeded to prohibit voters from casting votes outside election 

ours. For the safety of D-DEMOS/Async version, we make no 
urther timing assumptions. To ensure liveness, we assume 
he adversary cannot delay communication between honest 
odes above a certain threshold. 

For the D-DEMOS/IC version, we use the IC,BC- 
BB algorithm achieving Interactive Consistency (IC) 
rom Diamantopoulos et al. (2015) , which requires a single 
ynchronization point after the beginning of the algorithm. To 
ccommodate this, we use the election-end time as the start- 
ng point of IC, and additionally assume the adversary cannot 
ause clock drifts between VC nodes also for safety, besides 
iveness. This is because lost messages in the first round 

f IC,BC-RBB are considered failures of the sending node. 
Formally, we assume there exists a global clock variable 

lock ∈ N , and that every VC node, BB node and voter X is
quipped with an internal clock variable Clock [ X] ∈ N . We define
he following two events on the clocks: 

(i) The event Init (X) : Clock [ X] ← Clock , that initializes 
a node X by synchronizing its internal clock with the 
global clock. 

(ii) The event Inc (i ) : i ← i + 1 , that causes some clock i to
advance by one time unit. 
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Fig. 6 – The adversarial setting for the adversary A acting upon the distributed bulletin board system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The adversarial setting for A upon D-DEMOS is defined in
Fig. 6 . 

The description in Fig. 6 poses no restrictions on the con-
trol the adversary has over all internal clocks, or the number
of nodes that it may corrupt (arbitrary denial of service attacks
or full corruption of D-DEMOS nodes are possible). Therefore,
it is necessary to strengthen the model so that we can per-
form a meaningful security analysis and prove the properties
(liveness, safety, end-to-end verifiability, and voter privacy)
that D-DEMOS achieves. Namely, we require the following: 

A. Fault tolerance. We consider arbitrary (Byzantine) failures,
because we expect our system to be deployed across sep-
arate administrative domains. For each of the subsystems,
we have the following fault tolerance thresholds: 
• The number of faulty VC nodes, f v , is strictly less than

1/3 of N v i.e., for fixed f v : 

N v ≥ 3 f v + 1 . 

• The number of faulty BB nodes, f b , is strictly less than
1/2 of N b i.e., for fixed f b : 

N b ≥ 2 f b + 1 . 

• For the trustees’ subsystem, we apply h t out-of N t

threshold secret sharing, where h t is the number of
honest trustees, thus we tolerate f t = N t − h t malicious
trustees. 

B. Bounded synchronization loss. For the liveness of D-
DEMOS (both versions), all system participants are aware
of a value T end such that for each node X , if Clock [ X] ≥ T end ,

then X considers that the election has ended. In addition,
the safety of D-DEMOS/IC version, assumes two timing
points, a starting point (that we set as T end ) and a barrier ,
denoted by T barrier , that determine the beginning of the
Value Dissemination phase and the transition to the Result
Consensus phase of the underlying Interactive Consistency
protocol (see Section 2.2 ), respectively. 
For the above reasons, we bound the drift on the nodes’
internal clocks, assuming an upper bound � of the drift
of all honest nodes’ internal clocks with respect to the
global clock. Formally, we have that A may invoke the
events Inc ( Clock ) or Inc ( Clock [ X]) for every node X , under
the restriction that | Clock [ X] −Clock | ≤ �, where | · | denotes
the absolute value. 

C. Bounded communication delay. For the liveness of D-
DEMOS (both versions) and the safety of D-DEMOS/IC,
we need to ensure eventual message delivery in bounded
time. Therefore, we assume that there exists an upper
bound δ on the time that A can delay the delivery of the
messages between honest nodes. Formally, when the
honest node X sends ( X , M , Y ) to A , if the value of the
global clock is T , then A must write M on the incoming
network tape of Y by the time that Clock = T + δ. We note
that δ should be a reasonably small value for liveness,
while for safety of D-DEMOS/IC it suffices to be dominated
by the predetermined timeouts of the VC nodes. 

For clarity, we recap the aforementioned requirements in
Fig. 7 . 

4.4. Election authority 

EA produces the initialization data for each election entity
in the setup phase. To enhance the system robustness, we
let the EA generate all the public/private key pairs for all the
system components (except voters) without relying on exter-
nal PKI support. We use zero knowledge proofs to ensure the
correctness of all the initialization data produced by the EA . 
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Fig. 7 – Requirements for the liveness and safety of D-DEMOS/IC and D-DEMOS/Async. 
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.4.1. Voter ballots 
he EA generates one ballot ballot � for each voter � , and 

ssigns a unique 64-bit serial −no � to it. As shown below, each 

allot consists of two parts: Part A and Part B. Each part 
ontains a list of m 〈 vote −code , option , receipt 〉 tuples, one tuple 
or each election option. The EA generates the vote-code as 
 128-bit random number, unique within the ballot, and the 
eceipt as 64-bit random number. 

serial −no � 

Part A 

vote −code �, 1 option �, 1 receipt �, 1 
. . . . . . . . . 

vote −code �,m option �,m receipt �,m 
Part B 

vote −code �, 1 option �, 1 receipt �, 1 
. . . . . . . . . 

vote −code �,m option �,m receipt �,m 

.4.2. BB initialization data 
he initialization data for all BB nodes is identical, and each 

B node publishes its initialization data immediately. The 
B ’s data is used to show the correspondence between the 
ote codes and their associated cryptographic payload. This 
ayload comprises the committed option encodings, and 

heir respective zero knowledge proofs of valid encoding (first 
ove of the prover), as described in Section 4.2 . However, the 

ote codes must be kept secret during the election, to prevent 
he adversary from “stealing” the voters’ ballots and using 
he stolen vote codes to vote. To achieve this, the EA first ran- 
omly picks a 128-bit key, msk , and encrypts each vote −code 

sing AES-128-CBC with random initialization vector (AES- 
28-CBC$) encryption, denoted as [ vote −code ] msk . Each BB node 
s given H msk ← SHA 256( msk , salt msk ) and salt msk , where salt msk 

s a fresh 64-bit random salt. Hence, each BB node can be as- 
ured the key it reconstructs from VC key-shares (see below) 
s indeed the key that was used to encrypt these vote-codes. 

The rest of the BB initialization data is as follows: for each 

erial −no � , and for each ballot part, there is a shuffled list of 
[ vote −code 

�,πX 
� 

( j) ] msk , payload 
�,πX 

� 
( j) 

〉
tuples, where πX 

� ∈ S m 

is a 

andom permutation ( X is A or B ). 
(H msk , salt msk ) 
serial −no � 

Part A 

[ vote −code 
�,πA 

� 
(1) ] msk payload 

�,πA 
� 

(1) 

. . . 
. . . 

[ vote −code 
�,πA 

� 
(m ) ] msk payload 

�,πA 
� 

(m ) 

Part B 
[ vote −code 

�,πB 
� 

(1) ] msk payload 
�,πB 

� 
(1) 

. . . 
. . . 

[ vote −code 
�,πB 

� 
(m ) ] msk payload 

�,πB 
� 

(m ) 

We shuffle the list of tuples of each part to ensure voter’s 
rivacy. This way, nobody can guess the voter’s choice from 

he position of the cast vote-code in this list. 

.4.3. VC initialization data 
he EA uses an (N v − f v , N v ) -VSS (Verifiable Secret-Sharing) 
cheme to split msk and every receipt �, j into N v shares, denoted 

s (‖ msk ‖ 1 , . . . , ‖ msk ‖ N v ) and (‖ receipt �, j ‖ 1 , . . . , ‖ receipt �, j ‖ N v ) re-
pectively. For each vote −code �, j in each ballot, the EA also 
omputes H �, j ← SHA 256( vote −code �, j , salt �, j ) , where salt �, j is 
 64-bit random number. H � ,j allows each VC node to validate 
 vote −code �, j individually (without network communica- 
ion), while still keeping the vote −code �, j secret. To preserve 
oter privacy, these tuples are also shuffled using πX 

� . The 
nitialization data for VC i is structured as below: 

‖ msk ‖ i 
serial −no � 

Part A 

(H 

�,πA 
� 

(1) , salt �,πA 
� 

(1) ) ‖ receipt 
�,πA 

� 
(1) ‖ i 

. . . . . . 

(H 

�,πA 
� 

(m ) , salt �,πA 
� 

(m ) ) ‖ receipt 
�,πA 

� 
(m ) ‖ i 

Part B 
(H 

�,πB 
� 

(1) , salt �,πB 
� 

(1) ) ‖ receipt 
�,πB 

� 
(1) ‖ i 

. . . . . . 

(H 

�,πB 
� 

(m ) , salt �,πB 
� 

(m ) ) ‖ receipt 
�,πB 

� 
(m ) ‖ i 

.4.4. Trustee initialization data 
he EA uses ( h t , N t )-VSS to split the opening of encoded
ption commitments Com ( � e i ) into N t shares, denoted as 
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Algorithm 1 Vote Collector algorithms for D-DEMOS/IC. 

1: procedure on VOTE ( serial −no , vote −code ) from source : 
2: if SysTime () between start and end 
3: b := locateBallot( serial −no ) 
4: if b. status == NotVoted 

5: l := ballot.VerifyVoteCode( vote −code ) 
6: if l � = null 
7: b. status := Pending 

8: b. used −vc := vote −code 

9: b. lrs := {} � list of receipt shares 
10: sendAll(VOTE_P 〈 serial −no , vote −code , l. share 〉 ) 
11: wait for (N v − f v ) VOTE_P messages, fill b. lrs 

12: b. receipt := Rec (b. lrs ) 
13: b. status := Voted 

14: send(source, b. receipt ) 

15: else if b. status == Voted AND b. used −vc == vote −code 

16: send ( source , ballot . receipt ) 

17: procedure on VOTE_P ( serial −no , vote −code , share ) from source : 
18: if SysTime () between start and end 
19: b := locateBallot( serial −no ) 
20: if b. status == NotVoted 

21: l := ballot.VerifyVoteCode( vote −code ) 
22: if l � = null 
23: b. status := Pending 

24: b. used −vc := vote −code 

25: b. lrs . Append ( share ) 
26: sendAll(VOTE_P( serial −no , vote −code , l. share )) 

27: else if b. status == Voted AND b. used −vc == vote −code 

28: b. lrs . Append ( share ) 
29: if size( b. lrs ) > = N v − f v 
30: b. receipt := Rec (b. lrs ) 
31: b. status := Voted 

32: function Ballot::VerifyVoteCode ( vote −code ) 
33: for l = 1 to ballot _ lines do 
34: if lines [ l ] . hash == h ( vote −code || lines [ l ] . salt ) return l 

return null 

Fig. 8 – Diagram of message exchanges for a single vote 
during the D-DEMOS/IC vote collection phase. 

 

 

 

 

 

 

 

(‖ � e i ‖ 1 , . . . , ‖ � e i ‖ N t ) . The initialization data for Trustee i is struc-
tured as below: 

serial −no � 

Part A 

Com ( � e 
πA 
� 

(i ) ) ‖ � e 
πA 
� 

(i ) ‖ � 
· · · · · ·
Part B 
Com ( � e 

πB 
� 

(i ) ) ‖ � e 
πB 
� 

(i ) ‖ � 
· · · · · ·

Similarly, the state of zero knowledge proofs for ballot
correctness is shared among the trustees using ( h t , N t )-VSS.
For further details, we refer the interested reader to Chaum
and Pedersen (1993) . 

4.5. Vote Collectors 

The Vote Collection subsystem comprises N v nodes that col-
lect the votes from the voters and, at election end time, agree
on a single set of cast vote codes and upload it to the Bulletin
Board. In the following subsections, we present two different
versions of the VC subsystem, one with a timing assumption
( D-DEMOS/IC ) and one fully asynchronous ( D-DEMOS/Async ). 

4.5.1. Vote Collectors for D-DEMOS/IC 

VC is a distributed system of N v nodes, running our voting
and vote-set consensus protocols. VC nodes have private and
authenticated channels to each other, and a public (unse-
cured) channel for voters. The algorithms implementing our
D-DEMOS/IC voting protocol are presented in Algorithm 1 . For
simplicity, we present our algorithms operating for a single
election. 

The voting protocol starts when a voter submits a
VOTE 〈 serial −no , vote −code 〉 message to a VC node. We call
this node the responder , as it is responsible for delivering the
receipt to the voter. The VC node confirms the current system
time is within the defined election hours, and locates the
ballot with the specified serial −no . It verifies this ballot has not
been used for this election, either with the same or a different
vote code. Then, it compares the vote −code against every
hashed vote code in each ballot line, until it locates the cor-
rect entry and obtains the corresponding receipt −share . Next, it
marks the ballot as pending for the specific vote −code . Finally,
it multicasts a VOTE_P 〈 serial −no , vote −code , receipt −share 〉
message to all VC nodes, disclosing its share of the receipt. If
the located ballot is marked as voted for the specific vote −code ,

the VC node sends the stored receipt to the voter without any
further interaction with other VC nodes. 

Each VC node that receives a VOTE_P message, first val-
idates the received receipt −share according to the verifiable
secret sharing scheme used. Then, it performs the same
validations as the responder, and multicasts another VOTE_P
message (only once), disclosing its share of the receipt. When
a node collects h v = N v − f v valid shares, it uses the verifiable
secret sharing reconstruction algorithm to reconstruct the
receipt (the secret) and marks the ballot as voted for the
specific vote −code . Additionally, the responder node sends this
receipt back to the voter. A message flow diagram of our voting
protocol is depicted in Fig. 8 . As is evident from the diagram,
the time from the multicast of the first VOTE_P message until
collecting all receipt shares, is only slightly longer than a
single round-trip between two VC nodes. 

At election end time, each VC node stops processing VOTE
and VOTE_P messages, and initiates the vote-set consensus
protocol. It creates a set VS i of 〈 serial −no , vote −code 〉 tuples,
including all voted and pending ballots. Then, it participates in
the Interactive Consistency (IC) protocol of Diamantopoulos
et al. (2015) , with this set. At the end of IC, each node contains
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Fig. 9 – High level description of algorithm after IC. 
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 vector 〈 V S 1 , . . . , V S n 〉 with the Vote Set of each node, and
ollows the algorithm of Fig. 9 . Step 1 makes sure any ballot 
ith multiple submitted vote codes is discarded. Since vote 

odes are private, and cannot be guessed by malicious vote 
ollectors, the only way for multiple vote codes to appear is 
f malicious voters are involved, against whom our system is 
ot obliged to respect our contract . 

With a single vote code remaining, step 2 considers the 
hreshold above which to consider a ballot as voted for a 
pecific vote code. We select the N v − 2 f v threshold for which 

e are certain that even the following extreme scenario is 
andled. If the responder is malicious, submits a receipt to 
n honest voter, but denies it during vote-set consensus , the 
emaining N v − 2 f v honest VC nodes that revealed their 
eceipt shares for the generation of the receipt, are enough 

or the system to accept the vote code (receipt generation 

equires N v − f v nodes, of which f v may be malicious, thus 
 v − 2 f v are necessarily honest). 

Finally, step 3 makes sure vote codes that occur less than 

 v − 2 f v times are discarded. Under this threshold, there is 
o way a receipt was ever generated. 

At the end of this algorithm, each node submits the result- 
ng set of voted 〈 serial −no , vote −code 〉 tuples to each BB node,
hich concludes its operation for the specific election. 

.5.2. Vote Collectors for D-DEMOS/Async 
e make the following enhancements to the Vote Collection 

ubsystem, to achieve the completely asynchronous version 

-DEMOS/Async . During voting we introduce another step,
hich guarantees only a single vote code can be accepted 

towards producing a receipt) for a given ballot, using a unique- 
ess certificate (see below). We also employ an asynchronous 
inary consensus primitive to achieve Vote Set Consensus. 

More specifically, during voting, the responder VC node 
alidates the submitted vote code, but before disclosing its 
eceipt share, it multicasts an ENDORSE 〈 serial −no , vote −code 〉 

essage to all VC nodes. Each VC node, after making sure it 
as not endorsed another vote code for this ballot, responds 
ith an ENDORSEMENT 〈 serial −no , vote −code , sig VC i 〉 message,
here sig VC i is a digital signature of the specific serial-no 

nd vote-code, with VC i ’s private key. The responder collects 
 v − f v valid signatures, and places them in a uniqueness 

ertificate UCERT for this ballot. It then discloses its receipt 
hare via the VOTE_P message, but also attaches the formed 

CERT in the message. 
Each VC node that receives a VOTE_P message, first verifies 

he validity of UCERT and discards the message on error. On 
uccess, it proceeds as per the D-DEMOS/IC protocol (validat- 
ng the receipt share it receives and then disclosing its own 

eceipt share). 
The algorithms implementing our D-DEMOS/Async voting 

rotocol are presented in Algorithm 2 . 

lgorithm 2 Vote Collector algorithms for D-DEMOS/Async. 

1: procedure on VOTE ( serial −no , vote −code ) from source : 
2: if SysTime () between start and end 
3: b := locateBallot( serial −no ) 
4: if b. status == NotVoted 

5: l := ballot.VerifyVoteCode( vote −code ) 
6: if l � = null 
7: b. UCERT := {} � Uniqueness certificate 
8: sendAll(ENDORSE 〈 serial −no , vote −code 〉 ) 
9: wait for (N v − f v ) valid replies, fill b. UCERT 

0: b. status := Pending 

1: b. used −vc := vote −code 

2: b. lrs := {} � list of receipt shares 
3: sendAll(VOTE_P 〈 serial −no , vote −code , l. share 〉 ) 
4: wait for (N v − f v ) VOTE_P messages, fill b. lrs 

5: b. receipt := Rec (b. lrs ) 
6: b. status := Voted 

7: send(source, b. receipt ) 

8: else if b. status == Voted AND b. used −vc == vote −code 

9: send ( source , ballot . receipt ) 

0: procedure on VOTE_P ( serial −no , vote −code , share , UCERT ) from 

source : 
1: if UCERT is not valid 

2: return 

3: if SysTime () between start and end 
4: b := locateBallot( serial −no ) 
5: if b. status == NotVoted 

6: l := ballot.VerifyVoteCode( vote −code ) 
7: if l � = null 
8: b. status := Pending 

9: b. used −vc := vote −code 

0: b. lrs . Append ( share ) 
1: sendAll(VOTE_P( serial −no , vote −code , l. share )) 

2: else if b. status == Voted AND b. used −vc == vote −code 

3: b. lrs . Append ( share ) 
4: if size( b. lrs ) > = N v − f v 
5: b. receipt := Rec (b. lrs ) 
6: b. status := Voted 

7: function Ballot::VerifyVoteCode ( vote −code ) 
8: for l = 1 to ballot _ lines do 
9: if lines [ l ] . hash == h ( vote −code || lines [ l ] . salt ) return l 

return null 
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Fig. 10 – Diagram of message exchanges for a single vote during the D-DEMOS/Async vote collection phase. 

Fig. 11 – High level description of algorithm for asynchronous vote set consensus. 
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The voting process is outlined in the diagram of Fig. 10 ,
where we now see two round-trips are needed before the
receipt is reconstructed and posted to the voter. The for-
mation of a valid UCERT gives our algorithms the following
guarantees: 

a) No matter how many responders and vote codes are active
at the same time for the same ballot, if a UCERT is formed
for vote code vc a , no other uniqueness certificate for any
vote code different than vc a can be formed. 

b) By verifying the UCERT before disclosing a VC node’s
receipt share, we guarantee the voter’s receipt cannot be
reconstructed unless a valid UCERT is present. 

At election end time, each VC node stops processing
ENDORSE , ENDORSEMENT , VOTE and VOTE_P messages, and
follows the vote-set consensus algorithm in Fig. 11 , for each
registered ballot. 

Steps 1 and 2 ensure used vote codes are dispersed across
nodes. Recall our receipt generation requires N v − f v shares
to be revealed by distinct VC nodes, of which at least N v − 2 f v
are honest. Note that any two N v − f v subsets of N v have at
least one honest node in common. Because of this, if a receipt
was generated, at least one honest node’s ANNOUNCE will
be processed by every honest node, and all honest VC nodes
will obtain the corresponding vote code in these two steps.
Consequently, all honest nodes enter step 3 with an opinion
of 1 and binary consensus is guaranteed to deliver 1 as the
resulting value, thus safeguarding our contract against the
voters. In any case, step 3 guarantees all VC nodes arrive at
the same conclusion, on whether this ballot is voted or not. 

In the algorithm outlined above, the result from binary
consensus is translated from 0/1 to a status of “not-voted” or
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 unique valid vote code, in steps 4 and 5. The 5b case of this
ranslation, in particular, requires additional explanation.
ssume, for example, that a voter submitted a valid vote code 
c a , but a receipt was not generated before election end time.
n this case, an honest vote collector node VC i may not be 
ware of vc a at step 3, as steps 1 and 2 do not make any guar-
ntees in this case. Thus, VC i may rightfully enter consensus 
ith a value of 0. However, when honest nodes’ opinions 

re mixed, the consensus algorithm may produce any result.
n case the result is 1, VC i will not possess the correct vote 
ode vc a , and thus will not be able to properly translate the 
esult. This is what our recovery sub-protocol is designed 

or. VC i will issue a RECOVER - REQUEST multicast, and we 
laim that another honest node, VC h exists that possesses vc a 
nd replies with it. The reason for the existence of an honest 
C h is straightforward and stems from the properties of the 
inary consensus problem definition. If all honest nodes enter 
inary consensus with the same opinion a , the result of any 
onsensus algorithm is guaranteed to be a . Since we have 
n honest node VC i , that entered consensus with a value of 
, but a result of 1 was produced, there has to exist another 
onest node VC h that entered consensus with an opinion 

f 1. Since VC h is honest, it must possess vc a , along with 

he corresponding UCERT (as no other vote code vc b can be 
ctive at the same time for this ballot). Again, because VC h is 
onest, it will follow the protocol and reply with a well formed 

ECOVER-REPLY. Additionally, the existence of UCERT guar- 
ntees that any malicious replies can be safely identified and 

iscarded. 
As per D-DEMOS/IC , at the end of this algorithm, each 

ode submits the resulting set of voted 〈 serial −no , vote −code 〉 
uples to each BB node, which concludes its operation for the 
pecific election. 

.6. Voter 

e expect the voter, who has received a ballot from EA ,
o know the URLs of at least f v + 1 VC nodes. To vote, she
icks one part of the ballot at random, selects the vote code 
epresenting her chosen option, and loops, selecting a VC 

ode at random and posting the vote code, until she receives 
 valid receipt. After the election, the voter can verify two 
hings from the updated BB . First, she can verify her cast vote 
ode is included in the tally set. Second, she can verify that 
he unused part of her ballot, as “opened” at the BB , matches 
he copy she received before the election started. This step 

erifies that the vote codes are associated with the expected 

ptions as printed in the ballot. Finally, the voter can delegate 
oth of these checks to an auditor , without sacrificing her 
rivacy. This is because the cast vote code does not reveal 
er choice, and because the unused part of the ballot is 
ompletely unrelated to the used one. 

.7. Bulletin Board 

 BB node functions as a public repository of election-specific 
nformation. It can be read via a public and anonymous 
hannel, while writes happen over an authenticated channel,
mplemented with PKI originating from the voting system. BB 
odes are independent from each other, as a BB node never 
irectly contacts another BB node. Readers are expected to 
ssue a read request to all BB nodes, and trust the reply that
omes from the majority. Writers are also expected to write 
o all BB nodes; their submissions are always verified, and 

xplained in more detail below. 
After the setup phase, each BB node publishes its initializa- 

ion data. During election hours, BB nodes remain inert. After 
he voting phase, each BB node receives from each VC node,
he final vote-code set and the shares of msk . Once it receives 
f v + 1 identical final vote code sets, it accepts and publishes 
he final vote code set. Once it receives N v − f v valid key shares
again from VC nodes), it reconstructs msk , and decrypts and 

ublishes all the encrypted vote codes in its initialization 

ata. 
At this point, the cryptographic payloads corresponding to 

he cast vote codes are made available to the trustees. Trustees ,
n turn, read from the BB subsystem, perform their individual 
alculations and then write to the BB nodes; these writes 
re verified by the trustees ’ keys, generated by the EA . Once
nough trustees have posted valid data, the BB node combines 
hem and publishes the final election result. 

We intentionally designed our BB nodes to be as simple 
s possible for the reader, refraining from using a Replicated 
tate Machine , which would require readers to run algorithm- 
pecific software. The robustness of BB nodes comes from 

ontrolling all write accesses to them. Writes from VC nodes 
re verified against their honest majority threshold. Fur- 
her writes are allowed only from trustees , verified by their 
eys. 

Finally, a reader of our BB nodes should post her read 

equest to all nodes, and accept what the majority responds 
ith ( f b + 1 is enough). We acknowledge there might be 

emporary state divergence (among BB nodes), from the time 
 writer updates the first BB node, until the same writer 
pdates the last BB node. However, given our thresholds, this 
hould be only momentary, alleviated with simple retries.
hus, if there is no reply backed by a clear majority, the reader 
hould retry until there is one. 

.8. Trustees 

fter the end of election hours, each trustee fetches all 
he election data from the BB subsystem and verifies its 
alidity. For each ballot, there are two possible valid out- 
omes: (i) one of the A/B parts are voted, (ii) none of the
/B parts are voted. If both A/B parts of a ballot are marked
s voted, then the ballot is considered as invalid and is 
iscarded. Similarly, trustees also discard those ballots where 
ore than one commitments in an A/B part are marked as 

oted. 
In case (i), for each encoded option commitment in the 

nused part, Trustee � submits its corresponding share of the 
pening of the commitment to the BB . For each encoded 

ption commitment in the voted part, Trustee � computes and 

osts the share of the final message of the corresponding zero 
nowledge proof, showing the validity of those commitments.
eanwhile, those commitments marked as voted are col- 

ected to a tally set E tally . In case (ii), for each encoded option
ommitment in both parts, Trustee � submits its corresponding 
hare of the opening of the commitment to the BB . Finally,
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denote D 

(� ) 
tally as Trustee � ’s set of shares of option encoding

commitment openings, corresponding to the commitments
in E tally . Trustee � computes the opening share for E sum 

as
T � = 

∑ 

D ∈ D 

(� ) 
tally 

and then submits T � to each BB node. 

4.9. Auditors 

Auditors are participants of our system who can verify the
election process. The role of the auditor can be assumed by
voters or any other party. After election end time, auditors
read information from the BB and verify the correct execution
of the election, by verifying the following: 

1. within each opened ballot, no two vote codes are the same;
2. there are no two submitted vote codes associated with

any single ballot part; 
3. within each ballot, no more than one part has been used; 
4. all the openings of the commitments are valid; 
5. all the zero-knowledge proofs associated with the used

ballot parts are completed and valid. 

In case they received audit information (an unused ballot
part and a cast vote code) from voters who wish to delegate
verification, they can also verify: 

6. the submitted vote codes are consistent with the ones
received from the voters; 

7. the openings of the unused ballot parts are consistent
with the ones received from the voters. 

5. Discussion 

5.1. Potential attacks 

In this section, we outline some of the possible attacks against
the D-DEMOS systems, and the way our systems thwart them.
This is a high level discussion, aiming to help the reader un-
derstand why our systems work reliably. In Appendix A , we
provide the formal proofs of correctness and privacy, which
are the foundation of this discussion. 

In this high-level description, we intentionally do not
focus on Denial-of-Service attacks, as these kind of attacks
attempt to stop the system from producing a result, or stop
voters from casting their votes. Although these attacks are
important ( Huang et al., 2007 ), they cannot be hidden, as
voters will notice immediately the system not responding
(either because of our receipt mechanism and our liveness
property, or because of lack of information in the BB ). Instead,
we focus on attacks on the correctness of the election result,
as these have consequences typical voters cannot identify
easily. In this discussion, we assume the fault thresholds of
Section 4.3 are not violated, and the attacker cannot violate
the security of the underlying cryptographic primitives. 

Additionally, D-DEMOS is immune to phishing attacks
( Kumaraguru et al., 2010; Yue and Wang, 2010 ), as the voter
does not disclose credentials that can be used to vote any
option, but a vote code that corresponds to a specific option. 
In this section, we focus on correctness, noting that our
systems’ privacy is achieved by the security of our crypto-
graphic schemes (see Sections 2.3 and A.4 for details), and the
partial initialization data that each node of the distributed
subsystems receives at the setup phase. 

5.1.1. Malicious Election Authority component 
At a high level, the EA produces vote codes and corresponding
receipts. Vote codes are pointers to the associated crypto-
graphic payload, which includes option encodings . Options
encodings are used to produce the tally using homomorphic
addition. If the EA miss-encodes any option, it will be iden-
tified by the Zero-Knowledge proof validation performed by
the Auditors. 

The EA may instead try to “point” a vote code to a valid
but different option encoding (than the one described in the
voter’s ballot), in an attempt to manipulate the result. In this
case, the EA cannot predict which one of the two parts the
voter will use. Recall that the unused part of the ballot will be
opened in the BB by the trustees , and thus the voters can read
and verify the correctness of their unused ballot parts. 

As explained in detail in Appendix A.3 , if none of the above
attacks take place, there is perfect consistency between each
voter’s ballot and its corresponding information on the BB .
Because of this, as well as the correctness and the perfect hid-
ing property of our commitment scheme, the homomorphic
tally will be opened to the actual election result. 

5.1.2. Malicious voter 
A malicious voter can try to submit multiple vote codes to the
VC subsystem, attempting to cause disagreement between
its nodes. In this case, a receipt may be generated, depending
on the order of delivery of network messages. Note that, our
safety contract allows our system to either accept only one
vote code for this ballot, or discard the ballot altogether, as
the voter is malicious and our contract holds only against
honest voters. 

In the D-DEMOS/IC case, this is resolved at the Vote Set
Consensus phase. During the voting phase, each VC node ac-
cepts only the first vote code it receives (via either a VOTE or a
VOTE_P message), and attempts to follow our voting protocol.
This results in the generation of at most one receipt, for one
of the posted vote codes. However, during Vote Set Consensus ,
honest VC nodes will typically identify the multiple posted
vote codes and discard the ballot altogether, even if a receipt
was indeed generated. If the ballot is not discarded (e.g., be-
cause malicious vote collector nodes hid the extra vote codes
and honest nodes knew only of one), our N v − 2 f v threshold
guarantees that no vote codes with generated receipts are
discarded. 

In the D-DEMOS/Async case, this is resolved completely at
the voting phase. Each VC node still accepts only the first vote
code it receives, but additionally attempts to build a UCERT for
it. As the generation of a UCERT is guaranteed to be successful
only for a single vote code, the outcome of the voting protocol
will be either no UCERT being built, resulting in considering
the ballot as not-voted, or a single UCERT generated. 

Thus, the two systems behave differently in the case of
multiple posted vote codes, as D-DEMOS/IC typically discards
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uch ballots, while D-DEMOS/Async may process some of 
hem, when a UCERT is successfully built. 

.1.3. Malicious Vote Collector 
 malicious VC node cannot easily guess the vote codes in the 
oters’ ballots, as they are randomly generated. Additionally,
ecause vote codes are encrypted in the local state of each 

C node, the latter cannot decode and use them. Note that,
 vote code in a voter’s ballot is considered private until the 
oter decides to use it and transmits it over the network.
rom this point on, the vote code can be intercepted by the 
ttacker, as the only power it gives him is to cast it. 

A malicious VC node can obtain vote codes from collud- 
ng malicious voters. In this case, the only possible attack 
n correctness is exactly the same as if it originated from 

he malicious voter herself, and we already described our 
ounter-measures in Section 5.1.2 . 

A malicious VC node may become a responder . In this case,
his VC node may selectively transmit the cast vote code to a 
ubset of the remaining VC nodes, potentially including all the 
ther malicious and colluding nodes, and deliver the receipt 
o an honest voter. Consequently, the attacker controlling the 

alicious entities, may try to “confuse” the honest VC nodes 
nd have them disagree on whether the ballot is voted or not,
y having all malicious VC nodes lie at vote set consensus time,
eporting the ballot as not voted. 

Recall that, for the receipt to be generated, N v − f v VC 

odes need to cooperate, of which up to f v may be malicious.
his leaves N v − 2 f v honest nodes always present. 

In the case of D-DEMOS/IC, these N v − 2 f v honest nodes 
ill show up in the per ballot cross-tabulation, and will drive 

he decision to mark the ballot as voted (note that, in the 
lgorithm of Fig. 9 , N v − 2 f v is the lower threshold for a ballot
o be marked as voted). In the case of D-DEMOS/Async, we in- 
lude the ANNOUNCE -exchanging phase before the consensus 
lgorithm, to guarantee at least one of the N v − 2 f v honest 
odes’ ANNOUNCE message will be processed by every honest 
ode. In this case, all honest nodes will agree on entering 
onsensus that the ballot is voted, which guarantees the 
utcome of consensus to be in accordance. 

.1.4. Malicious BB nodes and trustees 
alicious entities between both the BB nodes and the trustees 

annot influence the security of both systems. The reason is, a 
ode of each of these two subsystems does not communicate 
ith the remaining nodes of the same subsystem, and thus 

annot influence either the correctness, or progress of the 
ystem as a whole. 

.2. System limitations 

e believe the D-DEMOS suite of e-voting systems are an 

mportant step towards achieving robust e-voting systems.
till, they have a few limitations which we list in this section.

First, we chose not to address secure ballot distribution in 

his work. The EA , which is common to both versions of the 
-DEMOS suite, outputs the ballots and we assume they are 
istributed out-of-band, in a privacy-preserving manner to 
ll voters. This issue can be circumvented with specialized 
ardware, such as in Joaquim et al. (2013) , or by simply print-
ng the ballots and having the voters pick them at random. In 

ny case, we leave this issue as future work. 
Second, in this work, we target 1-out-of-m elections, in 

hich voters can choose only one out of m options from 

heir ballots. Our system could be extended to support a 
-out-of-m type of voting scheme, where voters can select 
ore than one option, each equally weighted during tallying.

he homomorphic tally we employ, has the advantages of 
ightweight computation and communication complexity, but 
annot support more complex voting schemes such as STV.
o support more complex voting schemes, we could construct 
 mix-net based variant of our system. However, this is out of 
cope of this paper and we leave it as future work. 

Additionally, we use 128-bit sized vote-codes, which would 

roduce human readable codes of 22 characters given Base64 
ncoding. This is obviously a sizable character string for hu- 
ans to input and verify. However, the 128-bit size we chose 

s simply a security parameter, as it affects the ability of the 
ttacker to guess vote codes (see Section A.2 ). Thus, smaller,
r even larger sized vote-codes can be used depending on the 
ecurity requirements of the specific application. For details 
n the trade-off between vote-code size and security, we refer 
he interested reader to Section A.2.3 . 

Finally, our systems share the same administration bur- 
ens as all fault-tolerant systems. Deployment requires 
arefully select the correct number of nodes for each sub- 
ystem, ahead of time. This decision affects robustness,
erformance, and ease of administration. 

. Implementation and evaluation 

.1. Implementation 

oting system: We implement the Election Authority compo- 
ent of our system as a standalone C++ application, and all 
ther components in Java. Whenever we store data structures 
n disk, or transmit them over the network, we use Google 
rotocol Buffers ( Inc., 2015 ) to encode and decode them 

fficiently. We use the MIRACL library ( MIRACL, 2015 ) for 
lliptic-curve cryptographic operations. In all applications re- 
uiring a database, we use the PostgreSQL relational database 
ystem ( community, 2015b ). 

We build an asynchronous communications stack (ACS) on 

op of Java, using Netty ( Community, 2015a ) and the asyn- 
hronous PostgreSQL driver from Laisi (2015) , using TLS based 

uthenticated channels for inter-node communication, and 

 public HTTP channel for public access. This infrastructure 
ses connection-oriented sockets, but allows the applications 
unning on the upper layers to operate in a message-oriented 

ashion. We use this infrastructure to implement VC and BB 
odes. We implement “verifiable secret sharing with honest 
ealer”, by utilizing Shamir’s Secret Share library implemen- 
ation ( Tiemens, 2015 ), and having the EA sign each share. 

For D-DEMOS/IC, we use the implementation of IC,BC-RBB 
Interactive Consistency algorithm, using asynchronous bi- 
ary consensus and reliable broadcast without signatures) 

rom Diamantopoulos et al. (2015) . We use the election end 

ime as a synchronization point to start the algorithm, and 
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configure the timeout of the first phase of the algorithm ac-
cording to the number of VC nodes and the number of ballots
in the election. For D-DEMOS/Async, we implement Bracha’s
Binary Consensus directly on top of the ACS, and we use that
to implement our Vote Set Consensus algorithm (depicted
in Fig. 11 ). We introduce a version of Binary Consensus that
operates in batches of arbitrary size; this way, we achieve
greater network efficiency. 

Additionally, we batch most of the asynchronous vote set
consensus “announce” phase’s messages. If this phase was
implemented without optimization, it would result in a mes-
sage complexity of n ∗N v (individual ANNOUNCE messages),
imposing a significant network load. This is because each
node has to multicast an ANNOUNCE message for each ballot,
and wait for n (N v − f v ) replies to progress. To optimize it, we
have each node consult its local database and diagnose cases
where another node already knows the correct vote code and
UCERT for a specific ballot. This is feasible because when
a node VC b discloses its share using the VOTE _ P message,
it also includes the UCERT , and this fact is recorded in the
recipient’s node ( VC a ) database along with the sender node’s
share. For these cases, we produce ANNOUNCE _ RANGE mes-
sages addressed to individual nodes, having the source node
VC a announce a range of ballot serial numbers as voted, a fact
that is already known to the recipient node VC b (because VC a

located recorded VOTE _ P messages from VC b ). We use the
same mechanism to announce ranges of not-voted ballots. 

Trustee android application: In addition to the web interface
for trustees , we also implement a specialized Trustee Android
application. We re-use the MIRACL library on Android and
provide a simple user interface for trustees , where they use a
single button press to perform each of their required tasks:
download their initialization data from the EA , download
election data from the BB , calculate their cryptographic con-
tribution to the result opening, and finally upload their share
of the opening to the BB . 

Web browser replicated service reader: Our choice to model
the Bulletin Board as a replicated service of non-cooperating
nodes puts the burden of response verification on the reader
of the service; a human reader is expected to manually issue
a read request to all nodes, then compare the responses and
pick the one posted by the majority of nodes. To alleviate
this burden, we implement a web browser extension which
automates this task, as an extension for Mozilla Firefox. The
user sets up the list of URLs for the replicated service. The
add-on (1) intercepts any HTTP request towards any of these
URLs, (2) issues the same request to the rest of the nodes,
and (3) captures the responses, compares them in binary
form, and routes the response coming from the majority, as a
response to the original request posted by the user. Majority
is defined by the number of defined URL prefixes; for 3 such
URLs, the first 2 equal replies suffice. 

With the above approach, the user never sees a wrong
reply, as it is filtered out by the extension. Also note this
process will be repeated for all dependencies of the initial
web page (images, scripts, CSS), as long as they come from
the same source (with the same URL prefix), verifying the
complete user visual experience in the browser. 

Note that, this mechanism is required only when reading
data from the Bulletin Board, such as the election result, or
audit information. This mechanism is neither needed nor
used during voting, where the voter interacts with the Vote
Collection subsystem using our voting protocol. 

6.2. Evaluation 

We experimentally evaluate the performance of our voting
system, focusing mostly on our vote collection algorithm,
which is the most performance critical part. We conduct
our experiments using a cluster of 12 machines, connected
over a Gigabit Ethernet switch. The first 4 are equipped with
Hexa-core Intel Xeon E5-2420 @ 1.90 GHz, 16 GB RAM, and
one 1TB SATA disk, running CentOS 7 Linux, and we use them
to run our VC nodes. The remaining 8 comprise dual Intel(R)
Xeon(TM) CPUs @ 2.80 GHz, with 4 GB of main memory, and
two 50GB disks, running CentOS 6 Linux, and we use them as
clients. 

We implement a multi-threaded voting client to simulate
concurrency. This client starts the requested number of
threads, each of which loads its corresponding ballots from
disk and waits for a signal to start. From then on, the thread
enters a loop where it picks one VC node and vote code at
random, requests the voting page from the selected VC (HTTP
GET), submits its vote (HTTP POST), and waits for the reply
(receipt). This simulates multiple concurrent voters casting
their votes in parallel, and gives an understanding of the
behavior of the system under the corresponding load. We
employ the PostgreSQL RDBMS ( community, 2015b ) to store
all VC initialization data from the EA . 

We start off by demonstrating our system’s capability
of handling large-scale elections. To this end, we generate
election data for referendums, i.e., m = 2 , and vary the total
number of ballots n from 50 million to 250 million. This causes
the database size to increase accordingly and impact queries.
We fix the number of concurrent clients to 400 and cast a
total of 200,000 ballots, which are enough for our system to
reach its steady-state operation (larger experiments result
in the same throughput). Fig. 12 shows the throughput of
both D-DEMOS/IC and D-DEMOS/Async declines slowly, even
with a five-fold increase in the number of eligible voters. The
cause of the decline is the increase of the database size. Note
that, an “operation” in this experiment is the casting of a
vote to a VC -node, including obtaining the generated receipt.
This holds for all subsequent experiments where we report
throughput in operations per second. 

In our second experiment, we explore the effect of m ,
i.e., the number of election options, on system performance.
We vary the number of options from m = 2 to m = 10 .
Each election has a total of n = 200 , 000 ballots which we
spread evenly across 400 concurrent clients. As illustrated
in Fig. 13 , our vote collection protocol manages to deliver
approximately the same throughput regardless of the value
of m , for both D-DEMOS/IC and D-DEMOS/Async. Notice that
the major extra overhead m induces during vote collection, is
the increase in the number of hash verifications during vote
code validation, as there are more vote codes per ballot. The
increase in number of options has a minor impact on the
database size as well (as each ballot has 2 m options). 

Next, we evaluate the scalability of our vote collection pro-
tocol by varying the number of vote collectors and concurrent
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Fig. 12 – Vote collection throughput graphs for D-DEMOS/IC (a) and D-DEMOS/Async(b), versus the number of total election 

ballots n . 

Fig. 13 – Vote collection throughput graphs for D-DEMOS/IC (a) and D-DEMOS/Async(b), versus the number of election 

options m . 
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lients. We eliminate the database, by caching the election 

ata in memory and servicing voters from the cache, to 
easure the net communication and processing costs of our 

oting protocol. We vary the number of VC nodes from 4 to 
6, and distribute them across the 4 physical machines. Note 
hat, co-located nodes are unable to produce vote receipts 
ia local messages only, since the N v − f v threshold cannot 
e satisfied, i.e., cross-machine communication is still the 
ominant factor in receipt generation. For election data, we 
se the dataset with n = 200 , 000 ballots and m = 4 options,
hich is enough for our system to reach its steady state. 

In Fig. 14 , we plot the average response time of both our 
ote collection protocols, versus the number of vote collec- 
ors, under different concurrency levels, ranging from 500 to 
000 concurrent clients. Results for both systems illustrate an 

lmost linear increase in the client-perceived latency, for all 
oncurrency scenarios, up to 13 VC nodes. From this point on,
hen four logical VC nodes are placed on a single physical 
achine, we notice a non-linear increase in latency. We at- 

ribute this to the overloading of the memory bus, a resource 
hared among all processors of the system, which services 
ll (in-memory) database operations. D-DEMOS/IC has a 
maller response time with its single round intra- VC node 
ommunication, while D-DEMOS/Async is slightly slower due 
o the extra Uniqueness Certificate producing round. 

Fig. 15 shows the throughput of both our vote collection 

rotocols, versus the number of vote collectors, under differ- 
nt concurrency levels. We observe that, in terms of overall 
ystem throughput, the penalty of tolerating extra failures 
increasing the number of vote collectors) manifests early 
n. We notice an almost 50% decline in system through- 
ut from 4 to 7 VC nodes for D-DEMOS/IC, and a bigger 
ne for D-DEMOS/Async. However, further increases in the 
umber of vote collectors lead to a much smoother, linear 
ecrease. Overall, D-DEMOS/IC achieves better throughput 
han D-DEMOS/Async, due to exchanging fewer messages 
nd lacking signature operations. 

In Fig. 16 , we plot a different view of both our systems’
hroughput, this time versus the concurrency level (ranging 
rom 100 to 2000). Plots represent number of VC node settings 
4–16), thus different fault tolerance levels. Results show 

oth our systems have the nice property of delivering nearly 
onstant throughput, regardless of the incoming request load,
or a given number of VC nodes. 

We repeat the same experiment by emulating a WAN 

nvironment using netem ( Hemminger et al., 2005 ), a network 
mulator for Linux. We inject a uniform latency of 25 ms 
typical for US coast-to-coast communication ( Grigorik, 2013 )) 
or each network packet exchanged between vote collec- 
or nodes, and present our results in Figs. 17–19 . A simple 
omparison between LAN and WAN plots illustrates our 
ystem manages to deliver the same level of throughput and 

verage response time, regardless of the increased intra- VC 

ommunication latency. 
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Fig. 14 – Vote Collection response time of D-DEMOS/IC (a) and D-DEMOS/Async (b), versus the number of VC nodes, under a 
LAN setting. Election parameters are n = 200,000 and m = 4. 

Fig. 15 – Vote Collection throughput of D-DEMOS/IC (a) and D-DEMOS/Async (b), versus the number of VC nodes, under a 
LAN setting. Election parameters are n = 200,000 and m = 4. 

Fig. 16 – Vote Collection throughput of D-DEMOS/IC (a) and D-DEMOS/Async (b), versus the number of concurrent clients, 
under a LAN setting. Plots illustrate performance for different cardinalities of VC nodes, thus different fault tolerance 
settings. Election parameters are n = 200,000 and m = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The benefits of the in memory approach, expressed both
in terms of sub-second client (voter) response time and in-
creased system throughput, make it an attractive alternative
to the more standard database setup. For instance, in cases
where high-end server machines are available, it would be
possible to service mid to large scale elections completely
from memory. We estimate the size of the in-memory repre-
sentation of a n = 200 K ballot election, with m = 4 options,
at approximately 322 MB (see Maneas, 2015 for derivation
details). In this size, we include 64-bit Java pointers overhead,
as we are using simple hash-maps of plain Java classes.
This size can be decreased considerably in a more elaborate
implementation, where data is serialized by Google Protocol
Buffers, for example. 

Finally, in Fig. 20 , we illustrate a breakdown of the duration
of each phase of the complete voting system (D-DEMOS/IC
and D-DEMOS/Async), versus the total number of ballots cast.
We assume immediate phase succession, i.e., the vote collec-
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Fig. 17 – Vote Collection response time of D-DEMOS/IC (a) and D-DEMOS/Async (b), versus the number of VC nodes, under a 
WAN setting. Election parameters are n = 200,000 and m = 4. 

Fig. 18 – Vote Collection throughput of D-DEMOS/IC (a) and D-DEMOS/Async (b), versus the number of VC nodes, under a 
WAN setting. Election parameters are n = 200,000 and m = 4. 

Fig. 19 – Vote Collection throughput of D-DEMOS/IC (a) and D-DEMOS/Async (b), versus the number of concurrent clients, 
under a WAN setting. Plots illustrate performance for different cardinalities of VC nodes, thus different fault tolerance 
settings. Election parameters are n = 200,000 and m = 4. 
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ion phase ends when all votes have been cast, at which point 
he vote set consensus phase starts, and so on. The “Push 

o BB and encrypted tally” phase is the time it takes for the 
ote collectors to push the final vote code set to the BB nodes,
ncluding all actions necessary by the BB to calculate and 

ublish the encrypted result. The “Publish result” phase is the 
ime it takes for trustees to calculate and push their share of 
he opening of the final tally to the BB, and for the BB to publish
he final tally. Note that, in most voting procedures, the vote 
ollection phase would in reality last several hours and even 

ays as stipulated by national law (see Estonia voting system).
hus, looking only at the post-election phases of the system,
e see that the time it takes to publish the final tally on the
B is quite fast. Comparing the two versions of D-DEMOS,
e observe D-DEMOS/IC is faster during both Vote Collection 

nd Vote Set Consensus phases. This is expected, because of 
he extra communication round of D-DEMOS/Async during 
oting, as well as the more complex consensus-per-ballot 
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Fig. 20 – This figure illustrates the duration of all system phases. Results depicted are for 4 VCs, n = 200,000 and m = 4. All 
phases are disk based. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 In Kiayias et al. (2015) , the authors use the term voter 
privacy/receipt-freeness , but they actually refer to the same property. 
approach to achieving Vote Set Consensus. However, D-
DEMOS/Async is more robust than D-DEMOS/IC, as it does
not require any kind of synchronization between nodes. 

Overall, although we introduced Byzantine Fault Tolerance
across all phases of a voting system (besides setup), we
demonstrate it achieves high performance, enough to run
real-life elections of large electorate bodies. 

7. Conclusion and future work 

We have presented a suite of state-of-the-art, end-to-end
verifiable, distributed internet voting systems with no single
point of failure besides setup. Both systems allow voters to
verify their vote was tallied-as-intended without the assis-
tance of special software or trusted devices, and external
auditors to verify the correctness of the election process.
Additionally, the systems allows voters to delegate auditing
to a third party auditor, without sacrificing their privacy.
We have provided a model and security analysis of both
voting systems. Finally, we have implemented prototypes of
the integrated systems, measured their performance, and
demonstrated their ability to handle large-scale elections. 

We have used our system to conduct exit polls at three
large voting sites for two national-level elections. We look for-
ward to gaining more experience and feedback about our sys-
tems by exploring their use in election and decision-making
procedures at all levels throughout the Greek university
system, and studying their adoption for use by the General
Confederation of Greek Workers, the largest civil union of
workers in Greece. Finally, our systems currently support
only 1-out-of-m elections, in which voters choose one out of m
options from their ballots. As future work, we will expand our
systems to support k-out-of-m elections. 

We hope our work contributes towards improving the
election process, while also reducing the cost of performing
elections in modern democracies. 
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Appendix A. Security of D-Demos 

In this section, we present at length the security prop-
erties that D-DEMOS achieves. Specifically, we show that
D-DEMOS/IC and D-DEMOS/Async achieve liveness and
safety, according to which every voter that submits her vote
prior to a well-defined time threshold, will obtain a valid
receipt (liveness) and her vote will be included in the election
tally and published in the BB (safety contract). In addition,
both versions achieve end-to-end verifiability and voter pri-
vacy at the same level as Kiayias et al. (2015) 2 , thus allowing
a top-tier integrity guarantee without compromising secrecy. 

We use m, n to denote the number of options and vot-
ers respectively. We denote by λ the cryptographic security
parameter and we write negl (λ) to denote that a function
is negligible in λ, i.e., it is asymptotically smaller than the
inverse of any polynomial in λ. 

The remaining sections reference heavily the Crypto-
graphic Tools Section 2.3 , which includes the notions and
claims about the security of the cryptographic tools we use in
the two versions of D-DEMOS. 

A.1. Liveness 

To prove the liveness that D-DEMOS guarantees, we assume (i)
an upper bound δ on the delay of the delivery of messages and
(ii) an upper bound � on the drift of all clocks (see Assump-
tions B and C in Section 4.3 ). Furthermore, to express liveness
rigorously, we formalize the behavior of honest voters regard-
ing maximum waiting before vote resubmission as follows: 

https://doi.org/10.13039/501100000781
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Fig. A.1 – Time upper bounds at Clock , Clock [ V ] , Clock [ V C] and other honest VC nodes’ clocks at each step of the interaction of 
the voter V with responder VC during D-DEMOS/IC voting phase. The grayed cells indicate the reference point of the clock 

drifts at each step. 
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efinition 1 ([ d ] - Patience ). Let V be an honest voter that sub-
its her vote at some VC node when Clock [ V] = T . We say that
 is [ d ]- patient , when the following condition holds: 

If V does not obtain a valid receipt by the time that 
lock [ V] = T + d, then she will blacklist this VC node and 

ubmit the same vote to another randomly selected VC node.

.1.1. Liveness of D-DEMOS/IC 

sing Definition 1 , we prove the liveness of D-DEMOS/IC in the 
ollowing theorem. A crucial step in the proof, is to compute 
n upper bound on the time required for an honest responder 
C node to issue a receipt to V . This bound will be derived by

he upper time bounds that correspond to each step of the 
oting protocol, as described in Sections 4.5.1 and 4.6 , taking 
lso into account the � and δ upper bounds. In Fig. A.1 , we 
rovide upper bounds on the advance of the global clock and 

he internal clocks of V and the VC nodes, so that we illustrate 
he description of the computation described below. 
heorem 1 (Liveness of D-Demos/IC) . Consider a D-DEMOS/IC 

un with n voters, m options and N v VC nodes. Let A be an adversary
gainst D-DEMOS/IC under the model described in Section 4.3 that 
orrupts up to f v < N v /3 VC nodes. Assume there is an upper bound

on clock synchronization loss and an upper bound δ on the delay 
f message delivery among honest VC nodes. Let T comp be the 
orst-case running time of any procedure run by the VC nodes and 

he voters described in Sections 4.5.1 and 4.6 , respectively, during 
he voting protocol. 

Let T end denote the election end time. Define 

 wait := (N v + 4) T comp + 8� + 4 δ. 

hen, the following conditions hold: 

1. Every [ T wait ] -patient voter V that is engaged in the voting
protocol by the time that Clock [ V] = T end − ( f v + 1) · T wait , will
obtain a valid receipt. 



c o m p u t e r s  &  s e c u r i t y  8 3  ( 2 0 1 9 )  2 6 8 – 2 9 9  289 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Every [ T wait ] -patient voter V that is engaged in the voting pro-
tocol by the time that Clock [ V] = T end − y · T wait , where y ∈ [ f v ],
will obtain a valid receipt with more than 1 − 3 −y probability. 

Proof. Let V be a [ T wait ] -patient voter initialized by the adver-
sary A when Clock = Clock [ V] = T . Upon initialization, V ’s
internal clock is synchronized with the global clock at time
Clock = Clock [ V] = T . After at most T comp steps, V submits
her vote ( serial −no , vote −code ) at internal clock time: Clock [ V] =
T + T comp , hence at global clock time: Clock ≤ T + T comp + �. At
that time, the internal clock of VC will be at most T + T comp + 2�.
Thus, VC will receive the vote of V at internal time Clock [ VC] ≤
T +T comp +2�+δ. Then, VC performs at most T comp steps to verify
the validity of the vote before it broadcasts its receipt share. 

All the other honest VC nodes will receive VC ’s receipt
share by global clock time: 

Clock ≤ (T + T comp + 2�+ δ)+ (T comp +�+δ) = T +2 T comp +3�+2 δ,

which implies that the time at their internal clocks is at most
T + 2 T comp + 4� + 2 δ. Then, they will verify VC ’s share and
broadcast their shares for V ’s vote after at most T comp steps.
The global clock at that point is no more than 

Clock ≤ (T + 2 T comp + 4�+ 2 δ) + T comp + � = T + 3 T comp + 5�+ 2 δ.

Therefore, VC will obtain the other honest VC nodes’ shares at
most when 

Clock [ VC] ≤ (T + 3 T comp + 5� + 2 δ) + � + δ = T + 3 T comp + 6� + 3 δ

and will process them in order to reconstruct the receipt for
V . In order to collect N v − f v − 1 receipt shares that are suffi-
cient for reconstruction, VC may have to perform up to N v − 1
receipt-share verifications, as the f v malicious VC nodes may
also send invalid messages. This verification requires at most
(N v −1) ·T comp steps. Taking into account the T comp steps for the
reconstruction process, we conclude that VC will finish com-
putation by global time 

= (T + 3 T comp + 6� + 3 δ) + (N v − 1) T comp + T comp + �

= T + (N v + 3) T comp + 7� + 3 δ. 

Finally, V will obtain the receipt after at most δ delay from the
moment that VC finishes computation, and she needs T comp

steps to verify the validity of this receipt. Taking into consider-
ation the drift on V ’s internal clock, we have that if V is honest
and has not yet obtained a receipt by the time that 

Clock [ V] = 

(
T + (N v +3) T comp + 7�+ 3 δ

)+ T comp +�+ δ = T + T wait ,

then, being [ T wait ] -patient, she can blacklist VC and resubmit
her vote to another VC node. We will show that the latter fact
implies conditions (1) and (2) in the statement of the theorem:

Condition (1): since there are at most f v malicious VC
nodes, V will certainly run into an honest VC node at her
( f v +1) th attempt (if reached). Therefore, if V is engaged in the
voting protocol by the time that Clock [ V] = T end − ( f v + 1) · T wait ,

then she will obtain a receipt. 
Condition (2): if V has waited for more than y·T wait time and

has not yet received a receipt, then it has run at least y failed
attempts in a row. At the j th attempt, V has f v −( j−1) 
N v −( j−1) probability

to randomly select one of the remaining f v − ( j − 1) malicious
VC nodes out of the N v −( j−1) non-blacklisted VC nodes. Thus,
the probability that V runs at least y failed attempts in a row is 

y ∏ 

j=1 

f v − ( j − 1) 
N v − ( j − 1) 

= 

y ∏ 

j=1 

f v − ( j − 1) 
3 f v + 1 − ( j − 1) 

< 3 −y . 

Therefore, if V is engaged in the voting protocol by the time
that Clock [ V] = T end − y · T wait , then the probability that she will
obtain a receipt is more than 1 − 3 −y . �

A.1.2. Liveness of D-DEMOS/Async 
The proof of liveness in the asynchronous version of D-DEMOS
differs from the one of D-DEMOS/IC in the computation of the
T wait upper bound, which now depends on the steps of the VC
nodes presented in Section 4.5.2 . The upper bounds on the ad-
vance of the global clock and the internal clocks of V and the
VC nodes is analogously differentiated, as depicted in Fig. A.2 .

Theorem 2 (Liveness of D-Demos/Async) . Consider a D-
DEMOS/Async run with n voters, m options and N v VC nodes. Let
A be an adversary against D-DEMOS/Async with m options and
n voters under the model described in Section 4.3 that corrupts up
to f v < N v /3 VC nodes. Assume there is an upper bound � on clock
synchronization loss and an upper bound δ on the delay of message
delivery among honest VC nodes. Let T comp be the worst-case running
time of any procedure run by the VC nodes and the voters described
in Sections 4.5.2 and 4.6 , respectively, during the voting protocol. 

Let T end denote the election end time. Define 

T wait := (2 N v + 5) T comp + 12� + 6 δ. 

Then, the following conditions hold: 

1. Every [ T wait ] -patient voter that is engaged in the voting protocol
by the time that Clock [ V] = T end − ( f v + 1) · T wait , will obtain a
valid receipt. 

2. Every [ T wait ] -patient voter that is engaged in the voting protocol
by the time that Clock [ V] = T end − y · T wait , where y ∈ [ f v ], will
obtain a valid receipt with more than 1 − 3 −y probability. 

Proof. The T wait upper bound is computed according to the
diagram in Fig. 10 . Following the reasoning in the proof of
Theorem 1 , we get that 

T wait := (2 N v + 5) T comp + 12� + 6 δ. 

Subsequently, we show that conditions (1) and (2) hold for any
[ T wait ] -patient voter, exactly as in the proof of Theorem 1 . �

A.2. Safety 

D-DEMOS’s safety guarantee is expressed as a contract ad-
hered by the VC subsystem, stated in Section 4.2 . This contract
is fulfilled by both D-DEMOS versions, though D-DEMOS/IC
requires some additional assumptions to hold, as compared
with D-DEMOS/Async that assumes only fault tolerance of the
underlying subsystems (see Section 4.3 ). Moreover, the proofs
of safety of the two versions diverge. Specifically, the safety
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Fig. A.2 – Time upper bounds at Clock , Clock [ V ] , Clock [ V C] and other honest VC nodes’ clocks at each step of the interaction of 
the voter V with responder VC during D-DEMOS/Async voting phase. The grayed cells indicate the reference point of the 
clock drifts at each step. 
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f D-DEMOS/IC relies on the security of the fixed SHA-256 
ash function and the AES-128-CBC$ symmetric encryption 

cheme. Therefore, the safety statement is with respect to 
pecific security parameters. On the contrary, the safety of 
-DEMOS/Async depends on the RSA signature scheme,

herefore our analysis follows an asymptotic approach. 

.2.1. Safety of D-DEMOS/IC 

s in liveness, we assume the upper bounds δ, � on the 
elay of message delivery and the drifts of all nodes’ clocks 
o implement T end and T barrier as the starting point and the 
arrier of the IC protocol. We consider 128-bit security of the 
ommitment scheme assuming that every adversary running 
n less than 2 64 steps has no more than 2 −128 probability of 
btaining any information about a single committed value 

i.e., we set c = 6 / 7 , where c is mentioned in Section 2.3.1 ). 

heorem 3 (Safety of D-Demos/IC) . Consider a D-DEMOS/IC run 
ith n voters, m options, vote-codes of bit-length κ, N v VC nodes, N b 

B nodes and N t trustees, under the restrictions that (i) m · n ≤ 2 41 

nd (ii) κ ≥ 105 . Let A be an adversary against D-DEMOS under 
he model described in Section 4.3 that corrupts up to f v < N v /3 VC
odes, up to f b < N b /2 BB nodes and up to N t − h t out-of N t trustees.
ssume there is an upper bound � on clock synchronization loss and 
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an upper bound δ on the delay of message delivery. Let T end be the
end of the voting phase and T barrier be the end of the value dissem-
ination phase of the interactive consistency protocol, as described in
Section 4.3 . Then, all honest voters who received a valid receipt from
a VC node, are assured that their vote will be published on the honest
BB nodes and included in the election tally, with probability at least 

1 − n f v 
2 64 − f v 

− (
3(mn ) 3 + 2 25 (mn ) 2 + 2 64 mn 

) · 2 −125 . 

Proof. A crucial step for proving the safety of D-DEMOS/IC
is to ensure it is hard for the adversary to compute non-
submitted valid vote codes from the ballots of honest voters.
This is done in the following claim. 

Claim 3.1 : The probability that A outputs a vote code from the
ballot of some honest voter V which was not cast by V is less than(
3(mn ) 3 + 2 25 (mn ) 2 + 2 64 mn 

) · 2 −125 . 

Proof of Claim 3.1: Let C be the set of all vote codes gener-
ated by the EA. An arbitrary execution of A determines the
following subsets of C : (i) the set of vote codes C 1 that all
honest voters submitted at the election phase, (ii) the set of
the vote codes C 2 located in unused ballots of honest voters
that did not engage in the voting protocol and (iii) the set of
vote codes C 3 in the ballots of corrupted voters. 

Since every vote code is a random κ-bit string, the event
that A guesses some of the 2 mn vote codes can happen with
no more than 2 mn (2 −κ ) = 2 −(κ−1) mn probability. Further-
more, A is restricted by the fault tolerance thresholds of the
VC, BB and trustees subsystems. Hence, by (i) the random
vote code generation, (ii) the fault tolerance thresholds, (iii)
the hiding property of the commitment scheme and (iv)
the perfect simulatability of the zero-knowledge proofs,
we assume that except for some probability bounded by
2 −(κ−1) mn + 0 + 2 −(κ−1) mn + 0 = 2 −(κ−2) mn, the information
associated with the vote codes that A obtains is, 

(i) The VC initialization data (for every VC node that A
corrupts). 

(ii) All the BB initialization data. The part of these data
that is associated with the vote codes is the list of all
AES-128-CBC$ vote code encryptions under msk . 

(iii) The set C 1 ∪ C 2 ∪ C 3 . 

Reduction to IND-CPA security of AES-128-CBC$. Given the
code of A , we construct an algorithm B against the
(t, q, (2 t+258·q+3 q 2 )·2 −128 ) -IND-CPA security of the underlying
AES-128-CBC$ (see Section 2.3.4 ). Namely, B invokes A and at-
tempts to simulate a setup and run of D-DEMOS/IC as follows:

1. B chooses a random triple ( j ∗, � ∗, X 

∗) ∈ [ m ] × [ n ] × { A, B }. 
2. For every ( j , � , X ) ∈ [ m ] × [ n ] × { A, B } �{( j ∗, � ∗, X 

∗)}, B executes
the following steps: 
(a) B chooses a random 64-bit vote −code X 

�, j and associates

it with option X 
�, j . 

(b) B makes an encryption query 
(
m 

X 
0 ,�, j , m 

X 
1 ,�, j 

) =(
vote −code X 

�, j , vote −code �, j 
)X and receives an AES-

128-CBC$ encryption of vote −code X 
�, j . 

(c) B chooses a random salt X 
�, j and computes H 

X 
�, j ←

SHA 256( vote −code X 
�, j , salt 

X 
�, j ) . 
(d) B generates the cryptographic payload payload 
�,πX 

� 
( j) 

associated with option X 
�, j . 

3. B chooses random values vote −code ∗0 , vote −code ∗1 ∈
{ 0 , 1 } 64 , salt ∗ ∈ { 0 , 1 } 64 . 

4. B makes the encryption query challenge
vote −code ∗0 , vote −code ∗1 and receives the AES-128-CBC$
encryption y ∗ of vote −code ∗b , where b is the outcome of a
coin-flip. 

5. B tabulates BB initialization data as EA does, by using
vote −code ∗0 as the vote code associated with option � ∗, j ∗ ,

the hash SHA 256( vote −code ∗0 , salt 
∗ ) as H 

X ∗
� ∗, j ∗ and y ∗ as the

AES-128-CBC$ ciphertext that corresponds to vote −code ∗0 . 
6. B interacts with A according to the model described in

Section 4.3 . 
7. If A outputs vote −code ∗0 , then B outputs 0. Otherwise, B

outputs 1. 

Let G be the event that A outputs some vote −code ∈
C \ (C 1 ∪ C 2 ∪ C 3 ) . By the construction of B, if the IND-CPA
challenge bit b is 0, then B simulates a D-DEMOS/IC election
perfectly. Furthermore, if b = 0 and vote −code corresponds
to the randomly chosen position ( j ∗, � ∗, X 

∗) ∈ [ m ] × [ n ] × { A, B },
then it outputs 0 ( vote −code = vote −code ∗0 ). Since B randomly
guesses the triple ( � ∗, j ∗, X 

∗), we have that 

Pr [ B outputs 1 | b = 0] = 1 − Pr [ B outputs 0 | b = 0] 

= 1 − Pr [ G | b = 0] 
2 mn 

. (A.1)

On the other hand, if b = 1 , then vote −code ∗0 is the preimage
of SHA 256( vote −code ∗0 , salt 

∗ ) , while y ∗ is the encryption of an
independently generated vote code. Based on this observa-
tion, we construct an algorithm C that acts as an attacker
against the (t , t 2 · 2 −256 ) -collision resistance of SHA-256 (see
Section 2.3.3 ). Namely, on input some hash value H , C executes
the following steps: 

1. C chooses a random triple ( j ∗, � ∗, X 

∗) ∈ [ m ] × [ n ] × { A, B }. 
2. For every ( j , � , X ) ∈ [ m ] × [ n ] × { A, B }, C chooses random

values vote −code X 
�, j ∈ { 0 , 1 } 160 , salt X 

�, j ∈ { 0 , 1 } 64 . 
3. C tabulates all election information normally except that

for ( � ∗, j ∗, X 

∗) it provides H instead of the hash value
SHA 256( vote −code X 

∗
�, j , salt 

X ∗
�, j ) . 

4. C interacts with A according to the model described in
Section 4.3 . 

5. C receives the output of A , labeled by z . 
6. C searches for a w ∈ {0, 1} 64 s.t. h (z, w ) = H. If C finds such a

w , then it outputs z || w . Otherwise, it aborts. 

For simplicity and w.l.o.g., we can assume that for each
( j , � , X ) ∈ [ m ] × [ n ] × { A, B }, the time complexity for infor-
mation preparation is on the order of 256 3 (cube of the
string length, set to 256 bits). The running time of A is
2 64 . Assuming linear complexity for hashing and check-
ing a random value, the brute force search for the correct
w in step 6. takes 2 64 · 256 = 2 72 steps. Therefore, given
that mn ≤ 2 41 , we conclude the C runs in steps bounded by
2 mn · 256 3 + 2 64 + 2 64 · 256 ≤ mn 2 25 + 2 64 + 2 72 < 2 73 . 

By the (t , t 2 · 2 −256 ) -collision resistance of h ( · ) (see
Section 2.3.3 ), the probability that C finds a preimage of
H is less than 2 146 · 2 −256 < 2 −110 . By the construction of C,
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f A outputs the vote code that corresponds to position ( � ∗,
 

∗, X 

∗) ∈ [ n ] × [ m ] × { A, B }, then C certainly wins. Therefore, we
ave that 

r [ B outputs 1 | b = 1] = 1 − Pr [ B outputs 0 | b = 1] 

= 1 − Pr [ G | b = 1] 
2 mn 

− 2 −(κ−2) mn ≥
≥ 1 − Pr [ C returns the preimage of SHA- 256] 

> 1 − 2 −110 − 2 −(κ−2) mn. (A.2) 

ence, by Eq. (A.1) and (A.2) , we conclude that 

Adv IND −CPA 
128 −AES −CBC $ (B) > 

Pr [ G | b = 0] 
2 mn 

− 2 −110 − 2 −(κ−2) mn. 

(A.3) 

Along the lines of the time complexity analysis of C, the 
ime complexity of B is bounded by 2 mn · 256 3 + 2 64 = 2 25 mn +
 

64 < 2 66 , where we used that mn ≤ 2 41 , In addition, B makes at
ost 2 · m · n queries. Hence, by the (t, q, (2 t+ 258 ·q+ 3 q 2 ) ·2 −128 ) -

ND-CPA security of AES-CBC$ (see Section 2.3.4 ) and (A.3) ,
e conclude that for every vote-code length κ ≥ 105, 

Pr [ G | b = 0] 
2 mn 

− 2 −110 − 2 −(κ−2) mn 

< (2 26 mn + 2 65 + 516 mn + 12(mn ) 2 ) · 2 −128 

⇒ Pr [ G | b = 0] − 2 −109 mn − 2 −(κ−3) (mn ) 2 

< (2 27 (mn ) 2 + 2 66 mn + 2 9 (mn ) 2 + 24(mn ) 3 ) · 2 −128 ⇔ Pr [ G | b = 0]

< 

(
(2 66 +2 19 ) · mn+(2 27 +2 9 +2 (131−κ ) )·(mn ) 2 +24 · (mn ) 3 

)·2 −128 

⇒ Pr [ G | b = 0] < 

(
2 67 mn + 2 28 (mn ) 2 + 24(mn ) 3 

) · 2 −128 

⇔ Pr [ G | b = 0] < 

(
3(mn ) 3 + 2 25 (mn ) 2 + 2 64 mn 

) · 2 −125 , (A.4)

hich completes the proof of the claim, as the election 

imulation for b = 0 is perfect. 
(End of Claim 3.1) � 

Given Claim 3.1 , the proof is completed in two stages. 

1. Vote set consensus. By the upper bound restriction on all 
clock drifts, all honest VC nodes will enter the Value Dis- 
semination phase at T end and the Result Consensus phase 
of the Interactive Consistency protocol at T barrier within 

some distance � from the global clock. The agreement 
property of interactive consistency ensures that all hon- 
est VC nodes will contain the same vector 〈 V S 1 , . . . , V S n 〉 of
all nodes’ sets of voted and pending ballots. Subsequently,
all honest VC nodes, execute the same deterministic algo- 
rithm of Fig. 9 , and will agree on the same set of votes de-
noted by Votes . This will be the set of votes that are marked 

to be tallied by the honest VC nodes. 
2. Protocol contract. Let V � be an honest voter that has obtained 

a receipt for his vote 〈 serial −no , vote −code 〉 , but his vote 
is not included in Votes . By the vote consensus property 
proved previously, we have that some honest VC node VC ,
decided to discard V � ’s vote. According to the algorithm de- 
scribed in Fig. 9 that determines Votes , the latter can hap- 
pen only because either Case (i) : A succeeds in guessing 
the valid receipt of V � , or Case (ii) : a vote −code −2 different 
than vote −code appears in the list for the ballot indexed by 
serial −no or Case (iii) : vote −code appears less than N v − 2 f v 
times in the list for the ballot indexed by serial −no . We study 
all Cases (i),(ii),(iii): 
Case (i). If A succeeds in guessing a valid receipt, then it 
an force the VC subsystem to consider V ’s ballot not voted by
ot participating in the receipt reconstruction. By the infor- 
ation theoretic security of the VSS scheme, given that A is 

estricted by the fault tolerance thresholds, its guess of the re- 
eipt must be at random. Since there are at most f v malicious 
C nodes, the adversary has at most f v attempts to guess the 

eceipt. Moreover, the receipt is a randomly generated 64-bit 
tring, so after i attempts, A has to guess among (2 64 − i ) possi-
le choices. Taking a union bound for n voters, the probability 
hat A succeeds for any of the obtained receipts is no more 
han 

n 
 

 =1 

⎛ 

⎝ 

f v −1 ∑ 

i =0 

1 
2 64 − i 

⎞ 

⎠ ≤ n f v 
2 64 − f v 

. 

Case (ii). V � is honest, hence it has submitted the same vote 
n every possible attempt to vote prior to the one she obtained 

er receipt. Therefore, Case (ii) may occur only if the adver- 
ary A manages to produce vote −code −2 by the vote code re- 
ated election information it has access to. Namely, (a) the set 
f vote codes that all honest voters submitted at the election 

hase, (b) the set of the vote codes that were located in unused
allots and (c) the set of vote codes in the ballots of corrupted
oters. By assumption, vote −code −2 is in neither of these three 
ets. Hence, by Claim 3.1 , the probability that A computes 
ote −code −2 is less than 

(
3(mn ) 3 + 2 25 (mn ) 2 + 2 64 mn 

) · 2 −125 . 

Case (iii). In order for V � to obtain a receipt, at least N v −
f v VC nodes must collaborate by providing their shares. The 
aulty VC nodes are at most f v , so at least N v − 2 f v honest VC
odes will include 〈 serial −no , vote −code 〉 in their set of voted 

nd pending ballots. Thus, Case (iii) cannot occur. 
Consequently, all the honest VC nodes will forward the 

greed set of votes (hence, also V � ’s vote) to the BB nodes. By
he fault tolerance threshold for the BB subsystem, the f b hon- 
st BB nodes will publish V � ’s vote. Finally, the h t out-of N t hon-
st trustees will read V ’s vote from the majority of BB nodes
nd include it in the election tally. Therefore, the probability 
hat A achieves in excluding the vote of at least one honest 
oter that obtained a valid receipt from the BB or the election 

ally is less than 

n f v 
2 64 − f v 

− (
3(mn ) 3 + 2 25 (mn ) 2 + 2 64 mn 

) · 2 −125 ,

hich completes the proof. �

.2.2. Safety of D-DEMOS/Async 
he safety of D-DEMOS/Async is founded on the certificate 
eneration mechanism among the VC nodes, which in turn 

xploits the security of the underlying signature scheme. 

heorem 4 (Safety of D-Demos/Async) . Let A be an adversary 
gainst D-DEMOS under the model described in Section 4.3 that cor- 
upts up to f v < N v /3 VC nodes, up to f b < N b /2 BB nodes and up to
 t − h t out-of N t trustees. Then, all honest voters who received a 
alid receipt from a VC node, are assured that their vote will be pub-
ished on the honest BB nodes and included in the election tally, with
robability at least 

 − n f v 
2 64 − f v 

− negl (λ) . 

roof. Let V � be an honest voter. Then, A ’s strategy on attack- 
ng safety (i.e., provide a valid receipt to V � but force the VC
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subsystem to discard V ’s ballot), is captured by either one of
the two following cases: Case (i): A produces the receipt with-
out being involved in a complete interaction with the VC sub-
system (i.e., with at least f v + 1 honest VC nodes). Case (ii): A
provides a properly reconstructed receipt via a complete in-
teraction with the VC subsystem (in both cases we assume A
controls the responder VC node). 

Let E 1 (resp. E 2 ) be the event that Case 1 (resp. Case 2) hap-
pens. We study both cases: 

Case (i). In this case, A must produce a receipt that matches
V ’s ballot with less than N v − f v shares. A may achieve this by
either one of the following ways: 

1. A attempts to guess the valid receipt; If A succeeds, then it
can force the VC subsystem to consider V ’s ballot not voted
as no valid UCERT certificate will be generated for V ’s ballot
(malicious responder does not send an ENDORSE message).
As shown in the proof of Theorem 3 , the probability of a
successful guess for A is less than 

n f v 
2 64 − f v 

. 

2. A attempts to produce fake UCERT certificates by forging
digital signatures of other nodes. By the security of the dig-
ital signature scheme, this attack has negl( λ) success prob-
ability. 

By the above, we have that Pr [ A wins | E 1 ] ≤ n f v 
2 64 − f v 

+ negl (λ) .

Case (ii). In this case, by the security arguments stated in
Section 4.5 (steps 1–5), every honest VC node will include the
vote of V � in the set of voted tuples. This is because (a) it locally
knows the valid (certified) vote code for V � which is accompa-
nied by UCERT or (b) it has obtained the valid vote code via a
RECOVER-REQUEST message. Recall that unless there are fake
certificates (which happens with negligible probability) there
can be only one valid vote code for V � . 

Consequently, all the honest VC nodes will forward the
agreed set of votes (hence, also V � ’s vote) to the BB nodes.
By the fault tolerance threshold for the BB subsystem, the f b
honest BB nodes will publish V ’s vote. Finally, the h t out-of
N t honest trustees will read V � ’s vote from the majority of BB
nodes and include it in the election tally. Thus, we have that
Pr [ A wins | E 2 ] = negl (λ) . 

Therefore, all the votes of honest voters that obtained a
valid receipt, will be published on the honest BB nodes and
included in the election tally, with probability at least 

1 − Pr [ A wins ] ≥ 1 − Pr [ A wins | E 1 ] − Pr [ A wins | E 2 ] 

≥ 1 − n f v 
2 64 − f v 

− negl (λ) . 

�

A.2.3. Usability vs. security trade-off 
Theorem 3 statement and proof shed light on the limita-
tions of D-DEMOS regarding the usability vs. security trade
off. In particular, the specifications of the underlying crypto-
graphic tools (SHA-256 and AES-CBC$), as formally expressed
in Eq. (A.4) , dictate the use of vote-codes with at least 105
bit-length. The latter implies that voters are provided with
vote-codes of 14 characters in alphanumeric form, encoded
in Base64, a size that lies between the length of a credit card
number and a Microsoft product key. Besides, the restriction
that mn ≤ 2 41 is expected to be met in most election scenarios
(e.g., up to 10 3 options and 10 9 voters), hence D-DEMOS is fully
scalable from a safety perspective. 

In an alternative D-DEMOS specification where ciphers of
bigger block length are applied (e.g. an 192 block-length cipher
from the Rijndael family), the right hand of the inequality in
Eq. (A.4) that refers to the symmetric encryption security error
becomes very small. As a consequence, the term 2 −(κ−3) (mn ) 2

denoting the probability the adversary guesses a valid vote-
code of length κ dominates over the cryptographic error in the
total upper bound of the adversary’s success probability. The
parameters m, n, κ can be fixed so that 2 −(κ−3) (mn ) 2 is suffi-
ciently low even for smaller vote-code lengths, thus increasing
D-DEMOS’s usability, especially in mid-scale election scenar-
ios. Indicatively, if we require that 2 −(κ−3) (mn ) 2 < 

2 −10 

2 mn (thus, by
the union bound, the adversary has less than 0.1% probability
to guess even a single vote-code), and by fixing mn = 2 20 (e.g.,
10 options and 10 6 voters), we get that κ ≥ 75. In Base64 encod-
ing, this means that vote-codes of 10 characters are required;
note that many Internet sites recommend password lengths
in the 8–12 character range. 

A.3. End-to-end verifiability 

We adopt the end-to-end (E2E) verifiability definition
in Kiayias et al. (2015) , modified accordingly to our set-
ting. Namely, we encode the options set { option 1 , . . . , option m 

} ,
where the encoding of option i is an m -bit string which is 1
only in the i th position. Let F be the election evaluation function
such that F ( option i 1 . . . , option i n ) is equal to an m -vector whose
i th location is equal to the number of times option i was voted.
Then, we use the metric d 1 derived by the L1-norm scaled
to half, i.e., d 1 (R, R 

′ ) = 

1 
2 ·

∑ n 
i =1 | R i − R 

′ 
i | , where R i , R 

′ 
i is the

i th coordinate of R, R 

′ , respectively, to measure the success
probability of the adversary with respect to the amount of
tally deviation d and the number of voters that perform audit
θ . In addition, we make use of a vote extractor algorithm E (not
necessarily running in polynomial-time) that extracts the
non-honestly cast votes. 

We define E2E verifiability via an attack game between a
challenger and an adversary specified in detail in Fig. A.3 . 

Definition 2 ( E2E verifiability ). Let 0 < ε < 1 and
n, m, N v , N b , N t ∈ N polynomial in the security parameter
λ with θ ≤ n . Let � be an e-voting system with n voters, N v VC
nodes, N b BB nodes and N t trustees. We say that � achieves
end-to-end verifiability with error ε, w.r.t. the election function
F , a number of θ honest successful voters and tally deviation
d if there exists a (not necessarily polynomial-time) vote
extractor E such that for any PPT adversary A it holds that 

Pr [ G 

A , E,d,θ
e2e −ver (1 

λ, m, n, N v , N b , N t ) = 1] ≤ ε. 

To prove E2E verifiability of D-DEMOS, we need a min-
entropy variant of the Schwartz-Zippel lemma, to check the
equality of two univariate polynomials p 1 , p 2 , i.e., test p 1 (x ) −
p 2 (x ) = 0 for random x 

D ← Z q , where q is prime. The probability

that the test passes is at most max (d 1 ,d 2 ) 
2 κ if p 1 � = p 2 , where d i is

the degree of p i for i ∈ {1, 2}. We leverage Lemma 1 from Kiayias
et al. (2015) . 
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Fig. A.3 – The E2E Verifiability Game between the challenger C and the adversary A using the vote extractor E. 
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emma 1 (Min-entropy Schwartz-Zippel Kiayias et al.
2015) ) . Let q be a prime and p ( x ) be a non-zero univariate
olynomial of degree d over Z q . Let D be a probability distribution 
n Z q such that H ∞ 

( D ) ≥ κ. The probability of p(x ) = 0 for a

andomly chosen x 
D ← Z q is at most d 

2 κ . 

We now analyse the soundness of the zero knowledge 
roof for each option encoding commitment. Note that a 
orrect option encoding is an m -vector, where one of the m 

lements is 1 and the rest elements are 0 (a.k.a. unit vector).
ur zero knowledge proof utilizes the Chaum–Pedersen DDH- 

uple proofs ( Chaum and Pedersen, 1993 ) in conjunction with 

he Sigma OR-composition technique ( Cramer et al., 1994 ) to 
how each (lifted) ElGamal ciphertext encrypts either 0 or 1 
nd the product of all the m ElGamal ciphertexts encrypts 1.
e adopt the soundness amplification technique from Kiayias 

t al. (2015) ; namely, if the voters’ coins c are longer than � log q �
hen we divide it into κ blocks, ( c 1 , c 2 , . . . , c κ ) such that each
lock has less than � log q � coins, where q is the order of the un-
erlying group used in the ElGamal encryption. Given a state- 
ent x , for each c i , i ∈ [ κ], the prover needs to produce the zero

nowledge transcript (x, φ1 ,i , c i , φ2 ,i ) in order. The verifier ac- 
epts the proof if and only if for all i ∈ [ κ], Verify (x, φ1 ,i , c i , φ2 ,i ) =
ccept . Hence, we have the following Lemma 2 . 

emma 2. Denote c = ( c 1 , c 2 , . . . , c κ ) . If H ∞ 

( c ) = θ, we have for all
dversaries A : 

(m, n, θ, κ ) = Pr 

⎡ 

⎢ ⎢ ⎢ ⎣ 

(x, { φ1 ,i } i ∈ [ κ] ) ← A (1 λ ) ;
{ φ2 ,i } i ∈ [ κ] ← A ( c 1 , c 2 , . . . , c κ ) : 
x is not a val id opt ion encoding commit ment 
∧∀ i ∈ [ κ] , Verify (x, φ1 ,i , c i , φ2 ,i ) = accept 

⎤ 

⎥ ⎥ ⎥ ⎦ 

≤ 2 −θ . 

roof. For i ∈ κ, denote H ∞ 

( c i ) = θi , and 

∑ κ
i =1 θi = θ . Chaum–

edersen DDH-tuple proof ( Chaum and Pedersen, 1993 ) 
nternally constructs and checks a degree-1 polynomial; 
herefore according to Lemma 1 , the probability that the 
dversary A to cheat a single DDH-tuple zero knowledge 
roof is at most 2 −θ ′ 

, where θ ′ is the min-entropy of the chal-
enge. Moreover, Sigma OR-composition technique ( Cramer 
t al., 1994 ) perfectly maintains the soundness, so the prob- 
bility that the adversary A to cheat the zero knowledge 
roofs for each (lifted) ElGamal ciphertext encrypts 0/1 is 
t most 2 −θ ′ 

. Note that the zero knowledge proofs of the 
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3 By meaningful we mean that the attack is not trivially detected. 
For example, the adversary may post malformed information in 

the BB nodes but if so, it will certainly fail at verification. 
option encoding commitment is AND-composition of all the
elementary zero knowledge proofs, the probability that x is
invalid and Verify (x, φ1 ,i , c i , φ2 ,i ) = accept is at most 2 −θi . Hence,
the probability that ∀ i ∈ [ κ], Verify (x, φ1 ,i , c i , φ2 ,i ) = accept is
ε(m, n, θ, κ ) = 

∏ κ
i =1 2 

−θi = 2 −
∑ κ

i =1 θi = 2 −θ . �

Applying Lemma 2 , we prove that D-DEMOS (both the IC
and the Async version) achieves E2E verifiability according to
Definition 2 . 

Proof. Without loss of generality, we can assume that every
party can read consistently the data published in the major-
ity of the BB nodes, as otherwise the adversary fails to satisfy
condition 1 of the E2E verifiability game. 

We first construct a vote extractor E for D-DEMOS as fol-
lows: 

• E takes input as the election transcript, info and a set of 

audit information { audit � } V � ∈V succ 
. If info is not meaning- 

ful, then E outputs ⊥ . 

• Let B ≤ | ̃  V | be the number of different serial numbers 

that appear in { audit � } V � ∈ ̃ V . E (arbitrarily) arranges the 

voters in V � ∈ V succ and the serial numbers not included 

in { audit � } V � ∈V succ 
as 〈 V 

E 
� 〉 � ∈ [ n −|V succ | ] and 〈 tag E � 〉 � ∈ [ n −B ] re- 

spectively. 

• For every � ∈ [ n − |V succ | ] , E extracts option i � by 

brute force opening and decrypting (in superpolyno- 

mial time) all the committed and encrypted BB data, or 

sets option i � as the zero vector, in case V � ’s vote is not 

published in the BB. 

• If there is an invalid option-commitment (i.e., it is not a 

commitment to some candidate encoding),then E out- 

puts ⊥ . Otherwise, it outputs 〈 option i � 〉 V � / ∈ V succ . 

We will prove the E2E verifiability of D-DEMOS based
on E . Assume an adversary A that wins the game
G 

A , E,d,θ
e2e −ver (1 

λ, m, n, N v , N b , N t ) . Namely, A breaks E2E verifia-
bility by allowing at least θ honest successful voters and
achieving tally deviation d . 

Let Z be the event that A attacks by making at least one
of the option-encoding commitments associated with some
cast vote code invalid (i.e., it is in tally set E tally but it is not
a commitment to some candidate encoding). By condition 2,
there are at least θ honest and successful voters, hence the
min-entropy of the collected voters’ coins is at least θ . By
Lemma 2 , the zero-knowledge proofs used in D-DEMOS for
committed ballot correctness in the BB is sound except for
some probability error 2 −θ . Since θ ≥ 1 and condition 3 holds,
there is at least one honest voter that verifies, thus we have
that Pr [ G 

A , E,d,θ
e2e −ver (1 

λ, m, n, N v , N b , N t ) = 1 ∧ Z ] ≤ 2 −θ . 

Now assume that Z does not occur. In this case, the vote ex-
tractor E will output the intended adversarial votes up to per-
mutation. Thus, the deviation from the intended result that A
achieves, derives only by miscounting the honest votes. This
may be achieved by A in two different possible ways: 

• Modification attacks. When committing to the information
of some honest voter’s ballot part A changes the vote code
and option correspondence that is printed in the ballot.
This attack will be detected if the voter does choose to au-
dit with the modified ballot part (it uses the other part to
vote). The maximum deviation achieved by this attack is 1
(the vote will count for another candidate). 

• Clash attacks. A provides y honest voters with ballots that
have the same serial number, so that the adversary can in-
ject y − 1 votes of his preference in the y − 1 “empty” audit
locations in the BB. This attack is successful only if all the y
voters verify the same ballot on the BB and hence miss the
injected votes that produce the tally deviation. The maxi-
mum deviation achieved by this attack is y − 1 . 

We stress that if Z does not occur, then the above two at-
tacks are the only meaningful 3 for A to follow. Indeed, if (i) all
zero knowledge proofs are valid, (ii) all the honest voters are
pointed to a unique audit BB location indexed by the serial
number on their ballots, and (iii) the information committed
in this BB location matches the vote code and option associ-
ation in the voters’ unused ballot parts, then by the binding
property of the commitments, all the tally computed by the
commitments included in E tally will decrypt to the actual in-
tended result. 

Since the honest voters choose the used ballot parts at
random, the success probability of x deviation via the modi-
fication attack is (1/2) x . In addition, the success probability to
clash y honest voters is (1 / 2) y −1 (all y honest voters choose the
same version to vote). As a result, by combinations of modifi-
cation and clash attacks, A ’s success probability reduces by a
factor 1/2 for every unit increase of tally deviation. Therefore,
the upper bound of the success probability of A when Z does
not occur is Pr [ G 

A , E,d,θ
e2e −ver (1 

λ, m, n, N v , N b , N t ) = 1 | ¬ Z ] ≤ 2 −d . 

Hence, we conclude that Pr [ G 

A , E,d,θ
e2e −ver (1 

λ, m, n, N v , N b , N t ) =
1] ≤ 2 −θ + 2 −d . �

Applying Lemma 2 , the following theorem states that D-
DEMOS (both the IC and the Async version) achieves E2E ver-
ifiability according to Definition 2 . 

Theorem 5 (E2E Verifiability of D-Demos) . Let
n, m, N v , N b , N t , θ, d ∈ N where 1 ≤ θ ≤ n. Then, D-DEMOS run
with n voters, m options, N v VC nodes, N b BB nodes and N t trustees
achieves end-to-end with error 2 −θ + 2 −d , w.r.t. the election function
F, a number of θ honest successful voters and tally deviation d. 

Proof. ( Sketch ). Without loss of generality, we can assume that
every party can read consistently the data published in the
majority of the BB nodes, as otherwise the adversary fails to
satisfy condition 1 of the E2E verifiability game. Via brute force
search, the vote extractor E for D-DEMOS either (i) decrypts the
adversarial votes (up to permutation) if all respective option-
encoding commitments are valid, or (ii) aborts otherwise. We
analyze the two cases 

(i) If all option-encoding commitments are valid, then the
output of E implies that the tally deviation that the adversary
A can achieve may derive only by attacking the honest voter.
Namely, by pointing the honest voter to audit in a BB location
where the audit data is inconsistent with the respective
information in at least one part of the voter’s ballot. As in
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Fig. A.4 – The Voter privacy Game between the adversary A and the challenger Ch using the simuator S. 
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iayias et al. (2015 , Theorem 4), we can show that every 
uch single attack has 1/2 success probability (the voter had 

hosen to vote with the inconsistent ballot part) and in case 
f success, adds 1 to the tally deviation. Thus, in this case, the 
robability that A causes tally deviation d is no more than 2 −d .

(ii) If there is an invalid option-encoding commitment ( E
borts), then the min entropy provided by at least θ honest 
uccessful voters is at least θ . Thus, by Lemma 2 , the Sigma 
rotocol verification will fail except from some soundness er- 
or 2 −θ . The proof is completed by taking the union bound on 

he two cases. �

.4. Voter privacy 

ur privacy definition extends the one used in Kiayias 
t al. (2015) (which is referred there as Voterprivacy/receipt- 
reeness) to the distributed setting of D-DEMOS. Similarly,
oter privacy is defined via a Voter Privacy indistinguishability 
ame as depicted in Fig. A.4 . Note that, our system achieves 
omputational weak unlinkability among the privacy classes 
odeled by Bohli and Pashalidis (2011) . 

efinition 3 ( Voter privacy ). Let 0 < ε < 1 and n, m, N v , N b , N t ∈
 . Let � be an e-voting system with n voters, m options awith 

 voters, N v VC nodes, N b BB nodes and N t trustees w.r.t. the
lection function f . We say that � achieves voter privacy with 

rror ε for at most φ corrupted voters, if there is a PPT voter 
imulator S such that for any PPT adversary A : 

Pr [ G 

A , S,φ

priv (1 λ, n, m, N v , N b , N t ) = 1] − 1 / 2 
∣∣ = negl (λ) . 

In the following theorem, we prove that D-DEMOS (both the 
C and the Async version) achieves voter privacy according to 
efinition 3 . 
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Theorem 6 ( Voter privacy of D-DEMOS ). Assume there is a con-
stant c ∈ (0, 1) such that for any 2 λ

c 
-time adversary A , the advan-

tage of breaking the hiding property of the underlying commitment
scheme is Adv hide (A ) = negl (λ) . Let c ′ < c be a constant and set
φ = λc ′ . Then, D-DEMOS run with n voters, m options, N v VC nodes,
N b BB nodes and N t trustees achieves voter privacy for at most φ
corrupted voters. 

Proof. To prove voter privacy, we explicitly construct a sim-
ulator S such that we can convert any adversary A who can
win the privacy game G 

A , S,φ

priv (1 λ, n, m, N v , N b , N t ) with a non-
negligible probability into an adversary B who can break the
hiding assumption of the underlying commitment scheme

within poly (λ) · 2 λ
c ′ 

<< 2 λ
c 

time. 
Note that the challenger Ch is maintaining a coin b ∈ {0, 1}

and always uses the option option b � to cast the honest voters’
ballots. When n−φ < 2 , the simulator S simply outputs the real
voters’ views. When n −φ ≥ 2 , consider the following simulator
S: At the beginning of the experiment, S flips a coin b ′ ← {0, 1}.
Then, for each honest voter V � , S switches the vote codes for
option option b � and option b 

′ 
� . 

Due to full VC corruption, A learns all the vote codes.
However, it does not help the adversary to distinguish the
simulated view from real view as the simulator only per-
mutes vote codes. We now can show that if A can win
G 

A , S,φ

priv (1 λ, n, m, N v , N b , N t ) , then we can construct an adversary
B that invokes A to win the IND-CPA game of the underlying
ElGamal encryption. In the IND-CPA game, B receives as input
a public key pk and executes the following steps: 

1. It submits challenge messages M 0 = 0 , M 1 = 1 and receives
challenge ciphertext C = Enc pk (M b ∗ ) , where b ∗ is the IND-
CPA challenge bit for B. 

2. It invokes A and simulates G 

A , S,φ

priv (1 λ, n, m, N v , N b , N t ) , itself
being the challenger. 

3. B flips a coin b ∈ {0, 1} and uses the received public key pk

as the election commitment key. 
4. At the beginning, B generates/guesses all the voters coins,

c = (c 1 , c 2 , . . . , c n ) , and uses the coin c � for all the uncor-
rupted voter V � ; if some corrupted voters’ coins do not
match the guessed ones, start over again. This requires 2 φ

expected attempts to guess all the coins correctly. 
5. B guesses the election tally T = (T 1 , T 2 , . . . , T m 

) , and starts
over again if the guess is incorrect. This requires less than
(n + 1) m expected attempts. 

6. B simulates all the zero knowledge proofs using the
guessed voters’ coins. 

7. B guesses/chooses an uncorrupted voter V � ′ ; the option en-
coding commitment of V � ′ ’s ballot for the i th option is set
as: (
Enc pk (T 1 ) · C 

−T 1 , . . . , Enc pk (T i −1 ) · C 

−T i −1 , Enc pk (T i ) · C 

−(T i −1) ,

Enc pk (T i +1 ) · C 

−T i +1 , . . . , Enc pk (T m 

) · C 

−T m 
)
. 

For the rest of the voters, it commits the i th option as: (
Enc pk (0) , . . . , C · Enc pk (0) , . . . , Enc pk (0) 

)
. 

8. If V � is corrupted, then B provides the credential s � to A . 
9. If V � is not corrupted, then B receives two option selections

〈 option 0 � , option 1 � 〉 from A . It then casts the vote by submit-
ting the vote code corresponding to option b � . 

0. B finishes the election according to the protocol and re-
turns b ∗ = 1 if A guesses b correctly. 
Note that if C encrypts 1, the commitments on the BB are
the same as the ones in a real election; whereas, if C encrypts
0, the commitments of all the voters are commitments of 0’s
except one honest voter’s commitment is the tally results. In
the latter case, the adversary A ’s winning probability is ex-
actly 1/2. Since the zero knowledge proofs are perfectly simu-
latable, it is easy to see that the advantage of B is the same
as the advantage of A . Moreover, the running time of B is

poly (λ) · (n + 1) m · 2 φ = O (2 λ
c ′ 

) steps. By exploiting the distin-
guishing advantage of A , B can break the hiding property of

the option-encoding commitment scheme in O (2 λ
c ′ 

) = o(2 λ
c 
)

steps, thus leading to contradiction. �
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