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ABSTRACT
A foundational issue underlying many overlay network ap-
plications ranging from routing to peer-to-peer file sharing
is that of connectivity management,i.e., folding new ar-
rivals into an existing overlay, and re-wiring to cope with
changing network conditions. Previous work has consid-
ered the problem from two perspectives: devising practical
heuristics for specific applications designed to work well in
real deployments, and providing abstractions for the under-
lying problem that are analytically tractable, especiallyvia
game-theoretic analysis. In this paper, we unify these two
thrusts by using insights gleaned from novel, realistic theo-
retic models in the design ofEgoist – a distributed overlay
routing system that we implemented, deployed, and evalu-
ated on PlanetLab. Using extensive measurements of paths
between nodes, we demonstrate thatEgoist’s neighbor se-
lection primitives significantly outperform existing heuris-
tics on a variety of performance metrics, including delay,
available bandwidth, and node utilization. Moreover, we
demonstrate thatEgoist is competitive with an optimal, but
unscalable full-mesh approach, remains highly effective un-
der significant churn, is robust to cheating, and incurs min-
imal overhead. Finally, we use a multiplayer peer-to-peer
game to demonstrate the value ofEgoist to end-user appli-
cations.

Categories and Subject Descriptors: C.2.2 [Com-
puter Communication Networks]: Routing Protocols.
General Terms: Design, Experimentation, Performance.
Keywords: Overlay Routing, Overlay Network Cre-
ation and Maintenance, Selfish Neighbor Selection.
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1. INTRODUCTION
Motivation: Overlay networks are used for a variety
of applications including routing [1], content distribu-
tion [11, 39], peer-to-peer file sharing, data-center appli-
cations [18], and online multiple multiplayer games [5].
A foundational issue underlying many such overlay net-
work applications is that of connectivity management.
Connectivity management is called upon when having
to wire a newcomer into the existing mesh of nodes
(bootstrapping), or when having to rewire the links be-
tween overlay nodes to deal with churn and changing
network conditions. Connectivity management is par-
ticularly challenging for overlay networks because over-
lays often consist of nodes that are distributed across
multiple administrative domains, in which auditing or
enforcing global behavior can be difficult or impossible.
As such, these nodes may act selfishly to maximize the
benefit they receive from the network, as exemplified in
studies relating to selfish (source) routing [26] and free
riding [13] in P2P file-sharing networks.

Selfish behavior has many implications for connec-
tivity management. In particular, it creates additional
incentives for nodes to rewire, not only for operational
purposes (bootstrapping and substituting nodes that
went off-line), but also for seizing opportunities to in-
crementally maximize the local connection quality to
the overlay. While much attention has been paid to
the harmful downsides of selfish behavior, the impact
of adopting selfish connectivity management techniques
in real overlay networks has received very little atten-
tion. In our work, we dwell not on the negatives, but
instead focus on the potential benefits from such selfish
behavior, which include the obvious benefits to selfish
nodes, but more surprisingly, to the network as a whole.
Indeed, we confirm that selfishness is not the problem,
so much as inaction, indifference, or naive reaction: all
of which incur high social costs. Our paper addresses
these issues by providing a methodical evaluation of the
design space for connectivity management in overlay
networks, including the demonstration of the implica-



tions and promise from adopting a selfish approach to
neighbor selection in real network overlays.

Selfish Neighbor Selection: In a typical overlay net-
work, a node must select a fixed number (k) of imme-
diate overlay neighbors for routing traffic or queries for
files.1 Previous work has considered this problem from
two perspectives: (1) devising practical heuristics for
specific applications in real deployments, such as boot-
strapping by choosing the k closest links, or by choosing
k random links in a P2P file-sharing system; and (2)
providing abstractions of the underlying fundamental
neighbor selection problem, which are amenable to the-
oretical formulation and analysis as exemplified in the
recent work on Selfish Neighbor Selection (SNS) [19,
17]. This SNS formulation focused on characterizing
the emergent overlay topology when overlay nodes be-
have selfishly and employ “Best-Response” (BR) neigh-
bor selection strategies. Using BR a node chooses the
best k neighbors that optimize its connection quality to
the overlay, granted knowledge of how other nodes have
connected among themselves.

This prior work demonstrates that selfish players
can select neighbors so as to efficiently reach near-equilibria
in the Nash sense, while also providing good global
performance. One implication from that prior work is
that shortest-path overlay routing performs much bet-
ter over SNS topologies than over random and myopic
ones. Left unanswered in this prior work, though, is
whether it is practical to build SNS-inspired overlays,
how to incorporate additional metrics other than delay,
e.g., bandwidth, whether such overlays would be ro-
bust against network dynamics and whether they would
scale.

Paper Scope and Contributions: In this paper we
address the questions mentioned above and describe
the design, implementation, and evaluation of Egoist:
an SNS-inspired prototype overlay routing network for
PlanetLab. Egoist serves as a building block for the
construction of efficient and scalable overlay applica-
tions consisting of (potentially) selfish nodes.

Our contributions can be summarized as follows.
We first demonstrate through real measurements on
PlanetLab that overlay routing atop Egoist is signif-
icantly more efficient than systems utilizing common
heuristic neighbor selection strategies under multiple
performance metrics, including delay, system load and
available bandwidth. Second, we demonstrate that the
performance of Egoist approaches that of a (theoretically-
optimal) full-mesh topology, while achieving superior
scalability, requiring link announcements proportional
to nk compared to n2 for a full mesh topology. We
also demonstrate that the computational, memory and
traffic overhead to create and operate Egoist is mini-
1

Hard constraints on the number of first hop neighbors are imposed
in most peer-to-peer systems to address scalability issues, up-link and
down-link fragmentation, and CPU consumption due to contention.

mal. Third, to accommodate high-churn environments,
we introduce a hybrid extension of the “Best-Response”
(BR) neighbor selection strategy, in which nodes “do-
nate” a portion of their k links to the system to assure
connectivity, leaving the remaining links to be chosen
selfishly by the node. Our experiments show that such
an extension is warranted, especially when the churn
rate is high relative to the size of the network. Fourth,
we consider the impact of cheaters – nodes that an-
nounce false information in order to benefit themselves,
or harm the network. While such behavior can be iden-
tified and eliminated through the use of appropriate
mechanisms, we show that Egoist remains robust even
without the use of such mechanisms. Finally, we discuss
how Egoist can provide a redirection stepping-stone
for the benefit of end-user applications including file
transfer and multiplayer peer-to-peer games. The list
of Egoist artifacts is provided in Section 6.

2. BACKGROUND
2.1 Basic Definitions
Let V = {v1, v2, . . . , vn} denote a set of overlay routing
nodes. Node vi establishes a wiring si = {vi1 , vi2 , . . . , vik

}
by creating links to k other nodes (we will use the
terms link, wire, and edge interchangeably). Edges are
directed and weighted, thus e = (vi, vj) can only be
crossed in the direction from vi to vj , and has cost dij

(in general, dji 6= dij). Let S = {s1, s2, . . . , sn} de-
note a global wiring between the nodes of V and let
dS(vi, vj) denote the cost of a shortest directed path2

between vi and vj over this global wiring; dS(vi, vj) =
M ≫ maxi,j dij , if there is no directed path connect-
ing the two nodes. For the overlay networks discussed
here, the above definition of cost amounts to the in-
curred end-to-end delay when performing shortest-path
routing along the overlay topology S, whose direct links
have weights that capture the delay of the underlying IP
path connecting one end of the overlay link to the other.
Let Ci(S) denote the cost of vi under the global wiring
S, defined as a weighted summation of its distances to
all other nodes, i.e., Ci(S) =

∑n

j=1,j 6=i pij · dS(vi, vj),
where the weight pij denotes “preference” e.g., the per-
centage of vi’s traffic that is destined to node vj .

Definition 1. Best-Response (BR) Given a residual
wiring S−i = S − {si}, a best response for node vi is a
wiring si ∈ Si such that Ci(S−i+{si}) ≤ Ci(S−i+{s′i}),
∀s′i 6= si, where Si is the set of all possible wirings for
vi.

The Selfish Neighbor Selection (SNS) game was in-
troduced in [19] as a strategic game where nodes are the
players, wirings are the strategies, and Ci’s are the cost
functions. It was shown that under hop-count distance,
2

In our implementation, we computed shortest path using Dijkstra’s
algorithm. Given than the graph is sparse, we used the most efficient
implementation of the algorithm using Fibonacci heap that requires
O(|E|+ |V | log |V |) amortized time, where |E| is the number of edges
in the graph.



obtaining the BR of vi requires solving an asymmet-
ric k-median problem on the residual wiring S−i and is,
therefore, NP-hard. To overcome the computational ob-
stacle, we applied the local search heuristic [2] that pro-
vides a solution in a polynomial number of iterations.
Experimental results showed that the performance of
the above heuristic is within 5% of the optimal [19].

2.2 Related Work
Our work is inspired by the SNS game [19, 17]. While
these works presented basic theoretic and experimental
results, they did not consider any of the practical sys-
tems issues that are covered in this paper, such as deal-
ing with churn in realistic network conditions or achiev-
ing high global performance without the computational
and control message overheads required by theoretical
formulations. Network Creation Games that predate
SNS [12, 9, 25, 8] have considered settings in which
nodes may buy as many links (neighbors) as they like
and thus differ fundamentally from our work, in which
constraints on the number of neighbors play a central
role.Also, fundamentally different is the work on Selfish
Routing [26, 30], in which the network topology is part
of the input to the game, and selfish source routing is
the outcome. In a way, this is the inverse of our work,
in which network-based (shortest-path) routing is an in-
put of the game, and topology is the outcome. Selfish
Routing is also based on source routing which is either
not provided in most system implementations, or it is
difficult to perform well in systems with high churn like
peer-to-peer systems.

A number of routing overlay systems have been re-
cently proposed [31, 1, 22, 21, 41, 23, 16, 42, 32, 37].
Most of these have been proposed as ways of coping with
some of the inefficiencies of native IP routing. The basic
design pattern is more or less the same: overlay nodes
monitor the characteristics of the overlay links between
them (overlay topology may differ among systems) and
employ a full-fledged or simpler [16] routing protocol to
route at the overlay layer. Some overlay routing sys-
tems optimize route hop count [21, 32, 37], others op-
timize for application delay [31, 1, 26, 22, 41, 23, 16],
and others optimize for available bandwidth [42]. These
works assume that either all overlay nodes are under
central control and thus obediently follow simple em-
pirical neighbor selection strategies as discussed earlier,
or bypass the issue altogether by assuming that some
fixed overlay design is already in place. With reference
to the employed metric, in our work, we provide mech-
anisms to support optimization of all aforementioned
metrics and leave it up to the application designers to
choose the most suitable one.

In structured DHTs, proximity neighbor selection
has been proposed to make the overlay topology match
the underlying IP topology as much as possible [27, 15]
in order to achieve faster lookups: Nodes can choose the
physically closest nodes from a set of candidate nodes.

While this approach gives to nodes some flexibility in
choosing neighbors selfishly, the set of nodes from which
the choice can be made is constrained by node ID and
thus tuning it at will becomes impossible [38]. Undoubt-
edly, DHTs are able to provide the best possible index-
ing of objects in a network. On the other hand, routing
of traffic on DHTs has been shown to be sub-optimal
due to local forwarding [17, 24]. Egoist can be inte-
grated as a different layer in DHTs; when an object is
mapped onto a node, Egoist is responsible to optimally
route the content.

3. THE EGOIST OVERLAY SYSTEM
In this section we overview the basic design of our Ego-
ist overlay routing system.

3.1 Basic Design ofEGOIST

Egoist is a distributed system that allows the cre-
ation and maintenance of an overlay network (evalu-
ated on PlanetLab), in which every node selects and
continuously updates its k overlay neighbors in a self-
ish manner—namely to minimize its (weighted) sum of
distances to all destinations under shortest-path rout-
ing. For ease of presentation, we will assume that delay
is used to reflect the cost of a path, noting that other
metrics – which we will discuss later in the paper and
which are incorporated in Egoist’s implementation –
could well be used to account for cost, including band-
width and node utilization.

In Egoist, a newcomer overlay node vi connects
to the system by querying a bootstrap node, from which
it receives a list of potential overlay neighbors. The new-
comer connects to at least one of these nodes, enabling
it to participate in the link-state routing protocol run-
ning at the overlay layer. As a result, after some time,
vi obtains the full residual graph G−i of the overlay.
By running all-pairs shortest path algorithm on G−i,
using Dijkstra’s algorithm, the newcomer is able to ob-
tain the pair-wise distance (delay) function dG

−i
. In

addition to this information, the newcomer estimates
dij , the weight of a potential direct overlay link from it-
self to node vj , for all vj ∈ V−i. Using the values of dij

and dG
−i

, the newcomer connects to G−i using one of a
number of wiring policies (discussed in Section 3.2). In
our implementation, each node listens to all the control
messages of the link state protocol and propagates them
only to its immediate neighbors. In order to reduce sys-
tem’s control traffic, each node propagates only unique
messages by dropping messages that have been received
more than once or have been superseded. There are
also two threads, one for estimating dij , and one re-
sponsible for estimating the new wiring and propagat-
ing the wiring to the immediate neighbors. In order to
minimize the load in the system, a node propagates its
wiring to its immediate neighbors only if this changes.

Clearly, obtaining dij for all n nodes requires O(n2)



measurements.3 However, we note that these O(n2)
measurements do not have to be announced or be con-
tinuously monitored. In particular, each node needs
to monitor and send updates only for the k links that
it chooses to establish, with O(n) measurements to all
nodes in the overlay done much less frequently – namely
once per wiring epoch, which is defined as the period
T between two successive evaluations by a node of its
set of candidate links and possible adoption of a new
wiring (i.e., re-wiring) based on such evaluation. Since
re-wiring is much less frequent than monitoring of the
established k links, the load imposed by the link-state
protocol is only O(nk) and not O(n2).

3.2 Neighbor Selection Policies inEGOIST

As its namesake suggests, the default neighbor selection
policy in Egoist is the Best-Response (BR) strategy
described in Section 2.1, and detailed in [19]. Using
BR, a node selects all its k neighbors so as to mini-
mize a local cost function, which could be expressed
in terms of some performance metric (e.g., average de-
lay to all destinations, maximum aggregate throughput
to all destinations, etc). Since obtaining an exact BR
is computational expensive under both delay [19] and
throughput, in Section 4.1, we employ fast approximate
versions based on local search (that was introduced in
Section 2.1) to reduce computational costs and enhance
scalability. In addition to BR, we have also imple-
mented the following neighbor selection policies in order
to perform a comparative evaluation.

k-Random: Each node selects k neighbors randomly.
If the resulting graph is not connected, we re-wire some
links to enforce a cycle upon it.

k-Closest: Each node selects its k neighbors to be the
nodes with the minimum link cost (e.g., minimum delay
from it, maximum bandwidth, etc.). Again, if the graph
is not connected, we enforce a cycle.

k-Regular: In this case, all nodes follow the same
wiring pattern dictated by a common offset vector o =
{o1, o2, . . . , ok}, used as follows: node i connects to
nodes i + oj mod n, j = 1, . . . , k. In our system, we
set oj = 1 + (j − 1) · n−1

k+1 .One way to visualize this is to
consider that all nodes are placed on a ring according to
their ids (as with a DHT). Thus, an offset vector makes
each node use its k links to connect to other nodes so
as to equally divide the periphery of the ring.

3.3 Dealing with Churn in EGOIST

Egoist’s BR neighbor selection strategy assumes that
existing nodes never leave the overlay. Therefore, even
in an extreme case in which some nodes are reach-
able through only a unique path, a node can count
on this path always being in place (re-wirings by other

3
Notice that dij can be obtained through active or passive measure-

ments depending on the metric of interest (see Section 4.1 for details).

nodes will not tear it down as this would also disconnect
them [17]). Overlay routing networks (e.g., RON [1])
are not inherently prone to churn to the extent that
file-sharing P2P-networks [14, 28] are. Nonetheless,
nodes may occasionally go down, or network problems
may cause transient disconnections until successive re-
wirings establish new paths. One could re-formulate
the BR objective function used by a node to take into
account the churning behavior of other nodes. This,
however, requires modeling of the churn characteristics
of various nodes in an overlay, which may not be feasi-
ble, particularly for large networks [40].

In Egoist we follow a different approach remi-
niscent of how k-Random and k-Closest policies en-
sure overlay connectivity. We introduce a hybrid wiring
strategy (HybridBR), in which each node uses k1 of its
k links to selfishly optimize its performance using BR,
and “donates” the remaining k2 = k − k1 links to the
system to be used for assuring basic connectivity under
churn. We call this wiring “hybrid” because, in effect,
two wiring strategies are in play – a selfish BR strategy
that aims to maximize local performance and a selfless
strategy that aims to maintain global connectivity by
providing redundant routes.

There are several ways in which a system can use
the k2 donated links of each node to build a connectivity
backbone. Young et al. [41] proposed the use of k Min-
imum Spanning Trees (k-MST). Using k-MST (a cen-
tralized construction) to maintain connectivity is prob-
lematic, as it must always be updated (due to churn and
to changes in edge weights over time), not to mention
the overhead and complexities involved in establishing
(k2/2)-MSTs. To avoid these complexities, Egoist uses
a simpler solution that forms k2/2 bidirectional cycles.
Consider the simplest case k2 = 2, which allows for the
creation of a single bidirectional cycle. To accommo-
date a new node vn+1, node vn will disconnect from
node v1 and connect to vn+1, whereas the latter will
connect to v1 to close the cycle. For higher k2/2, the
system decides k2/2 offsets and then each node connects
to the nodes taken by adding (modulo n) its id to each
offset. If k2 is small (e.g., 2) then the nodes will need
to monitor (e.g., ping) the backbone links closely so as
to quickly identify and restore disconnections. With
higher k2 the monitoring can be more relaxed due to
the existence of alternative routes through other cycles.
Computing BR using k1 links granted the existence of
the k2 links can be achieved by restricting the set can-
didate candidate immediate neighbors for swapping.

We have implemented HybridBR in Egoist. As
hinted above, donated links are monitored aggressively
so as to recover promptly from any disconnections in
the connectivity backbone through the use of frequent
heartbeat signaling. On the other hand, the monitoring
and upkeep of the remaining BR links could be done
lazily, namely by measuring link costs, and recomputing



BR wirings at a pace that is convenient to the node—a
pace that reduces probing and computational overheads
without risking global connectivity.

To differentiate between these two types of link
monitoring strategies (aggressive versus lazy), in Ego-
ist we allow re-wiring of a dropped link to be performed
in one of two different modes: immediate and delayed.
In immediate mode, re-wiring is done as soon as it is
determined that the link is dropped, whereas in delayed
mode re-wiring is only performed (if necessary) at the
preset wiring epoch T . Unless otherwise specified, we
assume a delayed re-wiring mode is in use.

3.4 Dealing with Cheaters inEGOIST

In this paper the selfishness in the selection of neighbors
has the game theoretic meaning of local optimization
and does not imply any anti-social behavior that needs
to be mitigated. In this section, we briefly examine
such harmful ways in which a node may “cheat” its
way through, as well as possible countermeasures.

The most blatant form of cheating is free-riding,
i.e., using the system to route one’s own traffic but
denying routing to any incoming traffic from other nodes.
Dealing with such behavior has been the subject of a
number of studies, including the works in [6, 7] which
propose the adoption of reputation and repudiation or
punishment mechanisms that act as incentives for nodes
to route, and/or expel misbehaving nodes from the sys-
tem. These studies are orthogonal to and thus comple-
ment our work.

A more elaborate way for a node to cheat is to
announce false information via the link-state protocol
to discourage others from picking it as an upstream
neighbor. For example, a node can cheat by falsely
announcing larger-than-actual delays for its potential
outgoing links. One could add mechanisms to detect
this type of cheating. If the construction of the over-
lay is based on passive measurements obtained from a
virtual coordinate system (as discussed in Section 4.1),
then nodes could periodically select a random subset
of remote nodes and “audit them” by querying the co-
ordinate system for the delays of the outgoing links of
the audited nodes and comparing them to the actual
values that the audited nodes declare on the link-state
routing protocol. Similar audits can be designed using
active probing by sending traffic and measuring its de-
lay and comparing it to the expected delay based on
the delays that nodes on the end-to-end path declare.
In Section 4.5, we evaluate the impact of broadcast-
ing false information to cheat the system: we show that
even without the use of the aforementioned audit mech-
anisms, Egoist is robust to this form of cheating.

4. EXPERIMENTAL EVALUATION
4.1 Cost Metrics
As alluded earlier, a number of metrics can be used

to measure the “cost” of traversing an overlay link.
Clearly, the choice of an appropriate one depends largely
on the application at hand. In this section, we review
the various metrics we have incorporated in Egoist .

Link and Path Delays: Delays are natural cost met-
rics for many applications, especially those involving in-
teractive communication. To obtain the delay cost met-
ric, a node needs to obtain estimates for its own delay
to potential neighbors, and for the delay between pairs
of overlay nodes already in the network. In Egoist we
estimate directed (one-way) link delays using two dif-
ferent methods: an active method based on ping, and a
passive method using the pyxida virtual coordinate sys-
tem [20]. Using ping, one-way delay is estimated to be
one half of the measured ping round-trip-times (RTT)
averaged over enough samples. Clearly, a node is able
to measure such a value for all of its direct (overlay)
neighbors, and is also able to relay such information to
any other nodes through the overlay link-state routing
protocol. To estimate the distance to nodes that were
configured not to reply to ping, we used application
layer ping. Using pyxida, delay estimates are available
through a simple query to the pyxida system.

Node Load: For many overlay applications, it may
be the case that the primary determinant of the cost
of a path is the performance of the nodes along that
path—e.g., if traversal of nodes along the path incur
significant overhead due to (say) context switching and
frequent crossing of user/kernel spaces. Thus, in Ego-
ist we allow the use of a variation of the delay metric
in which all outgoing links from a node are assigned
the same cost, which is set to be equal to the measured
load of the node. When applicable, the estimation of
such a metric is straightforward as it requires only local
measurements. In Egoist we did this by querying the
CPU load of the local PlanetLab node, and computing
an exponentially-weighted moving average of that load
calculated over a given interval (taken to be 1 minute
in our experiments querying the loadavg reports).

Available Bandwidth: Another important cost met-
ric, especially for content-delivery applications, is the
available bandwidth on overlay links. Different avail-
able bandwidth estimation tools have been proposed in
the literature [33]. In Egoist , we used pathChirp [29],
a light-weight, fast and accurate tool, which fits well
with PlanetLab-specific constraints, namely: it does
not impose a high load on PlanetLab nodes since it
does not require the transmission of long sequences of
packet trains, and it does not exceed the max-burst
limits of Planetlab. pathChirp is an end-to-end active
probing tool, which requires the installation of sender
and receiver pathChirp functionality in each Egoist
node. The available bandwidth between a pair of nodes
v, u ∈ V−i is given by:

AvailBW (v, u) = max
p∈P (v,u)

AvailBW (p),
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Figure 1: PlanetLab baseline experiments showing the individual costs for various neighbor selection policies (nor-

malized with respect to BR costs) as a function of number of neighbors k for a 50-node EGOIST overlay: Cost metric is

ping delays (top-left), pyxida delays (top-right), node CPU load (bottom-left), and available bandwidth (bottom-right).

where the available bandwidth for a path p is given by:

AvailBW (p) = min
e∈p

AvailBW (e),

and P (v, u) denotes the set of paths that connects v to
u. Thus, finding P ∗(v, u) that maximizes the available
bandwidth between v and u, and the bottleneck edge,
is a “Maximum Bottleneck Bandwidth” [10] problem
which can be solved using a simple modification of Di-
jkstra’s algorithm provided in [34].

Using the available bandwidth as cost metric re-
quires us to modify also the local objective function for
computing BR wirings. In particular, the best response
for vi may be based on a wiring si that maximizes the
aggregate bandwidth out of a node given by

∑

vj∈V
−i

max
w∈s

min (AvailBW (e(vi, w)), AvailBW (w, vj))

The above objective calls for the maximization of the
average of the bottleneck bandwidths to all destina-
tions. In [35] we show that finding a local wiring si

that maximizes this objective function is an NP-hard
problem. Thus in our implementation we used a fast
local-search heuristic that we verified to be within 5%
of optimal in the tested scenarios.4 Notice that it is
straightforward to use the above definitions to produce
alternative formulations, e.g., consider the maximiza-
tion of the minimum of the bottleneck bandwidths to

4
We also added a high penalty when a node is not reachable to guar-

antee connectivity.

all destinations [36].

4.2 Baseline Experimental Results
In this section, we present performance results obtained
through measurement of Egoist . These results allow
us to make comparisons between the various neighbor
selection policies described in Section 3.2 for the var-
ious cost metrics described above. All the results in
this section assume that node churn is not an issue –
i.e., once it joins the overlay, a node does not leave.
Results showing the impact of node churn on Egoist
performance are presented in Section 4.4.

Experimental Setting: We deployed Egoist on n =
50 PlanetLab nodes (30 in North America, 11 in Eu-
rope, 7 in Asia, 1 in South America, and 1 in Ocea-
nia) each one located in a different AS. Each of these
nodes is configured to recompute its wiring every wiring
epoch T = 60 seconds. Egoist nodes are not syn-
chronized, thus on average a re-wiring by some Egoist
node occurs every T/n = 1.2 seconds. Whether a node
ends up re-wiring or not depends on the neighbor selec-
tion policy. For k-Random and k-Regular policies, and
since our baseline experiments do not feature any node
churn, it follows that these policies will not exhibit any
re-wiring. For k-Closest, re-wiring would only be the
result of dynamic changes in PlanetLab that result in
changes to the cost metric in use (and hence what con-
stitutes the closest set of neighbors). For BR, a node



may rewire due to changes in PlanetLab conditions, but
may also rewire simply as a result of another node’s re-
wiring. While in theory [17, 19], BR strategies (under
certain conditions) converge to some equilibrium in the
Nash sense, we note that this is not likely to be the case
for real systems such as Egoist , since dynamic changes
of the underlying system (changes in link delays, band-
width, and node load) are likely to result in perpetual
re-wiring by Egoist nodes. Setting the wiring epoch
T in Egoist has the effect of controlling the timescale
of, and consequently the overhead incurred by, BR re-
wiring.

Each experiment presented in this section reflects
the results obtained by running Egoist for at least
10 hours on PlanetLab on January 5th, January 15th,
September 15th, October 3rd 2007, and April-June 2008.

Performance Metric: To be able to compare the im-
pact of neighbor selection on the quality of the resulting
overlay, throughout this paper we use the routing cost
(for an individual node or averaged over all nodes) as
the main performance metric. For each experiment, an
individual cost metric is calculated for every one of the
n = 50 nodes in the system. The individual cost metric
for a node reflects the cost of routing from that node
to all other 49 nodes in the system, assuming a uniform
routing preference over all destinations.

To facilitate comparisons between various neigh-
bor selection strategies, we often report the normalized
routing cost (and the 95th-percentile confidence inter-
val), which is the ratio of the cost achievable using a
given strategy to that achievable using BR.

Control Variables: In our first set of experiments,
our aim is to identify for the three metrics of interest
the payoff (if any) from adopting a selfish neighbor se-
lection strategy, i.e., using a BR policy in Egoist .
This payoff will depend on many variables. While some
of these variables are not within our control (e.g., the
dynamic nature of the Internet as reflected by variabil-
ity in observed PlanetLab conditions), others are within
our control, e.g., n, T , and the various settings for our
active measurement techniques.

In order to neutralize the effect of extrinsic vari-
ables that are not within our control, experiments re-
porting on different neighbor selection policies were con-
ducted concurrently. To do so, we deploy concurrent
Egoist agents on each of the n = 50 PlanetLab nodes
we use in our experiments, with each agent using a
different selection strategy. In effect, each experiment
compares the performance of a set of concurrently de-
ployed Egoist overlay networks, each resulting from
the use of a particular neighbor selection policy.

One control variable that is particularly important
is the number of direct neighbors, k, that an Egoist
node is allowed to have. In many ways, k puts a pre-
mium on the significance of making a judicious choice

of neighbors. For small values of k, choosing the right
set of neighbors has the potential of making a bigger
impact on performance, when compared to the impact
for larger values of k. Thus, in all the results we present
in this section, we show the performance of the various
policies over a range of k values.

Overview of Performance Results: Before present-
ing specific performance results, we make two broad
observations: first, in all of our experiments, using a
BR policy in Egoist consistently yields the best per-
formance. While such an outcome was anticipated by
virtue of findings reported in [19] for a static setting,
the results we present here are significant because they
underscore the payoff in a real deployment, where the
modeling assumptions made in prior work do not hold.
Second, in all of our experiments, with the exception of
BR, no single neighbor selection policy was consistently
better than all others across all metrics. In other words,
while the performance of a given policy may approach
that of BR for one metric while dominating all other
policies, such policy dominance does not hold across all
the metrics we considered.

Results for Delay Metric: Fig. 1 shows the perfor-
mance of the various neighbor selection policies in Ego-
ist normalized with respect to that achievable using BR
when the metric of interest is the overlay link/path de-
lay over a range of values for k (with link delays mea-
sured using ping in the top-left plot, and using pyxida

in the top-right plot). These results show that BR out-
performs all the other wiring policies, especially when
k is small, as anticipated in our discussion of the sig-
nificance of k as a control variable. For example, for
k = 2, the average delay experienced by an individ-
ual node could be anywhere between 200% and 400%
higher than that achievable using BR. The performance
advantage of BR in terms of routing delay stands, even
for a moderate number of neighbors. For example, for
k = 5, BR cuts the routing delay almost by half.

These results confirm the superiority of BR rela-
tive to other policies, but do not give us a feel for how
close is the performance of Egoist using BR wiring
to the “best possible” performance. To do so, we note
that by allowing nodes to connect to all other nodes in
the overlay, we would be creating a complete overlay
graph with O(n2) overlay links, obviating the need for
a neighbor selection policy. Clearly, the performance of
routing over such a rich overlay network gives us an up-
per bound on the achievable performance, and a lower
bound on the delay metric. Thus, to provide a point
of reference for the performance numbers we presented
above, in the top-left plot in Fig. 1 we also show the
performance achieved by deploying Egoist and setting
k = n − 1. Here we should note that this lower bound
on delay is what a system such as RON [1] would yield,
given that routing in RON is done over shortest paths
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Figure 2: PlanetLab experiments showing the total number of re-wirings per epoch in the system (left), and the relationship

between individual cost and total number of re-wirings per epoch in the system with exact best response and an approximate

best response with ǫ = 10% (center and right respectively), as a function of the number of neighbors k in our EGOIST overlay.

established over a full mesh, and assuming that any
of the O(n2) overlay links could be used for routing.
These results show that using BR in Egoist yields a
performance that is quite competitive with RON’s lower
bound. As expected, the difference is most pronounced
for the smallest k we considered—namely, the lowest
delay achievable using 49 overlay links per node is only
30% lower than that achievable using BR with 2 overlay
links per node. BR is almost indistinguishable from the
lower bound for slightly larger values of k (e.g., k = 4).

With respect to the other heuristics, the results in
the top plots in Fig. 1 show that k-Closest outperforms
k-Random when k is small, but that k-Random ends up
outperforming k-Closest for slightly larger values of k.
This can be explained by noting that k-Random ends
up creating graphs with much smaller diameters than
the grid-like graphs resulting from the use of k-Closest,
especially as k gets larger. In all experiments, k-Regular
performed the worst.

Results for Node Load: The bottom-left plot in
Fig. 1 shows the results we obtained using the node
load metric, where the path cost is the sum of the loads
of all nodes in the path. These results show clear delin-
eations, with BR delivering the best performance over
all values of k, k-Random delivering the second-best
performance, and k-Closest delivering the worst perfor-
mance as it fails to predict anything beyond the imme-
diate neighbor, especially in light of the high variance
in node load on PlanetLab.

Results for Available Bandwidth: The bottom-
right plot in Fig. 1 shows the results we obtained using
available bandwidth as the cost metric. Recall that,
here, the objective is to get the highest possible aggre-
gate bandwidth to all destinations (again, assuming a
uniform preference for all destinations) – thus, larger is
better. These results show trends that are quite sim-
ilar to those obtained for the delay metric, with BR
outperforming all other policies—delivering a two-fold
to four-fold improvement over the other policies, over a
wide range of values of k.

4.3 Measurement and Re-wiring Overheads
In this section we show experimentally that Egoist in-
troduces a rather small amount of overhead for main-
taining the overlay structure.

Active Measurement Load: As mentioned in Sec-
tion 4.2, in the absence of node churn, k-Random and
k-Regular do no perform any re-wirings, and thus do
not introduce measurement overheads. For k-Closest
and BR, the active measurement load is identical.

When the cost metric is delay via ping, ICMP mes-
sages of size 320 bits each (ECHO requests/replies) are
exchanged once per wiring epoch T . Notice that for
established links, there is no need for active measure-
ments since the cost metric for a link would be avail-
able by virtue of its use. Thus, the overhead is ≈
(n − k − 1) · 320/T bps per node. Using pyxida, a sin-
gle (http) request/reply to the pyxida server yields the
(virtual coordinate space) distances between the node
initiating the request and all other nodes in the over-
lay. This is clearly more efficient than using ping, as it
injects ≈ (320 + 64n)/T bps per node.When the met-
ric is system load, there is no overhead imposed on the
network as the system load is measured locally at each
node. Finally, when the metric is available bandwidth,
our experimental results showed that the bandwidth
needed for accurate probing of available bandwidth be-
tween two nodes in the overlay is less than 2% of the
pairwise bandwdith.

Link-State Protocol Load: The overhead (in terms
of additional injected traffic) imposed by the link-state
protocol is also low. Each node broadcasts a packet with
its ID, its neighbors’ IDs and the cost of the established
links to its k neighbors every Tannounce < T . The header
and padding of the link-state protocol messages require
a total of 64 bits, and the payload per neighbor requires
40 bits. Thus, the overhead in terms of injected traf-
fic on the overlay is ≈ (64 + 40 · k)/Tannounce bps per
node. In our experiments we set Tannounce=20 secs. The
above can be seen as an upper limit, as only unique link
state messages forwarded in the overlay (as mentioned
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Figure 3: Percentage of CPU and memory consumption,

and bandwidth consumption in EGOIST. The metric is delay

via ping.

in Section 3.1). In our implementation, no node spent
more than 1 Kbps to maintain the network.

Re-wirings Overhead: Fig. 2 (left) shows the total
number of re-wirings per (one minute) epoch for the
entire overlay over time. The results suggest that the re-
wiring rate decreases fast as Egoist reaches a “steady
state” and that the re-wiring rate is minimal for small
values of k. Here we note that as k increases the re-
wiring rate increases, but the improvement (in terms of
routing cost) is marginal, as a small number of outgoing
links is sufficient to significantly decrease the cost. This
is evident in Fig. 2 (center). Finally, we also note that
the re-wiring rate can significantly be decreased (with
marginal impact on routing cost) by requiring that re-
wiring be performed only if connecting to the “new”
set of neighbors would improve the local cost to the
node by more than a given threshold ǫ. We refer to this
modified version of BR as BR(ǫ). Fig. 2 (right) confirms
this by showing the number of re-wirings and resulting
performance when ǫ = 10%.

We measured also the memory and CPU consump-
tion using time of Unix. The average CPU and mem-
ory utilization was close to 0%. In Fig. 3 we show the
average CPU and memory utilization, along with the
average bandwidth consumption to maintain the over-
lay per node. CPU and memory consumption is close to
0%, and the bandwidth consumption per node is negligi-
ble. It is worth mentioning that the in-degree was quite
uniform in all our experiments, thus no node allocated
significantly more CPU power, memory, or bandwidth
than any other in the overlay. To improve the scala-
bility even further we have developed a topology-based
biased sampling technique and a layered architecture for
Egoist, both described and evaluated in [34].

4.4 Effect of Churn
In the original SNS formulation [19, 17], the graphs re-
sulting from the SNS-game as well as from the empiri-
cal wiring strategies were guaranteed to be connected,
so they could be compared in terms of average or max-
imum distance. Node churn, however, can lead to dis-
connected graphs, therefore we have to use a different
metric. For that purpose, we choose the Efficiency met-
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Figure 4: PlanetLab experiments with node churn showing

the efficiency of neighbor selection policies (normalized with

respect to BR) as a function of the number of neighbors k

(top) and churn (bottom) for a 50-node EGOIST overlay.

ric, where the Efficiency ǫij between node i and j (j 6= i)
is inversely proportional to the shortest communication
distance dij when i and j are connected. If there is no
path in the graph between node i and j then ǫij = 0.

The Efficiency ǫi of a node i defined as:ǫi = 1
n−1

∑

j 6=i

ǫij

To evaluate the efficiency of nodes in Egoist overlays
under churn, we allow each of the n = 50 nodes in the
overlays to exhibit ON and OFF periods. During its ON
periods, a node “joins” the overlay, performs re-wiring
according to the chosen policy, and fully participates in
the link-state routing protocol. During its OFF peri-
ods, a node simply drops out from any activity related
to the overlay. The ON/OFF periods we use in our ex-
periments are derived from real data sets of the churn
observed for PlanetLab nodes [14], with adjustments to
the timescale to control the intensity of churn.

In addition to evaluating the efficiency of various
neighbor selection policies we have considered so far,
we also evaluate the efficiency of HybridBR (see Sec-
tion 3.3), which allows a node to donate k2 = 2 of its
links to ensure connectivity (i.e., boost the efficiency of
the overlay) while using BR for the remaining links.

The top plot in Fig. 4 shows the achievable effi-
ciency of the various neighbor selection policies when
churn is present. As before, the efficiency of the various
policies is normalized with respect to that achievable
using BR, and is shown as a function of k. As with
all the metrics we considered so far, BR outperforms



all other policies (including HybridBR), but as Ego-
ist nodes are allowed to have more neighbors (i.e., as
k increases), the efficiency of the HybridBR approaches
that of BR, with the efficiency of k-Closest decisively
better than k-Random and k-Regular.

The above results imply that under the level of
churn in these experiments, it is not justifiable for BR
to donate two of its links simply to ensure connectiv-
ity, especially when k is small. Notice that BR overlays
that get disconnected due to churn will naturally heal
as soon as any of its active nodes decides to rewire. This
is so because the (infinite) cost of reaching the discon-
nected nodes will act as an incentive for nodes to choose
disconnected nodes as direct neighbors, thus reconnect-
ing the overlay. As noted earlier, re-wiring occurs every
T/n units of time on average (1.2 seconds under our
settings), which implies that the vulnerability of BR to
disconnections due to churn is highest for smaller over-
lays and if re-wiring is done infrequently.

Our last question then is whether at much higher
churn rates, it is the case that the use of HybridBR
would be justified. To answer this question, we changed
the timescale of the ON/OFF churn processes to emu-
late more frequent joins and leaves. The bottom plot in
Fig. 4 shows the results by plotting the efficiency metric
for the various policies as a function of the churn rate
(on the x-axis), which we define (as in [14]) to be the
sum of the fraction of the overlay network nodes that
changed state (ON/OFF), normalized by time T :

Churn= 1
T

∑

events i

|Ui−1 ⊖ Ui|

max{|Ui−1|, |Ui|}
, where Ui is the

new set of nodes in the overlay following an event i
that alters the membership in the set of nodes that
participate in the overlay, and ⊖ is the symmetric set
difference. Thus, a churn rate of 0.01 implies that, on
average, 1% of the nodes join or leave the overlay per
second. For an overlay of size n = 50, this translates to
a join or leave event every two seconds.

As expected, when churn rate increases significantly
to the point where the average time between churn
events approaches T/n, the efficiency of HybridBR even-
tually surpasses that of BR. The results also suggest
that under such conditions, the efficiency of both k-
Random and k-Regular fall dramatically, whereas that
of k-Closest remains level with that of BR.

4.5 Vulnerability to Cheaters
As we discussed in section 3.4, cheating nodes may at-
tempt to game the system by declaring false link costs to
their neighbors in order to benefit from Egoist without
contributing their own resources to the overlay. Due to
the combinatorial nature of the optimization problem
underlying BR re-wiring, and the out of order rewirings
of individual nodes, it is very hard for individual cheaters
to derive the proper costs that will lead to wirings that
will be of benefit to them individually, while harming
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Figure 5: PlanetLab experiments with cheater showing

the robustness of neighbor selection policies (normalized with

respect to BR) as a function of the number of neighbors k in

the presence of one cheater (top) and many cheaters for k = 2

(bottom) for a 50-node EGOIST overlay.

others. Theoretical results [3] advocate that such be-
havior may even lead to worse equilibria for cheaters
in routing games. Thus, in this section, we present re-
sults from a series of experiments aimed to assess Ego-
ist’s vulnerability to cheaters that misrepresent the cost
of their outgoing links (simply by inflating them), in
the hopes of discouraging others from selecting them as
neighbors.

As described in Section 3.4, one could add mech-
anisms to detect when cheaters make such false repre-
sentations. These mechanisms would take the form of
passive or active measurement audits from other nodes.
Determining how often nodes should perform such ran-
dom audits and what these nodes do when cheating
nodes are identified can be complex. Thus, it would be
preferable if one can show that the impact from such
abuse is minimal. Clearly, an assessment of the impact
of the full spectrum of possible false announcements is
beyond the scope of this paper. Thus, we only con-
sider the impact from inflated delay announcements by
a single node and by a variable fraction of the nodes.

In Fig. 5 (top), we show the impact from a sin-
gle cheater announcing link costs that are twice as high
as the real ones. The figure shows the individual cost
for both the cheater and for all other normal nodes for
different values of k. The cost for both types of nodes
is very close to the cost without the presence of the
cheater. We also evaluate the robustness of Egoist in
the presence of many cheaters (up to one-third of the
population). These results, shown in Fig. 5 (bottom),
yield consistent observations even when the number of
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outgoing links is very small (k = 2), which is the set-
ting in which the impact of bad re-wirings is amplified.
These results provide evidence that Egoist is fairly ro-
bust to abuse by cheaters, even without the deployment
of auditing mechanisms.

5. DISCUSSION AND APPLICATIONS

Egoist is a general purpose overlay routing sys-
tem that can be used by applications to supplement
traditional IP routing. The main difference between
an Egoist overlay and other routing overlays is that
by virtue of its BR-wiring strategy, an application con-
tacting its local Egoist node can be assured that this
node will provide better paths than a node that con-
nects to the overlay non-selfishly, e.g., using previously-
mentioned random or myopic heuristics. Stated other-
wise, the selfish selection of neighbors in Egoist is just
a manifestation of the desire of local applications to get
the best possible service for themselves.

An application can connect to an Egoist node by
using a protocol interface that the latter exposes. This
is an example of an application instance using Ego-
ist as a virtual router to communicate over the overlay
with another application instance getting access to the
overlay from a different Egoist node. In the artifacts
section we provide information on how to access our
publicly available implementation which permits using
PlanetLab nodes as such virtual routers.

A second option is to integrate Egoist directly
into an application through an API and a correspond-
ing library which we have implemented and made avail-
able. In this case, both the application and its local
Egoist instance run at the same node. We have eval-
uated the performance benefits that Egoist offers to
different kinds of applications, including multi-path file
transfer, real-time voice over IP, and multiplayer P2P
games. Due to lack of space, we present here some re-
sults only for the last one (see [34] for more).

5.1 Multiplayer P2P Gaming on top ofEGOIST

Recently there has been intense interest [4, 5] for
porting online multi-player games into P2P architec-

tures that scale better and do not require dedicated ex-
pensive infrastructure. In this section we demonstrate
the potential value of Egoist for such applications.

We obtained from [5] a trace containing the move-
ments of 100 players (AI bots) participating in a game
of Quake III. In Quake III, players are located in a vir-
tual 3D world and interact frequently as they come into
contact to fight each other. Two common events of the
game are the creation of a new object (e.g. a missile),
and the update of an existing object (e.g. update of
its coordinates). Each update is about 230 bytes. All
these updates have to be delivered to all the players that
are in the vicinity of the affected object in the virtual
world. This requires for building a multicast tree rooted
at each player that is updating some of its objects.

We distributed the 100 players among our 25 Ego-
ist nodes on PlanetLab and used the Egoist overlay to
deliver the updates. We set k = 2 and mapped the L3

distance of players i and j in the virtual world into the
preference weight pij that defines the preference that
the local Egoist node of i has for sending messages to
the local Egoist node of j. Since the main requirement
in this case is for high interactivity, we employed the
delay-based version of BR. With this mapping, nodes
pick as neighbors other nodes that host players that are
closer in the virtual world which implies interaction, and
thus requirement for small end-to-end delay. The value
k = 2 is justified from the fact that due to human per-
ceptual limitations, players usually pay attention and
interact with a small number of other players [5].

In the above setting, we replayed the trace for a
period of three minutes involving more than 108,000
events. We compared the update latencies when sent
over Egoist and over k-Random, k-Regular and k-
Closest wiring policies. The cumulative distribution
function of update latencies is illustrated in Fig. 6. Both
the median (∼65 msecs) and the 95th-percentile update
latency over Egoist is less than half of the correspond-
ing latencies over k-Random and k-Regular, and less
than two-thirds of those over k-Closest. Experimen-
tally, it has been shown that update latency higher than
200 msecs may effect the quality of user’s experience [5].
More than 90% of packets sent over Egoist were deliv-
ered earlier than 200 msecs and only 60-70% under the
other topologies.

6. EGOIST ARTIFACTS
Our Egoist prototype is currently deployed on Plan-
etLab. A live demonstration of the overlay routing
topology maintained by Egoist and the source code
(in python) can be accessed from the Egoist project
web site at http://csr.bu.edu/sns/.

7. CONCLUSION
In this paper we have shown how recent theoretical re-
sults on Selfish Neighbor Selection could be leveraged
for overlay routing applications. Through the develop-



ment and deployment of our Egoist prototype rout-
ing network on PlanetLab, we have established that
Best-Response neighbor selection strategies can indeed
be realized in practice, that they provide a substantial
performance boost when compared to currently used
heuristics, and that they scale much better than full-
mesh approaches which require intensive monitoring of
O(n2) links. We have substantiated these benefits under
different performance metrics, active and passive link
monitoring strategies, in static and churn-prone envi-
ronments, and in the presence of truthful and untruth-
ful nodes. We also demonstrated that Egoist incurs
minimal overhead and how it can be used as a building
block for efficient routing in overlay applications.
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